|
[1]
|
Heber, D., Ingles, S., Ashley, J., Maxwell, M., Lyons, R. and Elashoff, R. (1996) Clinical Detection of Sarcopenic Obesity by Bioelectrical Impedance Analysis. The American Journal of Clinical Nutrition, 64, 472S-477S.[CrossRef] [PubMed]
|
|
[2]
|
Donini, L.M., Busetto, L., Bischoff, S.C., Cederholm, T., Ballesteros-Pomar, M.D., Batsis, J.A., et al. (2022) Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obesity Facts, 15, 321-335.[CrossRef] [PubMed]
|
|
[3]
|
Chen, T., Kao, H., Ogawa, W., Arai, H., Tahapary, D.L., Assantachai, P., et al. (2025) The Asia-Oceania Consensus: Definitions and Diagnostic Criteria for Sarcopenic Obesity. Obesity Research & Clinical Practice, 19, 185-192.[CrossRef] [PubMed]
|
|
[4]
|
Batsis, J.A. and Villareal, D.T. (2018) Sarcopenic Obesity in Older Adults: Aetiology, Epidemiology and Treatment Strategies. Nature Reviews Endocrinology, 14, 513-537.[CrossRef] [PubMed]
|
|
[5]
|
Prado, C.M., Batsis, J.A., Donini, L.M., Gonzalez, M.C. and Siervo, M. (2024) Sarcopenic Obesity in Older Adults: A Clinical Overview. Nature Reviews Endocrinology, 20, 261-277.[CrossRef] [PubMed]
|
|
[6]
|
Veronese, N., Ragusa, F.S., Pegreffi, F., Dominguez, L.J., Barbagallo, M., Zanetti, M., et al. (2024) Sarcopenic Obesity and Health Outcomes: An Umbrella Review of Systematic Reviews with Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 15, 1264-1274.[CrossRef] [PubMed]
|
|
[7]
|
Low, S., Goh, K.S., Ng, T.P., Ang, S.F., Moh, A., Wang, J., et al. (2020) The Prevalence of Sarcopenic Obesity and Its Association with Cognitive Performance in Type 2 Diabetes in Singapore. Clinical Nutrition, 39, 2274-2281.[CrossRef] [PubMed]
|
|
[8]
|
Barazzoni, R., Bischoff, S., Boirie, Y., Busetto, L., Cederholm, T., Dicker, D., et al. (2018) Sarcopenic Obesity: Time to Meet the Challenge. Obesity Facts, 11, 294-305.[CrossRef] [PubMed]
|
|
[9]
|
Koliaki, C., Liatis, S., Dalamaga, M. and Kokkinos, A. (2019) Sarcopenic Obesity: Epidemiologic Evidence, Pathophysiology, and Therapeutic Perspectives. Current Obesity Reports, 8, 458-471.[CrossRef] [PubMed]
|
|
[10]
|
Baumgartner, R.N., Wayne, S.J., Waters, D.L., Janssen, I., Gallagher, D. and Morley, J.E. (2004) Sarcopenic Obesity Predicts Instrumental Activities of Daily Living Disability in the Elderly. Obesity Research, 12, 1995-2004.[CrossRef] [PubMed]
|
|
[11]
|
Ceglia, L. (2009) Vitamin D and Its Role in Skeletal Muscle. Current Opinion in Clinical Nutrition and Metabolic Care, 12, 628-633.[CrossRef] [PubMed]
|
|
[12]
|
Salles, J., Chanet, A., Guillet, C., Vaes, A.M., Brouwer-Brolsma, E.M., Rocher, C., et al. (2022) Vitamin D Status Modulates Mitochondrial Oxidative Capacities in Skeletal Muscle: Role in Sarcopenia. Communications Biology, 5, Article No. 1288.[CrossRef] [PubMed]
|
|
[13]
|
Di Filippo, L., De Lorenzo, R., Giustina, A., Rovere-Querini, P. and Conte, C. (2022) Vitamin D in Osteosarcopenic Obesity. Nutrients, 14, Article No. 1816.[CrossRef] [PubMed]
|
|
[14]
|
Sutherland, J.P., Zhou, A. and Hyppönen, E. (2023) Muscle Traits, Sarcopenia, and Sarcopenic Obesity: A Vitamin D Mendelian Randomization Study. Nutrients, 15, Article No. 2703.[CrossRef] [PubMed]
|
|
[15]
|
Jia, S., Zhao, W., Hu, F., Zhao, Y., Ge, M., Xia, X., et al. (2022) Sex Differences in the Association of Physical Activity Levels and Vitamin D with Obesity, Sarcopenia, and Sarcopenic Obesity: A Cross-Sectional Study. BMC Geriatrics, 22, Article No. 898.[CrossRef] [PubMed]
