[1]
|
Chong, B., Kong, G., Shankar, K., Chew, H.S.J., Lin, C., Goh, R., et al. (2023) The Global Syndemic of Metabolic Diseases in the Young Adult Population: A Consortium of Trends and Projections from the Global Burden of Disease 2000-2019. Metabolism, 141, Article 155402. https://doi.org/10.1016/j.metabol.2023.155402
|
[2]
|
Eslam, M., Ahmed, A., Després, J., Jha, V., Halford, J.C.G., Wei Chieh, J.T., et al. (2021) Incorporating Fatty Liver Disease in Multidisciplinary Care and Novel Clinical Trial Designs for Patients with Metabolic Diseases. The Lancet Gastroenterology & Hepatology, 6, 743-753. https://doi.org/10.1016/s2468-1253(21)00132-1
|
[3]
|
Cefalu, W.T. and Rodgers, G.P. (2021) COVID-19 and Metabolic Diseases: A Heightened Awareness of Health Inequities and a Renewed Focus for Research Priorities. Cell Metabolism, 33, 473-478. https://doi.org/10.1016/j.cmet.2021.02.006
|
[4]
|
Krautkramer, K.A., Kreznar, J.H., Romano, K.A., Vivas, E.I., Barrett-Wilt, G.A., Rabaglia, M.E., et al. (2016) Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 64, 982-992. https://doi.org/10.1016/j.molcel.2016.10.025
|
[5]
|
Lu, C., Zhao, H., Liu, Y., Yang, Z., Yao, H., Liu, T., et al. (2023) Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. International Journal of Biological Sciences, 19, 484-501. https://doi.org/10.7150/ijbs.78654
|
[6]
|
Hu, H., Li, Z., Xie, X., Liao, Q., Hu, Y., Gong, C., et al. (2024) Insights into the Role of RNA M6a Modification in the Metabolic Process and Related Diseases. Genes & Diseases, 11, Article 101011. https://doi.org/10.1016/j.gendis.2023.04.038
|
[7]
|
Kuramoto, K., Kim, Y., Hong, J.H. and He, C. (2021) The Autophagy Protein Becn1 Improves Insulin Sensitivity by Promoting Adiponectin Secretion via Exocyst Binding. Cell Reports, 35, Article 109184. https://doi.org/10.1016/j.celrep.2021.109184
|
[8]
|
Nguyen, H.T., Wiederkehr, A., Wollheim, C.B. and Park, K. (2024) Regulation of Autophagy by Perilysosomal Calcium: A New Player in β-Cell Lipotoxicity. Experimental & Molecular Medicine, 56, 273-288. https://doi.org/10.1038/s12276-024-01161-x
|
[9]
|
Choi, C., Son, Y., Kim, J., Cho, Y.K., Saha, A., Kim, M., et al. (2021) TM4SF5 Knockout Protects Mice from Diet-Induced Obesity Partly by Regulating Autophagy in Adipose Tissue. Diabetes, 70, 2000-2013. https://doi.org/10.2337/db21-0145
|
[10]
|
Sabaté-Pérez, A., Romero, M., Sànchez-Fernàndez-de-Landa, P., Carobbio, S., Moura-tidis, M., Sala, D., et al. (2022) Autophagy-Mediated NCOR1 Degradation Is Required for Brown Fat Maturation and Thermogenesis. Autophagy, 19, 904-925. https://doi.org/10.1080/15548627.2022.2111081
|
[11]
|
Wang, S., Deng, Z., Ma, Y., Jin, J., Qi, F., Li, S., et al. (2020) The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. International Journal of Biological Sciences, 16, 2675-2691. https://doi.org/10.7150/ijbs.46627
|
[12]
|
Gao, J., Chen, X., Shan, C., Wang, Y., Li, P. and Shao, K. (2021) Autophagy in Cardiovascular Diseases: Role of Noncoding RNAs. Molecular Therapy-Nucleic Acids, 23, 101-118. https://doi.org/10.1016/j.omtn.2020.10.039
