On Solutions of Generalized Bacterial Chemotaxis Model in a Semi-Solid Medium
Ahmed M. A. El-Sayed, Saad Z. Rida, Anas A. M. Arafa
DOI: 10.4236/am.2011.212214   PDF    HTML     4,912 Downloads   8,033 Views  


In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of bacterial chemotaxis model of fractional order in a semi-solid medium. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.

Share and Cite:

El-Sayed, A. , Rida, S. and Arafa, A. (2011) On Solutions of Generalized Bacterial Chemotaxis Model in a Semi-Solid Medium. Applied Mathematics, 2, 1515-1521. doi: 10.4236/am.2011.212214.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. O. Budrene and H. C. Berg, “Complex Patterns Formed by Motile Cells of Escherichia Coli,” Nature, Vol. 349, 1991, pp. 630-633. doi:10.1038/349630a0
[2] M. Ichise, Y. Nagayanagi and T. Kojima, “An Analog Simulation of Non-Integer Order Transfer Functions for Analysis of Electrode Processes,” Journal of Electronically Chemistry Interfacial Electrochemical, Vol. 33, No. 2, 1971, pp. 253-265.
[3] H. H. Sun, B. Onaral and Y. Tsao, “Application of Positive Reality Principle to Metal Electrode Linear Polarization Phenomena,” IEEE Transactions on Biomedical Engineering, Vol. 31, No. 10, 1984, pp. 664-674. doi:10.1109/TBME.1984.325317
[4] H. H. Sun, A. A. Abdelwahab and B. Onaral, “Linear Approximation of Transfer Function with a Pole of Fractional Order,” IEEE Transactions on Automatic Control, Vol. 29, No. 5, 1984, pp. 441-444. doi:10.1109/TAC.1984.1103551
[5] B. Mandelbrot, “Some Noises with 1/f Spectrum, a Bridge between Direct Current and White Noise,” IEEE Transactions on Information Theory, Vol. 13, No. 2, 1967, pp. 289-298. doi:10.1109/TIT.1967.1053992
[6] R. L. Bagley and R. A. Calico, “Fractional Order State Equations for the Control of Viscoelastic Structures,” Journal of Guidance Control Dynamics, Vol. 14, No. 2, 1991, pp. 304-311. doi:10.2514/3.20641
[7] R. C. Koeller, “Application of fractional calculus to the theory of viscoelasticity,” Journal of Applied Mechanics, Vol. 51, No. 2, 1984, pp. 299-307. doi:10.1115/1.3167616
[8] R. C. Koeller, “Polynomial Operators. Stieltjes Convolution and Fractional Calculus in Hereditary Mechanics,” Acta Mechanics, Vol. 58, No. 3-4, 1986, pp. 251-264. doi:10.1007/BF01176603
[9] S. B. Skaar, A. N. Michel and R. K. Miller, “Stability of Viscoelastic Control Systems,” IEEE Transactions on Automatic Control, Vol. 33, No. 4, 1988, pp. 348-357. doi:10.1109/9.192189
[10] T. T. Hartley, C. F. Lorenzo and H. K. Qammar, “Chaos in a Fractional Order Chua System,” IEEE Transactions on Circuits Systems, Vol. 42, No. 8, 1995, pp. 485-490. doi:10.1109/81.404062
[11] F. Mainardi, “Fractional Calculus: Some Basic Problem in Continuum and Statistical Mechanics,” In: A. Carpinteri and F. Mainardi, Eds., Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wein, New York, 1997, pp. 291-348.
[12] Y. A. Rossikhin and M. V. Shitikova, “Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids,” Applied Mechanics Reviews, Vol. 50, No. 1, 1997, pp. 15-67. doi:10.1115/1.3101682
[13] R. L. Magin, “Fractional Calculus in Bioengineering,” Critical Reviews in Biomedical Engineering?, Vol. 32, No. 1, 2004, pp. 1-104.
[14] R. L. Magin, “Fractional Calculus in Bioengineering: Part 2,” Critical Reviews in Biomedical Engineering?, Vol. 32, No. 2, 2004, pp. 105-193.
[15] R. L. Magin, “Fractional Calculus in Bioengineering: Part 3,” Critical Reviews in Biomedical Engineering?, Vol. 32, No. 3-4, 2004, pp. 194-377.
[16] K. B. Oldham, “The Fractional Calculus,” Academic Press, New York, 1974.