|
|
[16]
|
Hwang, B., Lim, J., Lee, J., Choi, N., Ahn, Y. and Park, B. (2012) Prevalence Rate and Associated Factors of Sarcopenic Obesity in Korean Elderly Population. Journal of Korean Medical Science, 27, 748-755.[CrossRef] [PubMed]
|
|
[17]
|
Huo, Y.R., Suriyaarachchi, P., Gomez, F., Curcio, C.L., Boersma, D., Gunawardene, P., et al. (2016) Phenotype of Sarcopenic Obesity in Older Individuals with a History of Falling. Archives of Gerontology and Geriatrics, 65, 255-259.[CrossRef] [PubMed]
|
|
[18]
|
Kim, T.N., Park, M.S., Lim, K.I., Choi, H.Y., Yang, S.J., Yoo, H.J., et al. (2013) Relationships between Sarcopenic Obesity and Insulin Resistance, Inflammation, and Vitamin d Status: The Korean Sarcopenic Obesity Study. Clinical Endocrinology, 78, 525-532.[CrossRef] [PubMed]
|
|
[19]
|
Alvarez-Mejia, M., Restrepo, C.A., Marulanda-Mejia, F. and González-Correa, C.H. (2025) Association between Hypovitaminosis D and Sarcopenic Obesity in Patients with Chronic Kidney Disease Stages 3 and 4. Clinical Nutrition ESPEN, 65, 205-208.[CrossRef] [PubMed]
|
|
[20]
|
Martín-González, C., Fernández-Alonso, P., Pérez-Hernández, O., Abreu-González, P., Espelosín-Ortega, E., Fernández-Rodríguez, C.M., et al. (2023) Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels. International Journal of Molecular Sciences, 24, Article No. 9976.[CrossRef] [PubMed]
|
|
[21]
|
Dobrovolskaya, O.V., Toroptsova, N.V., Nikitinskaya, O.A., Samarkina, E.Y., Cherkasova, M.V. and Feklistov, A.Y. (2021) Vitamin D Status in Women with Rheumatoid Arthritis: Frequency of Hypovitaminosis, Associations with Disease Activity, Body Composition and Comorbidity. Terapevticheskii Arkhiv, 93, 581-586.[CrossRef] [PubMed]
|
|
[22]
|
Xu, Q., Bu, F., Song, Z., Li, K., Fang, C., Luo, Y., et al. (2025) Association of Serum 25-Hydroxyvitamin D with Sarcopenic Obesity Risk: A Longitudinal Observational Study from the UK Biobank. Obesity, 33, 1136-1144.[CrossRef] [PubMed]
|
|
[23]
|
Seo, J.A., Cho, H., Eun, C.R., Yoo, H.J., Kim, S.G., Choi, K.M., et al. (2012) Association between Visceral Obesity and Sarcopenia and Vitamin D Deficiency in Older Koreans: The Ansan Geriatric Study. Journal of the American Geriatrics Society, 60, 700-706.[CrossRef] [PubMed]
|
|
[24]
|
Kim, M.K., Baek, K.H., Song, K., Il Kang, M., Park, C.Y., Lee, W.Y., et al. (2011) Vitamin D Deficiency Is Associated with Sarcopenia in Older Koreans, Regardless of Obesity: The Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. The Journal of Clinical Endocrinology & Metabolism, 96, 3250-3256.[CrossRef] [PubMed]
|
|
[25]
|
Jabbour, J., Rahme, M., Mahfoud, Z.R. and El-Hajj Fuleihan, G. (2022) Effect of High Dose Vitamin D Supplementation on Indices of Sarcopenia and Obesity Assessed by DXA among Older Adults: A Randomized Controlled Trial. Endocrine, 76, 162-171.[CrossRef] [PubMed]
|
|
[26]
|
El Hajj, C., Fares, S., Chardigny, J.M., Boirie, Y. and Walrand, S. (2018) Vitamin D Supplementation and Muscle Strength in Pre-Sarcopenic Elderly Lebanese People: A Randomized Controlled Trial. Archives of Osteoporosis, 14, Article No. 4.[CrossRef] [PubMed]
|
|
[27]
|
Camajani, E., Persichetti, A., Watanabe, M., Contini, S., Vari, M., Di Bernardo, S., et al. (2022) Whey Protein, L-Leucine and Vitamin D Supplementation for Preserving Lean Mass during a Low-Calorie Diet in Sarcopenic Obese Women. Nutrients, 14, Article No. 1884.[CrossRef] [PubMed]