|
[13]
|
Yu, Y.S., Kim, H., Kim, K.I. and Baek, S.H. (2023) Epigenetic Regulation of Autophagy by Histone-Modifying Enzymes under Nutrient Stress. Cell Death & Differentiation, 30, 1430-1436. https://doi.org/10.1038/s41418-023-01154-9
|
[14]
|
Parmar, U.M., Jalgaonkar, M.P., Kulkarni, Y.A. and Oza, M.J. (2022) Autophagy-Nutrient Sensing Pathways in Diabetic Complications. Pharmacological Research, 184, Article 106408. https://doi.org/10.1016/j.phrs.2022.106408
|
[15]
|
Abad-Jiménez, Z., López-Domènech, S., Pelechá, M., Perea-Galera, L., Rovira-Llopis, S., Bañuls, C., et al. (2024) Calorie Restriction Modulates Mitochondrial Dynamics and Autophagy in Leukocytes of Patients with Obesity. Free Radical Biology and Medicine, 225, 677-686. https://doi.org/10.1016/j.freeradbiomed.2024.10.295
|
[16]
|
Sbierski-Kind, J., Grenkowitz, S., Schlickeiser, S., Sandforth, A., Friedrich, M., Kunkel, D., et al. (2022) Effects of Caloric Restriction on the Gut Microbiome Are Linked with Immune Senescence. Microbiome, 10, Article No. 57. https://doi.org/10.1186/s40168-022-01249-4
|
[17]
|
Wu, M., Chen, Z., Zhu, J., Lin, J., Wu, N.N., Han, X., et al. (2024) Ablation of Akt2 Rescues Chronic Caloric Restriction-Provoked Myocardial Remodeling and Dysfunction through a Cdk1-Mediated Regulation of Mitophagy. Life Sciences, 356, Article 123021. https://doi.org/10.1016/j.lfs.2024.123021
|
[18]
|
Ferreira-Marques, M., Carmo-Silva, S., Pereira, J., Botelho, M., Nóbrega, C., López‐Otín, C., et al. (2025) Restoring Neuropetide Y Levels in the Hypothalamus Ameliorates Premature Aging Phenotype in Mice. GeroScience. https://doi.org/10.1007/s11357-025-01574-0
|
[19]
|
Lyngbæk, M.P.P., Legaard, G.E., Nielsen, N.S., Durrer, C., Almdal, T.P., Lund, M.A.V., et al. (2025) Effects of Caloric Restriction with Different Doses of Exercise on Fat Loss in People Living with Type 2 Diabetes: A Secondary Analysis of the DOSE-EX Randomized Clinical Trial. Journal of Sport and Health Science, 14, Article 100999. https://doi.org/10.1016/j.jshs.2024.100999
|
[20]
|
Daneshyar, S., Tavoosidana, G., Bahmani, M., Basir, S.S., Delfan, M., Laher, I., et al. (2023) Combined Effects of High Fat Diet and Exercise on Autophagy in White Adipose Tissue of Mice. Life Sciences, 314, Article 121335. https://doi.org/10.1016/j.lfs.2022.121335
|
[21]
|
Yu, L., Wan, Q., Liu, Q., Fan, Y., Zhou, Q., Skowronski, A.A., et al. (2024) IgG Is an Aging Factor That Drives Adipose Tissue Fibrosis and Metabolic Decline. Cell Metabolism, 36, 793-807.E5. https://doi.org/10.1016/j.cmet.2024.01.015
|
[22]
|
Yang, C., Xia, S., Zhang, W., Shen, H. and Wang, J. (2022) Modulation of Atg Genes Expression in Aged Rat Liver, Brain, and Kidney by Caloric Restriction Analyzed via Single-Nucleus/Cell RNA Sequencing. Autophagy, 19, 706-715. https://doi.org/10.1080/15548627.2022.2091903
|
[23]
|
