Towards Earthquake Shields: A Numerical Investigation of Earthquake Shielding with Seismic Crystals
Baris Baykant Alagoz, Serkan Alagoz
DOI: 10.4236/oja.2011.13008   PDF    HTML     3,816 Downloads   8,613 Views   Citations


Authors numerically demonstrate that the seismic surface waves from an earthquake can be attenuated by a seismic crystal structure constructed on the ground. In the study, seismic crystals with a lattice constant of kilometer are investigated in the aspect of band gaps (Stop band), and some design considerations for earthquake shielding are discussed for various crystal configurations in a theoretical manner. Authors observed in their FDTD based 2D wave simulation results that the proposed earthquake shield can provide a decreasing in magnitude of surface seismic waves. Such attenuation of seismic waves might reduce the damage in an earthquake.

Share and Cite:

Alagoz, B. and Alagoz, S. (2011) Towards Earthquake Shields: A Numerical Investigation of Earthquake Shielding with Seismic Crystals. Open Journal of Acoustics, 1, 63-69. doi: 10.4236/oja.2011.13008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Miyashita, “Sonic Crystals and Sonic Wave-Guides,” Measurement Science and Technology, Vol. 16, No. 5, 2005, pp. 47-63. doi:10.1088/0957-0233/16/5/R01
[2] X. D. Zhanga and Z. Y. Liu, “Negative Refraction of Acous- tic Waves in Two-Dimensional Phononic Crystals,” Applied Physics Letters, Vol. 85, No. 2, 2004, pp. 341-343. doi:10.1063/1.1772854
[3] M. M. Sigalas, “Theoretical Study of Three Dimensional Elastic Band Gaps with the Finite-Difference Time-Do- main Method,” Journal of Applied Physics, Vol. 87, No. 6, 2000, pp. 3122-3125. doi:10.1063/1.372308
[4] T. Miyashita and C. Inoue, “Numerical Investigations of Transmission and Waveguide Properties of Sonic Crys- tals by Finite-Difference Time-Domain Method,” Japa- nese Journal of Applied Physics, Vol. 40, 2001, pp. 3488- 3492. doi:10.1143/JJAP.40.3488
[5] M. S. Kushwaha and B. Djafari-Rouhani, “Sonic-Stop bands for periodic Arrays of Metallics Rods: Honeycomb Structure,” Journal of Sound and Vibration, Vol. 218, No. 10, 1998, pp. 697-709. doi:10.1006/jsvi.1998.1839
[6] M. Hirsekorn, “Small-Size Sonic Crystals with Strong Attenuation Bands in the Audible Frequency Range,” Ap- plied Physics Letters, Vol. 84, No. 17, 2004, p.3364. doi:10.1063/1.1723688
[7] E. N. Economou and M. M. Sigalas, “Classical Wave Pro- pagation in Periodic Structures: Cermet versus Network Topology,” Physical Reviews B, Vol. 48, No. 18, 1993, pp. 13434-13438. doi:10.1103/PhysRevB.48.13434
[8] N. K. Batra, P. Matic and R. K. Everett, “Sonic Crystal Composites for Selective Noise Reduction,” Proceedings of IEEE Ultrasonic Symposium, Vol. 1, 8-11 October 2002, pp. 547-550.
[9] E. Ozbay, K. Guven, K. Aydin, “Metamaterials with Ne- gative Permeability and Negative Refractive Index: Experiments and Simulations,” Journal of Optics A: Pure Applied Optics, Vol. 9, No. 9, 2007, pp. S301-307. doi:10.1088/1464-4258/9/9/S04
[10] J. Sun, C. C. Chan, X. Y. Dong and P. Shum, “Tunable Photonic Band Gaps in a Photonic Crystal Fiber Filled with Low Index Material,” Journal of Optoelectronics and Advanced Materials, Vol. 8, 2006, pp. 1593-1596.