|
|
[28]
|
Orces, C. and Weisson, K. (2016) Vitamin D Status of Older Adults with Dynapenic Obesity in Ecuador. Journal of the American Geriatrics Society, 64, e235-e237.[CrossRef] [PubMed]
|
|
[29]
|
Kim, J., Lee, Y., Kye, S., Chung, Y. and Lee, O. (2016) Association of Serum Vitamin D with Osteosarcopenic Obesity: Korea National Health and Nutrition Examination Survey 2008-2010. Journal of Cachexia, Sarcopenia and Muscle, 8, 259-266.[CrossRef] [PubMed]
|
|
[30]
|
Kim, Y.M., Kim, S., Won, Y.J. and Kim, S.H. (2019) Clinical Manifestations and Factors Associated with Osteosarcopenic Obesity Syndrome: A Cross-Sectional Study in Koreans with Obesity. Calcified Tissue International, 105, 77-88.[CrossRef] [PubMed]
|
|
[31]
|
Stanworth, R.D. and Jones, T.H. (2008) Testosterone for the Aging Male; Current Evidence and Recommended Practice. Clinical Interventions in Aging, 3, 25-44.[CrossRef] [PubMed]
|
|
[32]
|
O’Connell, M.D.L., Tajar, A., Roberts, S.A. and Wu, F.C.W. (2010) Do Androgens Play Any Role in the Physical Frailty of Ageing Men? International Journal of Andrology, 34, 195-211.[CrossRef] [PubMed]
|
|
[33]
|
Saad, F., Röhrig, G., von Haehling, S. and Traish, A. (2016) Testosterone Deficiency and Testosterone Treatment in Older Men. Gerontology, 63, 144-156.[CrossRef] [PubMed]
|
|
[34]
|
Choi, S., Chon, J., Yoo, M.C., Shim, G.Y., Kim, M., Soh, Y., et al. (2024) The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study. Medicina, 60, Article No. 754.[CrossRef] [PubMed]
|
|
[35]
|
Nguyen, P.L., Alibhai, S.M.H., Basaria, S., D’Amico, A.V., Kantoff, P.W., Keating, N.L., et al. (2015) Adverse Effects of Androgen Deprivation Therapy and Strategies to Mitigate Them. European Urology, 67, 825-836.[CrossRef] [PubMed]
|
|
[36]
|
Pinto, F., Calamo, A., Totaro, A., Sacco, E., Volpe, A., Racioppi, M., et al. (2010) Androgen-Deprivation Therapy in Prostate Cancer: Clinical Evidence and Future Perspectives. Urologia Journal, 77, 71-83.[CrossRef] [PubMed]
|
|
[37]
|
De Vincentis, S., Greco, C., Fanelli, F., Decaroli, M.C., Diazzi, C., Mezzullo, M., et al. (2024) Sarcopenic Obesity and Reduced BMD in Young Men Living with HIV: Body Composition and Sex Steroids Interplay. Journal of Endocrinological Investigation, 47, 2715-2730.[CrossRef] [PubMed]
|
|
[38]
|
Borbélyová, V., Šarayová, V., Renczés, E., Čonka, J., Janko, J., Šebeková, K., et al. (2021) The Effect of Long-Term Hypogonadism on Body Composition and Morphometry of Aged Male Wistar Rats. Physiological Research, 70, S357-S367.[CrossRef] [PubMed]
|
|
[39]
|
Bhasin, S. (1997) Testosterone Replacement Increases Fat-Free Mass and Muscle Size in Hypogonadal Men. Journal of Clinical Endocrinology & Metabolism, 82, 407-413.[CrossRef] [PubMed]
|
|
[40]
|
Wang, C. (1996) Sublingual Testosterone Replacement Improves Muscle Mass and Strength, Decreases Bone Resorption, and Increases Bone Formation Markers in Hypogonadal Men—A Clinical Research Center Study. Journal of Clinical Endocrinology & Metabolism, 81, 3654-3662.[CrossRef] [PubMed]
|
|
[41]
|
Katznelson, L. (1996) Increase in Bone Density and Lean Body Mass during Testosterone Administration in Men with Acquired Hypogonadism. Journal of Clinical Endocrinology & Metabolism, 81, 4358-4365.[CrossRef] [PubMed]
|
|
[42]
|
Snyder, P.J. (2000) Effects of Testosterone Replacement in Hypogonadal Men. Journal of Clinical Endocrinology & Metabolism, 85, 2670-2677.[CrossRef] [PubMed]