Ding, S., Jiang, J., Zhang, G., Bu, Y., Zhang, G. and Zhao, X. (2017) Resveratrol and Caloric Restriction Prevent Hepatic Steatosis by Regulating SIRT1-Autophagy Pathway and Alleviating Endoplasmic Reticulum Stress in High-Fat Diet-Fed Rats. PLOS ONE, 12, e0183541. https://doi.org/10.1371/journal.pone.0183541
|
[24]
|
Shi, L., Zha, H., Zhao, J., An, H., Huang, H., Xia, Y., et al. (2025) Caloric Restriction Exacerbates Renal Post-Ischemic Injury and Fibrosis by Modulating mTORC1 Signaling and Autophagy. Redox Biology, 80, Article 103500. https://doi.org/10.1016/j.redox.2025.103500
|
[25]
|
Abdellatif, M., Madeo, F., Kroemer, G. and Sedej, S. (2022) Spermidine Overrides INSR (Insulin Receptor)-Igf1r (Insulin-Like Growth Factor 1 Receptor)-Mediated Inhibition of Autophagy in the Aging Heart. Autophagy, 18, 2500-2502. https://doi.org/10.1080/15548627.2022.2095835
|
[26]
|
Suchacki, K.J., Thomas, B.J., Ikushima, Y.M., Chen, K., Fyfe, C., Tavares, A.A., et al. (2023) The Effects of Caloric Restriction on Adipose Tissue and Metabolic Health Are Sex-and Age-Dependent. eLife, 12, e88080. https://doi.org/10.7554/elife.88080
|
[27]
|
Corrales, P., Martin‐Taboada, M., Vivas‐García, Y., Torres, L., Ramirez‐Jimenez, L., Lopez, Y., et al. (2023) MicroRNAs‐Mediated Regulation of Insulin Signaling in White Adipose Tissue during Aging: Role of Caloric Restriction. Aging Cell, 22, e13919. https://doi.org/10.1111/acel.13919
|
[28]
|
Hofer, S.J., Daskalaki, I., Bergmann, M., Friščić, J., Zimmermann, A., Mueller, M.I., et al. (2024) Spermidine Is Essential for Fasting-Mediated Autophagy and Longevity. Nature Cell Biology, 26, 1571-1584. https://doi.org/10.1038/s41556-024-01468-x
|
[29]
|
Zhang, H., Ni, W., Yu, G., Geng, Y., Lou, J., Qi, J., et al. (2023) 3,4-Dimethoxychalcone, a Caloric Restriction Mimetic, Enhances TFEB-Mediated Autophagy and Alleviates Pyroptosis and Necroptosis after Spinal Cord Injury. Theranostics, 13, 810-832. https://doi.org/10.7150/thno.78370
|
[30]
|
Shabkhizan, R., Haiaty, S., Moslehian, M.S., Bazmani, A., Sadeghsoltani, F., Saghaei Bagheri, H., et al. (2023) The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Advances in Nutrition, 14, 1211-1225. https://doi.org/10.1016/j.advnut.2023.07.006
|
[31]
|
Yadin, D., Petrover, Z., Shainberg, A., Alcalai, R., Waldman, M., Seidman, J., et al. (2022) Autophagy Guided Interventions to Modify the Cardiac Phenotype of Danon Disease. Biochemical Pharmacology, 204, Article 115229. https://doi.org/10.1016/j.bcp.2022.115229
|
[32]
|
Wang, Q., Xu, J., Luo, M., Jiang, Y., Gu, Y., Wang, Q., et al. (2024) Fasting Mimicking Diet Extends Lifespan and Improves Intestinal and Cognitive Health. Food & Function, 15, 4503-4514. https://doi.org/10.1039/d4fo00483c
|
[33]
|
Yang, Y., Lu, X., Liu, N., Ma, S., Zhang, H., Zhang, Z., et al. (2024) Metformin Decelerates Aging Clock in Male Monkeys. Cell, 24. https://doi.org/10.1016/j.cell.2024.08.021
|
[34]
|
