Photo-Induced Reduction Reaction of Methylene Blue in an Ionic Liquid


Reduction of methylene blue (MB) occurred by photo irradiation at 280 - 370 nm wavelengths to a solution of MB in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), which was confirmed by color change and UV-Vis measurement of the solution. Furthermore, the reduced MB was oxidized again by standing the solution under the conditions of light shielding at 50?C. The fluorescence spectra of the solution excited at 350 nm suggested that the photo-induced reduction probably took place via electron-transfer from BMIMCl to MB.

Share and Cite:

Kadokawa, J. , Izawa, H. , Ohta, T. , Wakizono, S. and Yamamoto, K. (2011) Photo-Induced Reduction Reaction of Methylene Blue in an Ionic Liquid. International Journal of Organic Chemistry, 1, 158-161. doi: 10.4236/ijoc.2011.14023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Hulanicki and S. Glab, “Redox Indicators. Characteristics and Applications,” Pure and Applied Chemistry, Vol. 50, No. 5, 1978, pp. 463-498. doi:10.1351/pac197850050463
[2] S. B. Khoo and F. Chen, “Studies of Sol-Gel Ceramic Film Incorporating Methylene Blue on Glassy Carbon: An Electrocatalytic System for the Simultaneous Determination of Ascorbic and Uric Acids,” Analytical Chemistry, Vol. 74, No. 22, 2002, pp. 5734-5741. doi:10.1021/ac0255882
[3] G. Zaitseva, Y. Gushikem, E. S. Ribeiro and S. S. Rosatto, “Electrochemical Property of Methylene Blue Redox Dye Immobilized on Porous Silica-Zirconia-Antimonia Mixed Oxide,” Electrochimica Acta, Vol. 47, No. 9, 2002, pp. 1469-1474. doi:10.1016/S0013-4686(01)00870-2
[4] J.-Z. Xu, J.-J. Zhu, Q. Wu, Z. Hu and H.-Y.Chen, “An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode,” Electroanalysis, Vol. 15, No. 3, 2003, pp. 219-224. doi:10.1002/elan.200390027
[5] Y. Yan, M. Zhang, K. Gong, L. Su, Z. Guo and L. Mao, “Adsorption of Methylene Blue Dye onto Carbon Nano- tubes: A Route to an Electrochemically Functional Nano- structure and Its Layer-by-Layer Assembled Nanocomposite,” Chemistry of Materials, Vol. 17, No. 13, 2005, pp. 3457-3463. doi:10.1021/cm0504182
[6] S. E. Salamifar, M. A. Mehrgardi, S. H. Kazemi and M. F. Mousavi, “Cyclic Voltammetry and Scanning Electro- chemical Microscopy Studies of Methylene Blue Imm- bilized on the Self-assembled Monolayer of n-Dode- canethiol,” Electrochimica Acta, Vol. 56, No. 2, 2010, pp. 896-904. doi:10.1016/j.electacta.2010.08.068
[7] S. Jain, G. Dangi, J. Vardia and S. C. Ameta, “Photo- catalytic Reduction of Some Alkali Carbonates in the Presence of Methylene Blue,” International Journal of Energy Research, Vol. 23, No. 1, 1999, pp. 71-77. doi:10.1002/(SICI)1099-114X(199901)23:1<71::AID-ER464>3.0.CO;2-G
[8] A. C. Borgo, A. M. Lazarin and Y. Gushikem, “Methy- lene Blue-Zirconium Phosphate-Cellulose Acetate Hybrid Membrane Film Attached to a Platinum Electrode and Its Application in Electrocatalytic Oxidation of NADH,” Sensors and Actuators B: Chemical, Vol. 87, No. 3, 2002, pp. 498-505. doi:10.1016/S0925-4005(02)00291-5
[9] T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews, Vol. 99, No. 8, 1999, pp. 2071-2084. doi:10.1021/cr980032t
[10] P. Wasserscheid and W. Keim, “Ionic Liquids—New “Solutions” for Transition Metal Catalysis,” Angewandte Chemie International Edition, Vol. 39, No. 21, 2000, pp. 3772-3789. doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
[11] D. Wei and A. Ivaska, “Applications of Ionic Liquids in Electrochemical Sensors,” Analytica Chimica Acta, Vol. 607, No. 2, 2008, pp. 126-135. doi:10.1016/j.aca.2007.12.011
[12] T. Ueki and M. Watanabe, “Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities,” Macromolecules, Vol. 41, No. 11, 2008, pp. 3739-3749. doi:10.1021/ma800171k