|
|
[43]
|
Wang, C., Cunningham, G., Dobs, A., Iranmanesh, A., Matsumoto, A.M., Snyder, P.J., et al. (2004) Long-Term Testosterone Gel (Androgel) Treatment Maintains Beneficial Effects on Sexual Function and Mood, Lean and Fat Mass, and Bone Mineral Density in Hypogonadal Men. The Journal of Clinical Endocrinology & Metabolism, 89, 2085-2098.[CrossRef] [PubMed]
|
|
[44]
|
Svartberg, J., Agledahl, I., Figenschau, Y., Sildnes, T., Waterloo, K. and Jorde, R. (2008) Testosterone Treatment in Elderly Men with Subnormal Testosterone Levels Improves Body Composition and BMD in the Hip. International Journal of Impotence Research, 20, 378-387.[CrossRef] [PubMed]
|
|
[45]
|
Genchi, V.A., Rossi, E., Lauriola, C., D’Oria, R., Palma, G., Borrelli, A., et al. (2022) Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism. International Journal of Molecular Sciences, 23, Article No. 8194.[CrossRef] [PubMed]
|
|
[46]
|
Shigehara, K., Kato, Y., Izumi, K. and Mizokami, A. (2022) Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review. Journal of Clinical Medicine, 11, Article No. 6202.[CrossRef] [PubMed]
|
|
[47]
|
Morley, J.E., Baumgartner, R.N., Roubenoff, R., Mayer, J. and Nair, K.S. (2001) Sarcopenia. Journal of Laboratory and Clinical Medicine, 137, 231-243.[CrossRef] [PubMed]
|
|
[48]
|
Wang, C., Swerdloff, R.S., Iranmanesh, A., Dobs, A., Snyder, P.J., Cunningham, G., et al. (2001) Effects of Transdermal Testosterone Gel on Bone Turnover Markers and Bone Mineral Density in Hypogonadal Men. Clinical Endocrinology, 54, 739-750.[CrossRef] [PubMed]
|
|
[49]
|
Swerdloff, R.S. (2000) Long-Term Pharmacokinetics of Transdermal Testosterone Gel in Hypogonadal Men. Journal of Clinical Endocrinology & Metabolism, 85, 4500-4510.[CrossRef] [PubMed]
|
|
[50]
|
Rochira, V. (2020) Late-Onset Hypogonadism: Bone Health. Andrology, 8, 1539-1550.[CrossRef] [PubMed]
|
|
[51]
|
Heine, P.A., Taylor, J.A., Iwamoto, G.A., Lubahn, D.B. and Cooke, P.S. (2000) Increased Adipose Tissue in Male and Female Estrogen Receptor—Α Knockout Mice. Proceedings of the National Academy of Sciences, 97, 12729-12734.[CrossRef] [PubMed]
|
|
[52]
|
Jones, M.E.E., Thorburn, A.W., Britt, K.L., Hewitt, K.N., Wreford, N.G., Proietto, J., et al. (2000) Aromatase-Deficient (ArKO) Mice Have a Phenotype of Increased Adiposity. Proceedings of the National Academy of Sciences, 97, 12735-12740.[CrossRef] [PubMed]
|
|
[53]
|
Callewaert, F., Venken, K., Ophoff, J., De Gendt, K., Torcasio, A., van Lenthe, G.H., et al. (2008) Differential Regulation of Bone and Body Composition in Male Mice with Combined Inactivation of Androgen and Estrogen Receptor-α. The FASEB Journal, 23, 232-240.[CrossRef] [PubMed]
|
|
[54]
|
Finkelstein, J.S., Lee, H., Burnett-Bowie, S.M., Pallais, J.C., Yu, E.W., Borges, L.F., et al. (2013) Gonadal Steroids and Body Composition, Strength, and Sexual Function in Men. New England Journal of Medicine, 369, 1011-1022.[CrossRef] [PubMed]
|
|
[55]
|
Greising, S.M., Baltgalvis, K.A., Lowe, D.A. and Warren, G.L. (2009) Hormone Therapy and Skeletal Muscle Strength: A Meta-analysis. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64, 1071-1081.[CrossRef] [PubMed]
|
|
[56]
|
Ettinger, B., Quesenberry, C., Schroeder, D.A. and Friedman, G. (2018) Long-Term Postmenopausal Estrogen Therapy May Be Associated with Increased Risk of Breast Cancer: A Cohort Study. Menopause, 25, 1191-1194.[CrossRef] [PubMed]