Huang, K., Que, J., Hu, Z., Yu, Y., Zhou, Y., Wang, L., et al. (2020) Metformin Suppresses Inflammation and Apoptosis of Myocardiocytes by Inhibiting Autophagy in a Model of Ischemia-Reperfusion Injury. International Journal of Biological Sciences, 16, 2559-2579. https://doi.org/10.7150/ijbs.40823
|
[35]
|
Han, Y., Tang, S., Liu, Y., Li, A., Zhan, M., Yang, M., et al. (2021) AMPK Agonist Alleviate Renal Tubulointerstitial Fibrosis via Activating Mitophagy in High Fat and Streptozotocin Induced Diabetic Mice. Cell Death & Disease, 12, Article No. 925. https://doi.org/10.1038/s41419-021-04184-8
|
[36]
|
Xu, X., Sun, Y., Cen, X., Shan, B., Zhao, Q., Xie, T., et al. (2021) Metformin Activates Chaperone-Mediated Autophagy and Improves Disease Pathologies in an Alzheimer Disease Mouse Model. Protein & Cell, 12, 769-787. https://doi.org/10.1007/s13238-021-00858-3
|
[37]
|
Tai, S., Sun, J., Zhou, Y., Zhu, Z., He, Y., Chen, M., et al. (2022) Metformin Suppresses Vascular Smooth Muscle Cell Senescence by Promoting Autophagic Flux. Journal of Advanced Research, 41, 205-218. https://doi.org/10.1016/j.jare.2021.12.009
|
[38]
|
Byrnes, K., Blessinger, S., Bailey, N.T., Scaife, R., Liu, G. and Khambu, B. (2022) Therapeutic Regulation of Autophagy in Hepatic Metabolism. Acta Pharmaceutica Sinica B, 12, 33-49. https://doi.org/10.1016/j.apsb.2021.07.021
|
[39]
|
Alimoradi, N., Firouzabadi, N. and Fatehi, R. (2021) Metformin and Insulin-Resistant Related Diseases: Emphasis on the Role of MicroRNAs. Biomedicine & Pharmacotherapy, 139, Article 111662. https://doi.org/10.1016/j.biopha.2021.111662
|
[40]
|
Lei, Y. and Klionsky, D.J. (2023) Transcriptional Regulation of Autophagy and Its Implications in Human Disease. Cell Death & Differentiation, 30, 1416-1429. https://doi.org/10.1038/s41418-023-01162-9
|
[41]
|
Zhao, X., Li, S., He, Y., Yan, L., Lv, F., Liang, Q., et al. (2023) SGLT2 Inhibitors Alleviated Podocyte Damage in Lupus Nephritis by Decreasing Inflammation and Enhancing Autophagy. Annals of the Rheumatic Diseases, 82, 1328-1340. https://doi.org/10.1136/ard-2023-224242
|
[42]
|
Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., et al. (2021) Cardioprotective Mechanism of SGLT2 Inhibitor against Myocardial Infarction Is through Reduction of Autosis. Protein & Cell, 13, 336-359. https://doi.org/10.1007/s13238-020-00809-4
|
[43]
|
Madonna, R., Moscato, S., Cufaro, M.C., Pieragostino, D., Mattii, L., Del Boccio, P., et al. (2023) Empagliflozin Inhibits Excessive Autophagy through the AMPK/GSK3β Signalling Pathway in Diabetic Cardiomyopathy. Cardiovascular Research, 119, 1175-1189. https://doi.org/10.1093/cvr/cvad009
|
[44]
|
Packer, M. (2020) Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors: Potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circulation: Heart Failure, 13, e007197. https://doi.org/10.1161/circheartfailure.120.007197
|
[45]
|
Huang, K., Luo, X., Liao, B., Li, G. and Feng, J. (2023) Insights into SGLT2 Inhibitor Treatment of Diabetic Cardiomyopathy: Focus on the Mechanisms. Cardiovascular Diabetology, 22, Article No. 86. https://doi.org/10.1186/s12933-023-01816-5
