Intense Visible Photoluminescence from C46H22N8O4KM (M = Co, Fe, Pb) Derivatives Thin Films
María Elena Sánchez, Juan Carlos Alonso, Jerry Nathan Reider
DOI: 10.4236/ampc.2011.13010   PDF    HTML     5,892 Downloads   9,874 Views   Citations


Strong visible photoluminescence (PL) at room temperature is obtained from thermal-evaporated thin solid films of Metallophthalocyanine (M = Co, Fe, Pb) and double potassium salt from 1,8 dihydroxyan-thraquinone. The PL of all the investigated samples is observed with the naked eye in a bright background. The deconvolution of the normalized PL spectra shows that each PL spectrum is composed of four emission bands which peak at approximately the same energies of 2.1, 2.2 and 2.4 eV and whose intensities and widths depend upon the structure of the complexes. FTIR and ellipsometry are employed to investigate the structural differences among the films. The optical absorption of the films is also investigated to evaluate the changes in the electronic structure of these metal organic compounds, with respect to other metalphtalocya-nines thin films. Our results suggest that the visible PL comes from radiative transitions between energy lev-els associated to the double potassium salt coordination to the metallic ion in the phthalocyanine.

Share and Cite:

Sánchez, M. , Alonso, J. and Reider, J. (2011) Intense Visible Photoluminescence from C46H22N8O4KM (M = Co, Fe, Pb) Derivatives Thin Films. Advances in Materials Physics and Chemistry, 1, 57-63. doi: 10.4236/ampc.2011.13010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. W. Tang and S. A. VanSlyke, “Organic Electrolumi- nescent Diodes,” Applied Physics Letters, Vol. 51, No. 12, 1987, pp. 913-915.
[2] T. Hu and J. P. Desai, “Soft-Tissue Material Properties under Large Deformation: Strain Rate Effect,” Pro-ceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, 1-5 September 2004, pp. 2758-2761.
[3] T. K. Hatwar and J. Spindler, “Development of White OLED Technology for Application in Full-Color Dis-plays and Solid-State Lighting in Luminescent Materials and Applications,” In: A. Kitai, Ed., Luminescent Materials and Applications, John Wiley & Sons Ltd., West Sussex, pp. 111-159.
[4] N. Peltekis, B. N. Holland, S. Krishnamurthy, I. T. McGovern, N. R. J. Poolton, S. Patel and C. McGuinness, “Electronic and Optical Properties of Magnesium Phtha- lo-cyanine (MgPc) Solid Films Studied by Soft X-Ray Excited Optical Luminescence and X-Ray Absorption Spectroscopies,” Journal of the American Chemical Society, Vol. 130, No. 39, 2008, pp. 13008-13012. doi:10.1021/ja803063b
[5] T. Del Ca?o, V. Parra, M. L. Rodríguez Méndez, R. F. Aroca and J. A. De Saja, “Charac-terization of Evaporated trivalent and Tetravalent Phthalocya-nines Thin Films: Different Degree of Organization,” Applied Surface Science, Vol. 246, No. 4, 2005, pp. 327-333. doi:10.1016/j.apsusc.2004.11.036
[6] M. Wojdyla, W. Bala, B. Derkowska, M. Rebarz and A. Korcala, “The Temperatura Dependence of Photoluminescence and Absorption Spectra of Vacuum-Sublimed Magnesium Phthalocyanine Thin Films,” Optical Materials, Vol. 30, No. 5, 2008, pp. 734-739. doi:10.1016/j.optmat.2007.02.023
[7] Y. Sakakibara, R. N. Bera, T. Mizutani, K. Ishida, M. Tokumoto and T. Tani, “Pho-toluminescence Properties of Magnesium, Chloroaluminum, Bromoaluminum, and Metal- Free Phthalocyanine Solid Films,” Journal of Physical Chemistry B, Vol. 105, No. 8, 2001, pp. 1547-1553. doi:10.1021/jp002943o
[8] J. H. Sharpand and M. Lardon, “Spectroscopic Charac- terization of a New Polymorph of Metal-Free Phthalo- cyanine,” Journal of Physical Chemistry, Vol. 72, No. 9, pp. 3230-3235.