|
|
[57]
|
Perrini, S., Laviola, L., Carreira, M.C., Cignarelli, A., Natalicchio, A. and Giorgino, F. (2010) The GH/IGF1 Axis and Signaling Pathways in the Muscle and Bone: Mechanisms Underlying Age-Related Skeletal Muscle Wasting and Osteoporosis. Journal of Endocrinology, 205, 201-210.[CrossRef] [PubMed]
|
|
[58]
|
Sattler, F.R. (2013) Growth Hormone in the Aging Male. Best Practice & Research Clinical Endocrinology & Metabolism, 27, 541-555.[CrossRef] [PubMed]
|
|
[59]
|
Moran, A., Jacobs, D.R., Steinberger, J., Cohen, P., Hong, C., Prineas, R., et al. (2002) Association between the Insulin Resistance of Puberty and the Insulin-Like Growth Factor-I/Growth Hormone Axis. The Journal of Clinical Endocrinology & Metabolism, 87, 4817-4820.[CrossRef] [PubMed]
|
|
[60]
|
Hermann, M. (2001) Hormonal Changes in Aging Men: A Therapeutic Indication? Experimental Gerontology, 36, 1075-1082.[CrossRef] [PubMed]
|
|
[61]
|
Ryall, J.G., Schertzer, J.D. and Lynch, G.S. (2008) Cellular and Molecular Mechanisms Underlying Age-Related Skeletal Muscle Wasting and Weakness. Biogerontology, 9, 213-228.[CrossRef] [PubMed]
|
|
[62]
|
Veldhuis, J.D. (1995) Differential Impact of Age, Sex Steroid Hormones, and Obesity on Basal versus Pulsatile Growth Hormone Secretion in Men as Assessed in an Ultrasensitive Chemiluminescence Assay. Journal of Clinical Endocrinology & Metabolism, 80, 3209-3222.[CrossRef] [PubMed]
|
|
[63]
|
Waters, D.L., Qualls, C.R., Dorin, R.I., Veldhuis, J.D. and Baumgartner, R.N. (2008) Altered Growth Hormone, Cortisol, and Leptin Secretion in Healthy Elderly Persons with Sarcopenia and Mixed Body Composition Phenotypes. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63, 536-541.[CrossRef] [PubMed]
|
|
[64]
|
Aguiar-Oliveira, M.H. and Bartke, A. (2018) Growth Hormone Deficiency: Health and Longevity. Endocrine Reviews, 40, 575-601.[CrossRef] [PubMed]
|
|
[65]
|
Johannsson, G. (1997) Growth Hormone Treatment of Abdominally Obese Men Reduces Abdominal Fat Mass, Improves Glucose and Lipoprotein Metabolism, and Reduces Diastolic Blood Pressure. Journal of Clinical Endocrinology & Metabolism, 82, 727-734.[CrossRef] [PubMed]
|
|
[66]
|
Münzer, T., Harman, S.M., Hees, P., Shapiro, E., Christmas, C., Bellantoni, M.F., et al. (2001) Effects of GH and/or Sex Steroid Administration on Abdominal Subcutaneous and Visceral Fat in Healthy Aged Women and Men. The Journal of Clinical Endocrinology & Metabolism, 86, 3604-3610.[CrossRef] [PubMed]
|
|
[67]
|
Rudman, D., Feller, A.G., Nagraj, H.S., Gergans, G.A., Lalitha, P.Y., Goldberg, A.F., et al. (1990) Effects of Human Growth Hormone in Men over 60 Years Old. New England Journal of Medicine, 323, 1-6.[CrossRef] [PubMed]
|
|
[68]
|
Sattler, F.R., Castaneda-Sceppa, C., Binder, E.F., Schroeder, E.T., Wang, Y., Bhasin, S., et al. (2009) Testosterone and Growth Hormone Improve Body Composition and Muscle Performance in Older Men. The Journal of Clinical Endocrinology & Metabolism, 94, 1991-2001.[CrossRef] [PubMed]
|
|
[69]
|
Guo, A., Li, K. and Xiao, Q. (2020) Sarcopenic Obesity: Myokines as Potential Diagnostic Biomarkers and Therapeutic Targets? Experimental Gerontology, 139, Article ID: 111022.[CrossRef] [PubMed]
|
|
[70]
|
Priego, T., Martín, A.I., González-Hedström, D., Granado, M. and López-Calderón, A. (2021) Role of Hormones in Sarcopenia. Vitamins and Hormones, 115, 535-570.