[13] A. Berthod, M. J. Ruiz-ángel and S. Carda-Broch, “Ionic Liquids in Separation Techniques,” Journal of Chrom- atography A, Vol. 1184, No. 1-2, 2008, pp. 6-18. doi:10.1016/j.chroma.2007.11.109
[14] A. Lewandowski and A. Swiderska-Mocek, “Ionic Liquids as Electrolytes for Li-ion Batteries—An Overview of Electrochemical Studies,” Journal of Power Sources, Vol. 194, No. 2, 2009, p. 601-609. doi:10.1016/j.jpowsour.2009.06.089
[15] R. Giernoth, “Task-Specific Ionic Liquids,” Angewandte Chemie International Edition, Vol. 49, No. 16, 2010, pp. 2834-2839.
[16] H. Izawa and J. Kadokawa, “Preparation and Charact- erizations of Functional Ionic Liquid-Gel and Hydrogel Materials of Xanthan Gum,” Journal of Materials Chemistry, Vol. 20, No. 25, 2010, pp. 5235-5241. doi:10.1039/c0jm00595a
[17] S. Mine, K. Prasad, H. Izawa, K. Sonoda and J. Kado- kawa, “Preparation of Guar Gum-Based Functional Materials Using Ionic Liquid,” Journal of Materials Chemistry, Vol. 20, No. 41, 2010, pp. 9220-9225. doi:10.1039/c0jm00984a
[18] D. Seth, S. Sarkar, R. Pramanik, C. Ghatak, P. Setua and N. Sarkar, “Photophysical Studies of a Hemicyanine Dye (LDS-698) in Dioxane-Water Mixture, in Different Alcohols, and in a Room Temperature Ionic Liquid,” The Journal of Physical Chemistry B, Vol. 113, No. 19, 2009, pp. 6826-6833. doi:10.1021/jp810045h
[19] C. Nese and A.-N. Unterreiner, “Photochemical Pro- cesses in Ionic Liquids on Ultrafast Timescales,” Phy- sical Chemistry Chemical Physics, Vol. 12, No. 8, 2010, pp. 1698-1708. doi:10.1039/b916799b
[20] H. Izawa, S. Wakizono and J. Kadokawa, “Fluorescence Resonance-Energy-Transfer in Systems of Rhodamine 6G with Ionic Liquid Showing Emissions by Excitation at Wide Wavelength Areas,” Chemical Communications, Vol. 46, No. 34, 2010, pp. 6359-6361. doi:10.1039/c0cc01066a
[21] A. Paul and A. Samanta, “Photoinduced Electron Transfer Reaction in Room Temperature Ionic Liquids: A Combined Laser Flash Photolysis and Fluorescence Study,” The Journal of Physical Chemistry B, Vol. 111, No. 8, 2007, pp. 1957-1962. doi:10.1021/jp067481e
[22] R. C. Vieira and D. E. Falvey, “Solvent-Mediated Pho- toinduced Electron Transfer in a Pyridinium Ionic Liquid,” Journal of the Americal Chemical Society, Vol. 130, No. 5, 2008, pp. 1552-1553. doi:10.1021/ja077797f
[23] R. C. Vieira and D. E. Falvey, “Photoinduced Electron- Transfer Reactions in Two Room-Temperature Ionic Liquids: 1-Butyl-3-methylimidazolium Hexafluorophos- phate and 1-Octyl-3-methylimidazolium Hexafluorophos- phate,” The Journal of Physical Chemistry B, Vol. 111, No. 18, 2007, pp. 5023-5029. doi:10.1021/jp0630471
[24] D. Behar, C. Gonzalez and P. Neta, “Reaction Kinetics in Ionic Liquids: Pulse Radiolysis Studies of 1-Butyl-3- methylimidazolium Salts,” The Journal of Physical Che- mistry A, Vol. 105, No. 32, 2001, pp. 7607-7614. doi:10.1021/jp011405o
[25] D. Behar, P. Neta and C. Schultheisz, “Reaction Kinetics in Ionic Liquids as Studied by Pulse Radiolysis: Redox Reactions in the Solvents Methyltributylammonium Bis (tri-fluoromethylsulfonyl)imide and N-Butylpyridinium Tetrafluoroborate,” The Journal of Physical Chemistry A, Vol. 106, No. 13, 2002, pp. 3139-3147. doi:10.1021/jp013808u
[26] T. Lister, “Classic Chemistry Demonstrations: One Hundred Tried and Tested Experiments,” Royal Society of Chemistry, London, 1995.
[27] K. V. Rao, K. Jayaramulu, T. K. Maji and S. J. George, “Supramolecular Hydrogels and High-Aspect-Ratio Na- nofibers through Charge-Transfer-Induced Alternate Coa- ssembly,” Angewandte Chemie International Edition, Vol. 49, No. 25, 2010, pp. 4218-4222. doi:10.1002/anie.201000527
[28] Z. Zhou, D. He, Y. Guo, Z. Cui, L. Zeng, G. Li and R. Yang, “Photo-Induced Polymerization in Ionic Liquid Medium: 1. Preparation of Polyaniline Nanoparticles,” Polymer Bulletin, Vol. 62, No. 5, 2009, pp. 573-580. doi:10.1007/s00289-009-0038-y

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.