Improving Bandwidth of Yagi-Uda Arrays
Richard A. Formato
DOI: 10.4236/wet.2012.31003   PDF    HTML     12,995 Downloads   21,139 Views   Citations


A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technology, a novel, proprietary design and optimization methodology, to produce an array with 33.09% fractional impedance bandwidth. This array’s performance is compared to its CFO-optimized Fixed Z0counterpart, and to the performance of a 6-ele- ment Dominating Cone Line Search-optimized array. Both CFO-optimized antennas exhibit better performance than the DCLS array, especially with respect to impedance bandwidth. Although the Yagi-Uda antenna was chosen to illustrate this new approach to antenna design and optimization, the methodology is entirely general and can be applied to any antenna against any set of performance objectives.

Share and Cite:

Formato, R. (2012) Improving Bandwidth of Yagi-Uda Arrays. Wireless Engineering and Technology, 3, 18-24. doi: 10.4236/wet.2012.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Uda, “Wireless Beam of Short Electric Waves,” Journal of the Institute of Electrical Engineers (Japan), March 1926, pp. 273-282.
[2] H. Yagi, “Beam Transmission of Ultra Short Waves,” P Proceedings of the IEEE, Vol. 85, No. 11, 1928, pp. 1864 -1874.
[3] C. A. Balanis, “Antenna Theory: Analysis and Design,” Harper & Row, Publishers, New York, 1982.
[4] The ARRL Antenna Book, 20th Edition, American Radio Relay League, Inc., Newington, 2008.
[5] A. C. Lisboa, D. A. G. Vieira, J. A. Vasconcelos, R. R. Saldanha, and R. H. C. Takahashi, “Monotonically Improving Yagi-Uda Conflicting Specifications Using the Dominating Cone Line Search Method,” IEEE Transactions on Magnetics, Vol. 45, No. 3, 2009, pp. 1494-1497. doi:10.1109/TMAG.2009.2012688
[6] Federal Communications Commission, “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” First Report and Order, FCC 02-48, Washington, DC, 2002.
[7] R. A. Formato, “A Novel Methodology for Antenna Design and Optimization: Variable Z0 (ver. 2),” 2011.
[8] R. A. Formato, “UWB Array Design Using Variable Z0 Technology and Central Force Optimization, ver. 2,” 2011.
[9] R. A. Formato, “Central Force Optimization: A New Metaheuristic with Applications in Applied Electromagnetics,” Progress in Electromagnetics Research, Vol. 77, 2007, pp. 425-491. doi:10.2528/PIER07082403
[10] G. M. Qubati, N. I. Dib, and R. A. Formato, “Antenna Benchmark Performance and Array Synthesis using Central Force Optimization,” Microwaves, Antennas & Propagation, Vol. 4, No. 5, 2010, pp. 583-592, 2010.
[11] G. Qubati, “Central Force Optimization Method and Its Application to the Design of Antennas,” Masters Dissertation, Jordan University of Science and Technology, Amman, 2010.
[12] G. M. Qubati, and N. I. Dib, “Microstrip Patch Antenna Optimization Using Modified Central Force Optimization,” Progress in Electromagnetics Research, Vol. 21, 2010, pp. 281-298.
[13] M. J. Asi and N. I. Dib, “Design of Multilayer Microwave Broadband Absorbers Using Central Force Optimization,” Progress in Electromagnetics Research B, Vol. 26, 2010, pp. 101-113. doi:10.2528/PIERB10090103
[14] R. A. Formato, “New Techniques for Increasing Antenna Bandwidth with Impedance Loading,” Progress in Electromagnetics Research B, Vol. 29, 2011, pp. 269-288. doi:10.2528/PIERB11021904
[15] R. A. Formato, “Improved CFO Algorithm for Antenna Optimization,” Progress in Electromagnetics Research B, Vol. 19, 2010, pp. 405-425. doi:10.2528/PIERB09112309
[16] R. A. Formato, “Parameter-Free Deterministic Global Search with Simplified Central Force Optimization,” In: D.-S. Huang, Z. Zhao, V. Bevilacqua and J, C, Figueroa, Eds., Advanced Intelligent Computing Theories and Applications (ICIC2010), Springer-Verlag, Berlin, 2010, pp. 309-318.
[17] R. A. Formato, “Central Force Optimization with Variable Initial Probes and Adaptive Decision Space,” Applied Mathematics and Computation, Vol. 217, No. 21, 2011, pp. 8866-8872. doi:10.1016/j.amc.2011.03.151
[18] R. A. Formato, “Central Force Optimization Applied to the PBM Suite of Antenna Benchmarks,” 2010.
[19] G. J. Burke, “Numerical Electromagnetics Code—NEC-4.2 Method of Moments, Part I: User’s Manual,” LLNL-SM-490875, Lawrence Livermore National Laboratory, Livermore, 2011.
[20] G. J. Burke, “Numerical Electromagnetics Code—NEC-4, Method of Moments, Part I: User’s Manual and Part II: Program Description—Theory,” UCRL-MA-109338, Lawrence Livermore National Laboratory, Livermore, 1992.
[21] G. J. Burke and A. J. Poggio, “Numerical Electromagnetics Code (NEC)—Method of Moments,” Parts I, II and III, UCID-19934, Lawrence Livermore National Laboratory, Livermore, January 1981.
[22] “4nec2” Antenna Modeling Freeware by Arie Voors,
[23] Unofficial Numerical Electromagnetic Code (NEC) Archives,
[24] Y. Zehforoosh, C. Ghobadi and J. Nourinia, “Antenna Design for Ultra Wideband Application Using a New Multilayer Structure,” PIERS Online, Vol. 2, No. 6, 2006, pp. 544-549. doi:10.2529/PIERS060531145356
[25] R. A. Formato, “Issues in Antenna Optimization—A Monopole Case Study,” 2011.
[26] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proceeding of IEEE Conference on Neural Networks, Vol. 4, 1995, pp. 1942-1948.
[27] M. Dorigo, V. Maniezzo and A. Colorni, “Positive Feedback as a Search Strategy,” Dipartimento di Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-016, 1991.
[28] S. He, Q. H. Wu, and J. R. Saunders, “Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior,” IEEE Trans. Evol. Computation, Vol. 13, No. 5, 2009, pp. 973-990.
[29] R. Storn and K. V. Price, “Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, ICSI (Univ. of California, Berkeley), 1995.
[30] R. Storn and K. V. Price, “Minimizing the Real Functions of the ICEC 1996 Contest by Differential Evolution,” Proc. 1996 IEEE International Conference on Evolutionary Computation, Nagoya, 20-22 May 1996, pp. 842-844. doi:10.1109/ICEC.1996.542711
[31] A. Chowdhury, A. Ghosh, R. Giri, and S. Das, “Optimization of Antenna Configuration with a Fitness-Adaptive Differential Evolution Algorithm,” Progress in Electromagnetics Research B, Vol. 26, 2010, pp. 291-319. doi:10.2528/PIERB10080703
[32] E. A. Jones and W. T. Joines, “Design of Yagi-Uda Antennas Using Genetic Algorithms,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1997, pp. 1386-1392. doi:10.1109/8.623128

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.