|
[46]
|
Li, X., Li, Q., Jiang, X., Song, S., Zou, W., Yang, Q., et al. (2024) Inhibition of SGLT2 Protects Podocytes in Diabetic Kidney Disease by Rebalancing Mitochondria-Associated Endoplasmic Reticulum Membranes. Cell Communication and Signaling, 22, Article No. 534. https://doi.org/10.1186/s12964-024-01914-1
|
[47]
|
Li, J., Liu, H., Takagi, S., Nitta, K., Kitada, M., Srivastava, S.P., et al. (2020) Renal Protective Effects of Empagliflozin via Inhibition of EMT and Aberrant Glycolysis in Proximal Tubules. JCI Insight, 5, e129034. https://doi.org/10.1172/jci.insight.129034
|
[48]
|
Aragón-Herrera, A., Moraña-Fernández, S., Otero-Santiago, M., Anido-Varela, L., Campos-Toimil, M., García-Seara, J., et al. (2023) The Lipidomic and Inflammatory Profiles of Visceral and Subcutaneous Adipose Tissues Are Distinctly Regulated by the SGLT2 Inhibitor Empagliflozin in Zucker Diabetic Fatty Rats. Biomedicine & Pharmacotherapy, 161, Article 114535. https://doi.org/10.1016/j.biopha.2023.114535
|
[49]
|
Joshi, S.S., Singh, T., Newby, D.E. and Singh, J. (2021) Sodium-Glucose Co-Transporter 2 Inhibitor Therapy: Mechanisms of Action in Heart Failure. Heart, 107, 1032-1038. https://doi.org/10.1136/heartjnl-2020-318060
|
[50]
|
Chun, H.J., Kim, E.R., Lee, M., Choi, D.H., Kim, S.H., Shin, E., et al. (2023) Increased Expression of Sodium-Glucose Cotransporter 2 and O-GlcNAcylation in Hepatocytes Drives Non-Alcoholic Steatohepatitis. Metabolism, 145, Article 155612. https://doi.org/10.1016/j.metabol.2023.155612
|
[51]
|
Israeli, T., Riahi, Y., Garzon, P., Louzada, R.A., Werneck-de-Castro, J.P., Blandino-Rosano, M., et al. (2021) Nutrient Sensor Mtorc1 Regulates Insulin Secretion by Modulating β-Cell Autophagy. Diabetes, 71, 453-469. https://doi.org/10.2337/db21-0281
|
[52]
|
Zhang, S., Wei, X., Zhang, H., Wu, Y., Jing, J., Huang, R., et al. (2023) Doxorubicin Downregulates Autophagy to Promote Apoptosis-Induced Dilated Cardiomyopathy via Regulating the AMPK/mTOR Pathway. Biomedicine & Pharmacotherapy, 162, Article 114691. https://doi.org/10.1016/j.biopha.2023.114691
|
[53]
|
Wang, Y., Zhou, X., Li, D. and Ye, J. (2021) Role of the mTOR-Autophagy-ER Stress Pathway in High Fructose-Induced Metabolic-Associated Fatty Liver Disease. Acta Pharmacologica Sinica, 43, 10-14. https://doi.org/10.1038/s41401-021-00629-0
|
[54]
|
Foster, D.A. and Toschi, A. (2009) Targeting mTOR with Rapamycin: One Dose Does Not Fit All. Cell Cycle, 8, 1026-1029. https://doi.org/10.4161/cc.8.7.8044
|
[55]
|
O’Shea, A.E., Valdera, F.A., Ensley, D., Smolinsky, T.R., Cindass, J.L., Kemp Bohan, P.M., et al. (2022) Immunologic and Dose Dependent Effects of Rapamycin and Its Evolving Role in Chemoprevention. Clinical Immunology, 245, Article 109095. https://doi.org/10.1016/j.clim.2022.109095
|
[56]
|
Sciarretta, S., Volpe, M. and Sadoshima, J. (2014) Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease. Circulation Research, 114, 549-564. https://doi.org/10.1161/circresaha.114.302022