[17] S. G. Samko, A. A. Kilbas and O. I. Marichev, “Fractional Integrals and Derivatives-Theory and Applications,” Gordon and Breach Science Publishers, Longhorne, 1993.
[18] I. Podlubny, “Fractional Differential Equations,” Academic Press, New York, 1999.
[19] S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa, “Effect of Bacterial Memory Dependent Growth by Using Fractional Derivatives Reaction-Diffusion Chemotactic Model,” Journal of Statistical Physics, Vol. 140, No. 4, 2010, pp. 797-811. doi:10.1007/s10955-010-0007-8
[20] A. M. A. El-Sayed, S. Z. Rida and A. A. M. Arafa, “On the Solutions of the Generalized Reaction-Diffusion Model for Bacteria Growth,” Acta Applicandae Mathematicae, Vol. 110, No. 3, 2010, pp. 1501-1511. doi:10.1007/s10440-009-9523-4
[21] S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa, “On the Solutions of Time-Fractional Reaction-Diffusion Equations,” Communication in Nonlinear Science & Numerical Simulation, Vol. 15, 2010, pp. 3847-3854.
[22] S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa, “A Fractional Model for Bacterial Chemoattractant in a Liquid Medium,” Nonlinear Science Letter A, Vol. 1, No. 4, 2010, pp. 415-420.
[23] A. M. A. El-Sayed, S. Z. Rida and A. A. M. Arafa, “Exact Solutions of the Fractional-Order Biological Population Model,” Communication in Theoretical Physics, Vol. 52, No.6, 2009, pp. 992-996. doi:10.1088/0253-6102/52/6/04
[24] A. M. A. El-Sayed, S. Z. Rida and A. A. M. Arafa, “On the Solutions of Time-Fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber,” International journal of Nonlinear Science, Vol. 7, No. 4, 2009, pp. 485-492.
[25] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer, Academic, Dordrecht, 1994.
[26] G. A domain, “A Review of the Decomposition Method in Applied Mathematics,” Mathematical Analysis and Applications, Vol. 135, 1988, pp. 501-544.
[27] Y. Cherruault, “Convergence of Adomian’s Method,” Kybernetes, Vol. 18, No. 2, 1989, pp. 31-38. doi:10.1108/eb005812
[28] Y. Cherruault, G. Adomian, “Decomposition Methods: A New Proof of Convergence,” Mathematical and Computer Modelling, Vol. 18, No. 2, 1993, pp. 103-106. doi:10.1016/0895-7177(93)90233-O
[29] N. Nagarhasta, B. Some, K. Abbaoui and Y. Cherruault, “New Numerical Study of Adomian Method Applied to a Diffusion Model,” Kybernetes, Vol. 31, No. 1, 2002, pp. 61-75. doi:10.1108/03684920210413764
[30] S. Momani, “Non-Perturbative Analytical Solutions of the Space- and Time-Fractional Burgers Equations,” Chaos, Solitons & Fractals, Vol. 28, No. 4, 2006, pp. 930-937. doi:10.1016/j.chaos.2005.09.002
[31] S. Momani and Z. Odibat, “Analytical Solution of a Time- Fractional Navier-Stokes Equation by Adomian Decomposition Method,” Applied Mathematics and Computation, Vol. 177, No. 2, 2006, pp. 488-494. doi:10.1016/j.amc.2005.11.025
[32] S. Momani and Z. Odibat, “Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order,” Chaos, Solitons & Fractals, Vol. 31, No. 5, 2007, pp. 1248-1255. doi:10.1016/j.chaos.2005.10.068
[33] Z. Odibat and S. Momani, “Approximate Solutions for Boundary Value Problems of Time-Fractional Wave Equation,” Applied Mathematics and Computation, Vol. 181, No. 1, 2006, pp. 767-774. doi:10.1016/j.amc.2006.02.004
[34] I. Podlubny and A. M. A. El-Sayed, “On Two Definition of Fractional Calculus,” Solvak Academy of Science-Institute of Experimental Physics, UEF-03-96 ISPN 80- 7099-252-2, 1996.
[35] A. Wazwaz, “A New Algorithm for Calculating Adomian Polynomials for Nonlinear Operators,” Applied Mathematics and Computation, Vol. 111, No. 1, 2000, pp. 53-69. doi:10.1016/S0096-3003(99)00063-6

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.