|
|
[71]
|
Chikani, V. and Ho, K.K.Y. (2013) Action of GH on Skeletal Muscle Function: Molecular and Metabolic Mechanisms. Journal of Molecular Endocrinology, 52, R107-R123.[CrossRef] [PubMed]
|
|
[72]
|
Bosch-Marcé, M., Wee, C.D., Martinez, T.L., Lipkes, C.E., Choe, D.W., Kong, L., et al. (2011) Increased IGF-1 in Muscle Modulates the Phenotype of Severe SMA Mice. Human Molecular Genetics, 20, 1844-1853.[CrossRef] [PubMed]
|
|
[73]
|
Musarò, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., et al. (2001) Localized Igf-1 Transgene Expression Sustains Hypertrophy and Regeneration in Senescent Skeletal Muscle. Nature Genetics, 27, 195-200.[CrossRef] [PubMed]
|
|
[74]
|
Brown, L.A., Perry, R.A., Haynie, W.S., Lee, D.E., Rosa-Caldwell, M.E., Brown, J.L., et al. (2021) Moderators of Skeletal Muscle Maintenance Are Compromised in Sarcopenic Obese Mice. Mechanisms of Ageing and Development, 194, Article ID: 111404.[CrossRef] [PubMed]
|
|
[75]
|
Poggiogalle, E., Lubrano, C., Gnessi, L., Mariani, S., Lenzi, A. and Donini, L.M. (2016) Fatty Liver Index Associates with Relative Sarcopenia and GH/IGF-1 Status in Obese Subjects. PLOS ONE, 11, e0145811.[CrossRef] [PubMed]
|
|
[76]
|
Balagopal, P., Rooyackers, O.E., Adey, D.B., Ades, P.A. and Nair, K.S. (1997) Effects of Aging on in Vivo Synthesis of Skeletal Muscle Myosin Heavy-Chain and Sarcoplasmic Protein in Humans. American Journal of Physiology-Endocrinology and Metabolism, 273, E790-E800.[CrossRef] [PubMed]
|
|
[77]
|
Cittadini, A., Marra, A.M., Arcopinto, M., Bobbio, E., Salzano, A., Sirico, D., et al. (2013) Growth Hormone Replacement Delays the Progression of Chronic Heart Failure Combined with Growth Hormone Deficiency: An Extension of a Randomized Controlled Single-Blind Study. JACC: Heart Failure, 1, 325-330.[CrossRef] [PubMed]
|
|
[78]
|
Cho, J., Choi, Y., Sajgalik, P., No, M., Lee, S., Kim, S., et al. (2020) Exercise as a Therapeutic Strategy for Sarcopenia in Heart Failure: Insights into Underlying Mechanisms. Cells, 9, Article No. 2284.[CrossRef] [PubMed]
|
|
[79]
|
Annibalini, G., Lucertini, F., Agostini, D., Vallorani, L., Gioacchini, A., Barbieri, E., et al. (2017) Concurrent Aerobic and Resistance Training Has Anti-Inflammatory Effects and Increases Both Plasma and Leukocyte Levels of IGF-1 in Late Middle-aged Type 2 Diabetic Patients. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 3937842.[CrossRef] [PubMed]
|
|
[80]
|
Dieli-Conwright, C.M., Courneya, K.S., Demark-Wahnefried, W., Sami, N., Lee, K., Buchanan, T.A., et al. (2018) Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial. Journal of Clinical Oncology, 36, 875-883.[CrossRef] [PubMed]
|
|
[81]
|
Chen, H., Chung, Y., Chen, Y., Ho, S. and Wu, H. (2017) Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. Journal of the American Geriatrics Society, 65, 827-832.[CrossRef] [PubMed]
|
|
[82]
|
Chen, L., Zhou, H., Gong, Y., Tang, Y., Su, H., Zhang, Z., et al. (2025) Clinical Outcome Changes in Sarcopenic Obesity: A Meta-Analysis of Exercise Training Methods. BMC Geriatrics, 25, Article No. 33.[CrossRef] [PubMed]
|
|
[83]
|
Hernandez-Martinez, J., Vásquez-Carrasco, E., Cid-Calfucura, I., Sandoval, C., Herrera-Valenzuela, T., Núñez-Espinosa, C., et al. (2025) Effects of Concurrent Training on Biomarkers, Morphological Variables, and Physical Performance in People with Sarcopenic Obesity: A Meta-Analysis with Meta-Regression. Medicina, 61, Article No. 1697.[CrossRef]
|
|
[84]
|
Jung, W.S., Kim, Y.Y., Kim, J.W. and Park, H.Y. (2022) Effects of Circuit Training Program on Cardiovascular Risk Factors, Vascular Inflammatory Markers, and Insulin-Like Growth Factor-1 in Elderly Obese Women with Sarcopenia. Reviews in Cardiovascular Medicine, 23, Article No. 134.[CrossRef] [PubMed]
|
|
[85]
|
Guo, X., Cao, G., Tang, Y., Liu, X., Zhou, Y. and Chen, M. (2025) 36-Week Personalized Resistance Training Improves Muscle Function and Circulating Myokines in Older Women with Possible Sarcopenic Obesity: A Randomized Clinical Trial. BMC Geriatrics, 25, Article No. 702.[CrossRef]
|
|
[86]
|
Braun, T.P. and Marks, D.L. (2015) The Regulation of Muscle Mass by Endogenous Glucocorticoids. Frontiers in Physiology, 6, Article No. 12.[CrossRef] [PubMed]
|
|
[87]
|
Shimizu, N., Yoshikawa, N., Ito, N., Maruyama, T., Suzuki, Y., Takeda, S., et al. (2011) Crosstalk between Glucocorticoid Receptor and Nutritional Sensor mTOR in Skeletal Muscle. Cell Metabolism, 13, 170-182.[CrossRef] [PubMed]
|
|
[88]
|
Brownlee, K.K., Moore, A.W. and Hackney, A.C. (2005) Relationship between Circulating Cortisol and Testosterone: Influence of Physical Exercise. Journal of Sports Science and Medicine, 4, 76-83.