|
[57]
|
Toppila, M., Ranta-aho, S., Kaarniranta, K., Hytti, M. and Kauppinen, A. (2024) Metformin Alleviates Inflammation and Induces Mitophagy in Human Retinal Pigment Epithelium Cells Suffering from Mitochondrial Damage. Cells, 13, Article 1433. https://doi.org/10.3390/cells13171433
|
[58]
|
Abad-Jiménez, Z., López-Domènech, S., Díaz-Rúa, R., Iannantuoni, F., Gómez-Abril, S.Á., Periañez-Gómez, D., et al. (2020) Systemic Oxidative Stress and Visceral Adipose Tissue Mediators of NLRP3 Inflammasome and Autophagy Are Reduced in Obese Type 2 Diabetic Patients Treated with Metformin. Antioxidants, 9, Article 892. https://doi.org/10.3390/antiox9090892
|
[59]
|
Lee, D.E., Lee, G.Y., Lee, H.M., Choi, S.Y., Lee, S.J. and Kwon, O. (2023) Synergistic Apoptosis by Combination of Metformin and an O-Glcnacylation Inhibitor in Colon Cancer Cells. Cancer Cell International, 23, Article No. 108. https://doi.org/10.1186/s12935-023-02954-2
|
[60]
|
Chang, C., Su, H., Zhang, D., Wang, Y., Shen, Q., Liu, B., et al. (2015) AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy Upon Glucose Starvation. Molecular Cell, 60, 930-940. https://doi.org/10.1016/j.molcel.2015.10.037
|
[61]
|
Takano, M., Kondo, H., Harada, T., Takahashi, M., Ishii, Y., Yamasaki, H., et al. (2023) Empagliflozin Suppresses the Differentiation/Maturation of Human Epicardial Preadipocytes and Improves Paracrine Secretome Profile. JACC: Basic to Translational Science, 8, 1081-1097. https://doi.org/10.1016/j.jacbts.2023.05.007
|
[62]
|
Voors, A.A., Damman, K., Teerlink, J.R., Angermann, C.E., Collins, S.P., Kosiborod, M., et al. (2022) Renal Effects of Empagliflozin in Patients Hospitalized for Acute Heart Failure: From the EMPULSE Trial. European Journal of Heart Failure, 24, 1844-1852. https://doi.org/10.1002/ejhf.2681
|
[63]
|
Seferović, P.M., Fragasso, G., Petrie, M., Mullens, W., Ferrari, R., Thum, T., et al. (2020) Sodium-Glucose Co-Transporter 2 Inhibitors in Heart Failure: Beyond Glycaemic Control. A Position Paper of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 22, 1495-1503. https://doi.org/10.1002/ejhf.1954
|
[64]
|
Yang, X., Liu, Q., Li, Y., Ding, Y., Zhao, Y., Tang, Q., et al. (2021) Inhibition of the Sodium-Glucose Co‐Transporter SGLT2 by Canagliflozin Ameliorates Diet‐Induced Obesity by Increasing Intra‐adipose Sympathetic Innervation. British Journal of Pharmacology, 178, 1756-1771. https://doi.org/10.1111/bph.15381
|
[65]
|
Heimke, M., Lenz, F., Rickert, U., Lucius, R. and Cossais, F. (2022) Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells, 11, Article 3107. https://doi.org/10.3390/cells11193107
|
[66]
|
Borges-Júnior, F.A., Silva dos Santos, D., Benetti, A., Polidoro, J.Z., Wisnivesky, A.C.T., Crajoinas, R.O., et al. (2021) Empagliflozin Inhibits Proximal Tubule NHE3 Activity, Preserves GFR, and Restores Euvolemia in Nondiabetic Rats with Induced Heart Failure. Journal of the American Society of Nephrology, 32, 1616-1629. https://doi.org/10.1681/asn.2020071029