[11] E. Yablonovitch, “Photonic Band-Gap Crystals,” Journal of Physical Condensed Matter, Vol. 5, No. 16, 1993, p. 2443. doi:10.1088/0953-8984/5/16/004
[12] M. Ciobanu, L. Preda, A. Popescu, M. Mihailescu and M. I. Rusu, “Designing Tunable Photonic Crystals with Band Gaps in Microwave Range,” Journal of Computational and Theoretical Nanoscience, Vol. 7, No. 6, 2010, pp. 1032- 1034. doi:10.1166/jctn.2010.1449
[13] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, C. Lopez, J. Sanchez-Dehesa and J. Llinares, “Two-Dimen- sional Elastic Bandgap Crystal to Attenuate Surface Waves,” Journal of Lightwave Technology, Vol. 17, No. 11, 1999, pp. 2196-2201. doi:10.1109/50.803011
[14] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. S’anchez-Dehesa, C. L’opez, and J. Llinares, “Attenuation of Surface Elastic Waves (Earthquakes) by Phononic Crystals,” Physical Reviews B, Vol. 59, No. 19, 1999, pp. 12169-12172. doi:10.1103/PhysRevB.59.12169
[15] S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert and V. Laude, “Evidence for Complete Surface Wave Band Gap in a Piezoelectric Phononic Crystal,” Physical Reviews E, Vol. 73, No. 6, 2006, p. 065601(4). doi:10.1103/PhysRevE.73.065601
[16] V. Laude, M. Wilm, S. Benchabane and A. Khelif, “Full Band Gap for Surface Acoustic Waves in a Piezoelectric Phononic Crystal,” Physical Reviews E, Vol. 71, No. 3, 2005, p. 036607(7). doi:10.1103/PhysRevE.71.036607
[17] Y. Tanaka and S. Tamura, “Two-Dimensional Phononic Crystals: Surface Acoustic Waves,” Physica B: Conden- sed Matter, Vol. 263-264, 1999, pp. 77-80. doi:10.1016/S0921-4526(98)01197-1
[18] R. Mart?nez-Salaa, C. Rubioa, L. M. Garcia-Raffib, J. V. San- chez-Pereza, E. A. Sanchez-Pereza and J. Linaresa, “Con- trol of Noise by Trees Arranged Like Sonic Crystals,” Journal of Sound and Vibration, Vol. 291, No. 1-2, 2006, pp. 100-106. doi:10.1016/j.jsv.2005.05.030
[19] J. V. Sanchez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Llinares and F. Galvez, “Sound Attenuation by Two-Dimensional Array of Rigid Cylinders,” Applied Physics Letters, Vol. 80, No. 24, 1998, pp. 5325-5328. doi:10.1103/PhysRevLett.80.5325
[20] M. Brun, S. Guenneau and A. B. Movchan, “Achieving Control of In-Plane Elastic Waves,” Applied Physics Let- ters, Vol. 94, No. 6, 2009, p. 061903(3). doi:10.1063/1.3068491
[21] M. Farhat, S. Guenneau and S. Enoch, “Ultrabroadband Elastic Cloaking in Thin Plates,” Applied Physics Letters, Vol. 103, No. 2, 2009, p. 024301(4). doi:10.1103/PhysRevLett.103.024301
[22] L. Y. Wu and L. W. Chen, “The Dispersion Characteristics of Sonic Crystals Consisting of Elliptic Cylinders,” Jour- nal of Physics D: Applied Physics, Vol. 40, No. 23, 2007, pp. 7579-7583. doi:10.1088/0022-3727/40/23/051
[23] C. Qiu, X. Zhang and Z. Liu, “Far-Field Imaging of Aco- ustic Waves by a Two-Dimensional Sonic Crystal,” Phys Reviev B, Vol. 71, No. 5, 2005, p. 054302(6). doi:10.1103/PhysRevB.71.054302
[24] S. Alagoz and B. B. Alagoz, “Frequency-Controlled Wave Focusing by a Sonic Crystal Lens,” Applied Acoustics, Vol. 70, No. 11-12, 2009, pp. 1400-1405. doi:10.1103/PhysRevB.71.054302
[25] L. E. Kinsler, A. R. Frey, B. Coppens and J. V. Sanders, “Fundamentals of Acoustics,” John Wiley & Sons Inc., New York, 1982.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.