|
|
[89]
|
Yanagita, I., Fujihara, Y., Kitajima, Y., Tajima, M., Honda, M., Kawajiri, T., et al. (2019) A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients. Journal of the Endocrine Society, 3, 801-813.[CrossRef] [PubMed]
|
|
[90]
|
Westbury, L.D., Fuggle, N.R., Syddall, H.E., Duggal, N.A., Shaw, S.C., Maslin, K., et al. (2017) Relationships between Markers of Inflammation and Muscle Mass, Strength and Function: Findings from the Hertfordshire Cohort Study. Calcified Tissue International, 102, 287-295.[CrossRef] [PubMed]
|
|
[91]
|
Peeters, G.M.E.E., Van Schoor, N.M., Van Rossum, E.F.C., Visser, M. and Lips, P. (2008) The Relationship between Cortisol, Muscle Mass and Muscle Strength in Older Persons and the Role of Genetic Variations in the Glucocorticoid Receptor. Clinical Endocrinology, 69, 673-682.[CrossRef] [PubMed]
|
|
[92]
|
Stefanaki, C., Peppa, M., Boschiero, D. and Chrousos, G.P. (2016) Healthy Overweight/Obese Youth: Early Osteosarcopenic Obesity Features. European Journal of Clinical Investigation, 46, 767-778.[CrossRef] [PubMed]
|
|
[93]
|
Lehrke, M., Broedl, U.C., Biller-Friedmann, I.M., Vogeser, M., Henschel, V., Nassau, K., et al. (2008) Serum Concentrations of Cortisol, Interleukin 6, Leptin and Adiponectin Predict Stress Induced Insulin Resistance in Acute Inflammatory Reactions. Critical Care, 12, R157.[CrossRef] [PubMed]
|
|
[94]
|
Prokopidis, K. and Dionyssiotis, Y. (2021) Effects of Sleep Deprivation on Sarcopenia and Obesity: A Narrative Review of Randomized Controlled and Crossover Trials. Journal of Frailty, Sarcopenia and Falls, 6, 50-56.[CrossRef] [PubMed]
|
|
[95]
|
Diago-Galmés, A., Guillamón-Escudero, C., Tenías-Burillo, J.M., Soriano, J.M. and Fernández-Garrido, J. (2021) Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults. Biology, 10, Article No. 93.[CrossRef] [PubMed]
|
|
[96]
|
Brodie, A., Inkster, S. and Yue, W. (2001) Aromatase Expression in the Human Male. Molecular and Cellular Endocrinology, 178, 23-28.[CrossRef] [PubMed]
|
|
[97]
|
Sato, K. and Iemitsu, M. (2015) Exercise and Sex Steroid Hormones in Skeletal Muscle. The Journal of Steroid Biochemistry and Molecular Biology, 145, 200-205.[CrossRef] [PubMed]
|
|
[98]
|
Samaras, N., Samaras, D., Frangos, E., Forster, A. and Philippe, J. (2013) A Review of Age-Related Dehydroepiandrosterone Decline and Its Association with Well-Known Geriatric Syndromes: Is Treatment Beneficial? Rejuvenation Research, 16, 285-294.[CrossRef] [PubMed]
|
|
[99]
|
Baker, W.L., Karan, S. and Kenny, A.M. (2011) Effect of Dehydroepiandrosterone on Muscle Strength and Physical Function in Older Adults: A Systematic Review. Journal of the American Geriatrics Society, 59, 997-1002.[CrossRef] [PubMed]
|
|
[100]
|
Bloise, F.F., Cordeiro, A. and Ortiga-Carvalho, T.M. (2018) Role of Thyroid Hormone in Skeletal Muscle Physiology. Journal of Endocrinology, 236, R57-R68.[CrossRef] [PubMed]
|
|
[101]
|
Veronese, N., Fernando-Watutantrige, S., Maggi, S., Noale, M., Stubbs, B., Incalzi, R.A., et al. (2017) Serum Thyroid-Stimulating Hormone Levels and Frailty in the Elderly: The Progetto Veneto Anziani Study. Rejuvenation Research, 20, 165-172.[CrossRef] [PubMed]
|
|
[102]
|
