Gaussian beam with non-spiral optical vortex
Xiu-Min Gao, Song Hu, Jin-Song Li, Han-Ming Guo, Jian Wang, Song-Lin Zhuang
DOI: 10.4236/ns.2010.23031   PDF    HTML     6,129 Downloads   11,107 Views  


Optical vortex has attracted much interest re-cently due to its novel properties and applica-tions. In this paper, the focusing properties of Gaussian beam containing one non-spiral opti-cal vortex are investigated by means of scalar diffraction theory. Simulation results show that topological charge of non-spiral optical vortex affects optical intensity distribution in focal re-gion considerably, and non-spiral focal pattern may also occur. Multiple intensity peaks may appear companying with center main focal spot under condition of higher topological charge. In addition, the number of weak intensity peak outside of the center main intensity peak is re-lated to the value of topological charge.

Share and Cite:

Gao, X. , Hu, S. , Li, J. , Guo, H. , Wang, J. and Zhuang, S. (2010) Gaussian beam with non-spiral optical vortex. Natural Science, 2, 201-204. doi: 10.4236/ns.2010.23031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Thomas, V.D. and Taco, D.V. (2009) Evolution of singularities in a partially coherent vortex beam. Optical Society of America B, 26, 741-744.
[2] Coullet, P., Gil, L. and Rocca, F. (1989) Optical vortices. Optics Communications, 73, 403-408.
[3] Palacios, D.M., Maleev, I.D., Marathay, A.S. and Swartzlander, G.A. (2004) Spatial correlation singularity of a vortex field. Physical Review Letters, 92, 143905-4.
[4] Rozas, D.Z., Sacks, S. and Swartzlander, G.A. (1997) Experimental observation of fluidlike motion of optical vortices. Physical Review Letters, 79, 3399-3402.
[5] Filippus, S.R. (2004) Distribution of angular momentum and vortex morphology in optical beams. Optics Com- munications, 242, 45-55.
[6] Lee, W.M., Yuan, X.C. and Cheong, W.C. (2004) Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical microman- ipulation. Optics Letters, 29, 1796-1798.
[7] Ladavac, K. and Grier, D.G. (2004) Microoptomechan- ical pumps assembled and driven by holographic optical vortex arrays. Optics Express, 12, 1144-1149.
[8] Cojoc, D., Garbin, V., Ferrari, E., Businaro, L., Romamato, F. and Fabrizio, E.D. (2005) Laser trapping and micro-manipulation using optical vortices. Micro- electronic Engineering, 77-78, 125-131.
[9] Vladlen, G., Shvedov, A.S., Desyatnikov, A.V., Kro- likowski, R.W. and Kivshar, Y.S. (2009) Optical guiding of absorbing nanoclusters in air. Optics Express, 17, 5743-5757.
[10] Soskin, M.S. and Vasnetsov, M.V. Singular Optics, in Progress in Optics 42, Wolf, E. Ed. (Elsevier 2001).
[11] Indebetow, G. (1993) Optical vortices and their pro- pagation. Journal of Modern Optics, 40, 73-87.
[12] Rozas, D., law, C.T. and Swartzlander, G.A. (1997) Propagation dynamics of optical vortices. Journal of the Optical Society of America B, 14, 3054-3065.
[13] Berry, M.V. and Dennis, M.R. (2001) Knotted and linked phase singularities in monochromatic waves. Proceed- ings of the Royal Society A, 457, 2251-2263.
[14] Berry, M.V. and Dennis, M.R. (2001) Knotting and unknotting of phase singularitites: Helmholtz waves, paraxialwaves and waves in 2 + 1 spacetime. Journal of Physical A, 34, 8877-8888.
[15] Leach, J., Dennis, M., Courtial, R.J. and Padgett, M.J., (2005) Vortex knots in light. New Journal of Physics, 7, 1-11.
[16] Baumann, S.M., Kalb, D.M., MacMillan, L.H. and Galvez, E.J. (2009) Propagation dynamics of optical vortices due to Gouy phase. Optics Express, 17, 9818- 9827.
[17] Gu, M. (2000) Advanced Optical Imaging Theory (Springer, Heidelberg)
[18] Visscher, K. and Brakenhoff, G.J. (1992) Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers. Optik, 89 174-180.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.