A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma
Pralay Kumar Karmakar, Chandra Bhushan Dwivedi
DOI: 10.4236/ijaa.2011.14027   PDF    HTML     3,767 Downloads   7,510 Views   Citations


This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.

Share and Cite:

P. Karmakar and C. Dwivedi, "A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma," International Journal of Astronomy and Astrophysics, Vol. 1 No. 4, 2011, pp. 210-231. doi: 10.4236/ijaa.2011.14027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Christensen-Dalsgaard, “Helioseismology,” Reviews of Modern Physics, Vol. 74, No. 4, 2002, pp. 1073-1129. doi:10.1103/RevModPhys.74.1073
[2] S. R. Cranmer, “Coronal Holes and the High-Speed Solar Wind,” Space Science Reviews, Vol. 101, No. 3-4, 2002, pp. 229-294. doi:10.1023/A:1020840004535
[3] J. W. Chamberlain, “Interplanetary Gas. II. Expansion of a Model Solar Corona,” Astrophysical Journal, Vol. 131, 1960, pp. 47-56. doi:10.1086/146805
[4] J. W. Chamberlain, “Interplanetary Gas. III. A Hydrodynamic Model of the Corona”, Astrophysical Journal, Vol. 133, 1961, pp. 675-687. doi:10.1086/147070
[5] J. Lemaire and V. Pierrard, “Kinetic Models of Solar and Polar Winds,” Astrophysics and Space Science, Vol. 277, No. 1-2, 2001, pp. 169-180. doi:10.1023/A:1012245909542
[6] R. Dendy, “Plasma Physics: An Introductory Cours,” Cam- bridge University Press, Cambridge, 1993, pp. 267-289.
[7] A. Pannekoek, “Ionization in Stellar Atmospheres,” Bul- letin of the Astronomical Institutes of the Netherlands, Vol. 1, No. 19, 1922, pp. 107-118.
[8] S. Rosseland, “Electrical state of a Star,” Monthly Notices of the Royal Astronomical Society, Vol. 84, No. 308, 1924, pp. 720-728.
[9] R. Gunn, “The Electrical State of the Sun”, Physical Review, Vol. 37, No. 8, 1931, pp. 983-989. doi:10.1103/PhysRev.37.983
[10] G. E. Hale and H. D. Babcock, “An Attempt to Measure the Free Electricity in the Sun’s Atmosphere,” Proceed- ings of the National Academy of Sciences (U.S.A.), Vol. 1, No. 3, 1915, pp. 123-127. doi:10.1073/pnas.1.3.123
[11] C. B. Dwivedi, P. K. Karmakar and S. C. Tripathy, “A Gravito-Electrostatic Sheath Model for Surface Origin of Subsonic Solar Wind Plasma,” Astrophysical Journal, Vol. 663, No. 2, 2007, pp. 1340-1353. doi:10.1086/511409
[12] I. Langmuir, “Oscillations in Ionized Gases,” Proceed- ings of the National Academy of Sciences (U.S.A.), Vol. 14, No. 8, 1928, pp. 627-637. doi:10.1073/pnas.14.8.627
[13] I. Langmuir, “The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths,” Physical Review, Vol. 33, No. 6, 1929, pp. 954-989. doi:10.1103/PhysRev.33.954
[14] D. Bohm, “The Characteristics of Electrical Discharges in Magnetic Fields,” McGraw-Hill, New York, 1949, p.77.
[15] K.-U. Riemann, “The Bohm Criterion and Sheath Formation”, Journal of Physics D: Applied Physics, Vol. 24, No. 4, 1991, pp. 493-518. doi:10.1088/0022-3727/24/4/001
[16] K.-U. Riemann, “The Influence of Collisions on the Plas- ma Sheath Transition,” Physics of Plasmas, Vol. 4, No. 11, 1997, pp. 4158-4166. doi:10.1063/1.872536
[17] J. Christensen-Dalsgaard, “Seismological Challenges for Stellar Structure,” Astronomische Nachrichten, Vol. 331, No. 9-10, 2010, pp. 866-872. doi:10.1002/asna.201011416
[18] I. Zouganelis, M. Maksimovic, N. Meyer-Vernet, H. La- my and K. Issautier, “A transonic Collisionless Model of the Solar Wind,” Astrophysical Journal, Vol. 606, No. 1, 2004, pp. 542-554. doi:10.1086/382866
[19] M. P. D. Mauro, “Helioseismology,” Astrophysics and Space Sciences Transactions, Vol. 4, No. 1, 2008, pp. 13- 17. doi:10.5194/astra-4-13-2008
[20] W. J. Chaplin, “Challenges and Opportunities for Helio- and Asteroseismology,” Astronomische Nachrichten, Vol. 331, No. 9-10, 2010, pp. 1090-1094. doi:10.1002/asna.201011464
[21] J. D. Huba, “Fundamental Plasma Parameters,” NRL Plas- ma Formulary, Naval Research Laboratory, Washington DC, 2000, pp. 28-40. doi:10.1002/asna.201011464
[22] S. C. Tripathy, C. B. Dwivedi, A. C. Das and A. R. Pra- sanna, “Plasma Instability at the Inner Edge of the Accre- tion Disk-I,” Journal of Astrophysics and Astronomy, Vol. 14, No. 2, 1993, pp. 103-114. doi:10.1007/BF02702252
[23] S. C. Tripathy, C. B. Dwivedi, A. C. Das and A. R. Pra- sanna, “Plasma Instability at the Inner Edge of the Accre- tion Disk-II”, Journal of Astrophysics and Astronomy, Vol. 14, No. 3-4, 1993, pp. 167-179. doi:10.1007/BF02702366
[24] J. Loizu, P. Ricci and C. Theiler, “Existence of Subsonic Plasma Sheaths,” Physical Review E, Vol. 83, No. 1, 2011, pp. 016406(1)-016406(4).
[25] L. A. Gougam and M. Tribeche, “Debye Shielding in a No- nextensive Plasma,” Physics of Plasmas, Vol. 18, No. 6, 2011, pp. 062102(1)-062102(5).
[26] R. G. Athay, B. C. Low and O. R. White, “The Solar In- terior-Atmospheric System,” ASP Conference Series, Vol. 383, 2008, pp. 315-326.
[27] S. L. Bi, M. P. Di Mauro and J. Christensen-Dalsgaard, “An Improved Equation of State under Solar Interior Con- ditions,” Astronomy and Astrophysics, Vol. 364, 2000, pp. 879-886.
[28] C. J. Cannon and R. N. Thomas, “The Origin of Stellar Winds: Subatmospheric Nonthermal Storage Modes ver- sus Radiation Pressure,” Astrophysical Journal, Vol. 211, No. 3, 1977, pp. 910-925. doi:10.1086/155003
[29] V. M. Nakariakov and E. Verwichte, “Coronal Waves and Oscillations,” Living Reviews in Solar Physics, Vol. 2, 2005, pp. 3-65. http://livingreviews.org/lrsp-2005-3
[30] E. Marsch, “Kinetic Physics of the Solar Corona and Solar Wind,” Living Reviews in Solar Physics, Vol. 3, 2006, pp. 1-100. http://livingreviews.org/lrsp-2006-1
[31] A. Nordlund, R. F. Stein and M. Asplund, “Solar Surface Convection,” Living Reviews in Solar Physics, Vol. 6, 2009, pp. 2-117. http://livingreviews.org/lrsp-2009-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.