Sheng, Y., Ma, D., Zhou, Q., Wang, L., Sun, M., Wang, S., et al. (2018) Association of Thyroid Function with Sarcopenia in Elderly Chinese Euthyroid Subjects. Aging Clinical and Experimental Research, 31, 1113-1120.[CrossRef] [PubMed]
|
|
[103]
|
Kong, S.H., Kim, J.H., Park, Y.J., Lee, J.H., Hong, A.R., Shin, C.S., et al. (2019) Low Free T3 to Free T4 Ratio Was Associated with Low Muscle Mass and Impaired Physical Performance in Community-Dwelling Aged Population. Osteoporosis International, 31, 525-531.[CrossRef] [PubMed]
|
|
[104]
|
Park, Y.S., Chang, Y., Lee, Y., Shin, H., Ryu, S. and Yoon, K.J. (2020) The Prospective Relationship between Low Muscle Mass and Thyroid Hormones among 198069 Euthyroid Men and Women; Comparing Different Definitions of Low Muscle Mass. International Journal of Clinical Practice, 75, e13710.[CrossRef] [PubMed]
|
|
[105]
|
Gu, Y., Meng, G., Wu, H., Zhang, Q., Liu, L., Bao, X., et al. (2019) Thyroid Function as a Predictor of Handgrip Strength among Middle-Aged and Older Euthyroid Adults: The TCLSIH Cohort Study. Journal of the American Medical Directors Association, 20, 1236-1241.[CrossRef] [PubMed]
|
|
[106]
|
Chomard, P., Vernhes, G., Autissier, N. and Debry, G. (1985) Serum Concentrations of Total T4, T3, Reverse T3 and Free T4, T3 in Moderately Obese Patients. Human Nutrition: Clinical Nutrition, 39, 371-378.
|
|
[107]
|
Strata, A., et al. (1978) Thyroid and Obesity: Survey of Some Function Tests in a Large Obese Population. International Journal of Obesity, 2, 333-340.
|
|
[108]
|
Nam, J.S., Cho, M., Park, J.S., Ahn, C.W., Cha, B.S., Lee, E.J., et al. (2010) Triiodothyronine Level Predicts Visceral Obesity and Atherosclerosis in Euthyroid, Overweight and Obese Subjects: T3 and Visceral Obesity. Obesity Research & Clinical Practice, 4, e315-e323.[CrossRef] [PubMed]
|
|
[109]
|
Nie, X., Xu, Y., Ma, X., Xiao, Y., Wang, Y. and Bao, Y. (2020) Association between Abdominal Fat Distribution and Free Triiodothyronine in a Euthyroid Population. Obesity Facts, 13, 358-366.[CrossRef] [PubMed]
|
|
[110]
|
Kokkoris, P. and Pi-Sunyer, F.X. (2003) Obesity and Endocrine Disease. Endocrinology and Metabolism Clinics of North America, 32, 895-914.[CrossRef] [PubMed]
|
|
[111]
|
Chen, F., Chen, R., Zhou, J., Xu, W., Zhou, J., Chen, X., et al. (2024) Impaired Sensitivity to Thyroid Hormones Is Associated with Central Obesity in Euthyroid Type 2 Diabetes Mellitus Patients with Overweight and Obesity. Diabetes, Metabolic Syndrome and Obesity, 17, 3379-3396.[CrossRef] [PubMed]
|
|
[112]
|
Khundmiri, S.J., Murray, R.D. and Lederer, E. (2016) PTH and Vitamin D. Comprehensive Physiology, 6, 561-601.[CrossRef]
|
|
[113]
|
Caldiroli, L., Molinari, P., D’Alessandro, C., Cupisti, A., Alfieri, C., Castellano, G., et al. (2025) Osteosarcopenia in Chronic Kidney Disease: An Overlooked Syndrome? Journal of Cachexia, Sarcopenia and Muscle, 16, e13787.[CrossRef] [PubMed]
|
|
[114]
|
Snijder, M.B., van Dam, R.M., Visser, M., Deeg, D.J.H., Dekker, J.M., Bouter, L.M., et al. (2005) Adiposity in Relation to Vitamin D Status and Parathyroid Hormone Levels: A Population-Based Study in Older Men and Women. The Journal of Clinical Endocrinology & Metabolism, 90, 4119-4123.[CrossRef] [PubMed]
|