[9] K. Yoshino, M. Hikida and K. Tatsuno, “Emission Spec- tra of Phthalocyanine Crys-tals,” Journal of the Physical Society of Japan, Vol. 34, No. 2, 1973, pp. 441-445. doi:10.1143/JPSJ.34.441
[10] M. S. Liao and S. Scheiner, “Electronic Structure and Bonding in Metal Phthalocyanines, Metal = Fe, Co, Ni, Cu, Zn, Mg,” The Journal of Chemical Physics, Vol. 114, No. 22, 2001, pp. 9780-9791. doi:10.1063/1.1367374
[11] B. Blanzat, C. Barthou and N. Tercier, “Energy Transfer in Solid Phases of Octasubstituted Phthalocyanine De- rivatives,” Journal of the American Chemical Society, Vol. 109, No. 24, 1987, pp. 6193-6194. doi:10.1021/ja00254a054
[12] W. H. Flora, H. K. Hall and N. R. Armstrong, “Guest Emission Processes in Doped Organic Light-Emitting Diodes: Use of Phthalocyanine and Naphthalo-cyanine Near-IR Dopants,” Journal of Physical Chemistry B, Vol. 107, No. 5, 2003, pp. 1142-1150. doi:10.1021/jp021368g
[13] T. Del Ca?o, J. A. Sajab and R. Aroca, “Emission En- hancement in Chlorogallium Phthalo-cyanine-N, N9-Bis (Neopen-tyl)-3,4,9,10-Perylenebis(Dicarboximide) Mixed Films,” Thin Solid Films, Vol. 425, No. 1-2, 2003, pp. 292-296. doi:10.1016/S0040-6090(02)01107-0
[14] W. Freyer, C. Neacsu and M. Raschke, “Absorption, Luminescence, and Ra-man Spectroscopic Properties of Thin Films of Benzo-Annelated Metal-Free Porphyrazines,” Journal of Lu-minescence, Vol. 128, No. 4, 2008, pp. 661-672. doi:10.1016/j.jlumin.2007.11.070
[15] D. Yan, S. Qin, L. Chen, J. Lu, J. Ma, M. Wei, D. G. Evans and X. Duan, “Thin Film of Sulfonated Zinc Phthalocyanine/Layered Double Hy-droxide for Achieving Multiple Quantum Well Structure and Polarized Luminescence,” Chemical Communications, Vol. 46, No. 45, 2010, pp. 8654-8656. doi:10.1039/c0cc02129f
[16] Y. Zhang, X. Sun, Y. Niu, R. Xu, G. Wang and Z. Jian, “Synthesis and Characterization of Novel Poly(Aryl Ether ketone)s with Metallophthalocyanine Pendant Unit from a New Bisphenol Containing Dicyanophenyl Side Group,” Polymer, Vol. 47, No. 5, 2006, pp. 1569-1574. doi:10.1016/j.polymer.2005.12.068
[17] M. E. Sánchez-Vergara, M. A. Ruiz Farfán, J. R. álvarez, A. Ponce Pedraza, A. Ortiz and C. álvarez-Toledano, “Electrical and Optical Properties of C46H22N8O4KM (M=Co, Fe, Pb) Molecu-lar-Material Thin Films Prepared by the Vacuum Thermal Evaporation Technique,” Spectrochimica Acta Part A: Mo-lecular and Biomolecular Spectroscopy, Vol. 66, No. 3, 2007, pp. 561-567. doi:10.1016/j.saa.2006.03.040
[18] G. Socrates, “Infrared and Raman Characteristic Group Frequencies: Tables and Charts,” 3rd Edition, John Wiley and Sons, Hokoben, 2001.
[19] R. Seoudi, G. S. El-Bahy and Z. A. El Sayed, “FTIR, TGA and DC Electrical Conductivity Studies of Phthalo- cyanine and Its Complexes,” Journal of Molecular Struc- ture, Vol. 753, No. 1-3, 2005, pp. 119-126. doi:10.1016/j.molstruc.2005.06.003
[20] M. E. Sánchez Ver-gara, A. Ortiz Rebollo, J. R. Alvarez and M. Rivera, “Molecu-lar Materials Derived from MPc (M = Fe, Pb, Co) and 1,8-Dihydroxiantraquinone Thin Films: Formation, Electrical and Optical Properties,” Journal of Physics and Chemistry of Solids, Vol. 69, No. 1, 2008, pp. 1-7. doi:10.1016/j.jpcs.2007.07.084
[21] M. M. El-Nahass, A. M. Farag, K. F. Abd El-Rahman and A. A. A. Darwish, “Disper-sion Studies and Electronic Transitions in Nickel Phthalocya-nine Thin Films,” Optics & Laser Technology, Vol. 37, No. 7, 2005, pp. 513-523. doi:10.1016/j.optlastec.2004.08.016
[22] G. A. Kumar, J. Thomas, N. George, B. A. Kumar, P. Radhakrishnan, V. P. N. Nampoori and C. P. G. Vallab- han, “Optical Absorption Studies of Free (H2Pc) and Rare Earth (RePc) Phthalocyanine Doped Borate Glasses,” Physics and Chemistry of Glasses, Vol. 41, No. 2, 2000, pp. 89-93.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.