|
[67]
|
Mashayekhi, M., Safa, B.I., Gonzalez, M.S.C., Kim, S.F. and Echouffo-Tcheugui, J.B. (2024) Systemic and Organ-Specific Anti-Inflammatory Effects of Sodium-Glucose Cotransporter-2 Inhibitors. Trends in Endocrinology & Metabolism, 35, 425-438. https://doi.org/10.1016/j.tem.2024.02.003
|
[68]
|
Zhu, Y., Hu, J., Zeng, S., Gao, M., Guo, S., Wang, M., et al. (2023) L-Selenomethionine Affects Liver Development and Glucolipid Metabolism by Inhibiting Autophagy in Zebrafish Embryos. Ecotoxicology and Environmental Safety, 252, Article 114589. https://doi.org/10.1016/j.ecoenv.2023.114589
|
[69]
|
Regan, J.C., Lu, Y., Ureña, E., Meilenbrock, R.L., Catterson, J.H., Kißler, D., et al. (2022) Sexual Identity of Enterocytes Regulates Autophagy to Determine Intestinal Health, Lifespan and Responses to Rapamycin. Nature Aging, 2, 1145-1158. https://doi.org/10.1038/s43587-022-00308-7
|
[70]
|
Deretic, V. (2021) Autophagy in Inflammation, Infection, and Immunometabolism. Immunity, 54, 437-453. https://doi.org/10.1016/j.immuni.2021.01.018
|
[71]
|
Sebastián, D. and Zorzano, A. (2020) Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism. Developmental Cell, 54, 268-281. https://doi.org/10.1016/j.devcel.2020.06.030
|
[72]
|
He, X. (2023) Construction of Biomimetic N-Acetylgalactosamineengineered System for Liver Targeted Gene Delivery. M.S. Thesis, South China University of Technology.
|
[73]
|
Paunovic, V., Peric, S., Vukovic, I., Stamenkovic, M., Milosevic, E., Stevanovic, D., et al. (2022) Downregulation of LKB1/AMPK Signaling in Blood Mononuclear Cells Is Associated with the Severity of Guillain-Barre Syndrome. Cells, 11, Article 2897. https://doi.org/10.3390/cells11182897
|
[74]
|
Yang, G., Francis, D., Krycer, J.R., Larance, M., Zhang, Z., Novotny, C.J., et al. (2021) Dissecting the Biology of mTORC1 Beyond Rapamycin. Science Signaling, 14, eabe0161. https://doi.org/10.1126/scisignal.abe0161
|
[75]
|
Shams, R., Matsukawa, A., Ochi, Y., Ito, Y. and Miyatake, H. (2021) In Silico and in Cell Hybrid Selection of Nonrapalog Ligands to Allosterically Inhibit the Kinase Activity of mTORC1. Journal of Medicinal Chemistry, 65, 1329-1341. https://doi.org/10.1021/acs.jmedchem.1c00536
|
[76]
|
Gremke, N., Besong, I., Stroh, A., von Wichert, L., Witt, M., Elmshäuser, S., et al. (2025) Targeting PI3K Inhibitor Resistance in Breast Cancer with Metabolic Drugs. Signal Transduction and Targeted Therapy, 10, Article No. 92. https://doi.org/10.1038/s41392-025-02180-4
|
[77]
|
Li, X., Wang, S., Zhang, M. and Li, M. (2024) The SLC38A9-mTOR Axis Is Involved in Autophagy in the Juvenile Yellow Catfish (Pelteobagrus fulvidraco) under Ammonia Stress. Environmental Pollution, 343, Article 123211. https://doi.org/10.1016/j.envpol.2023.123211
|
[78]
|
Wei, W., Wong, C.C., Jia, Z., Liu, W., Liu, C., Ji, F., et al. (2023) Parabacteroides distasonis Uses Dietary Inulin to Suppress NASH via Its Metabolite Pentadecanoic Acid. Nature Microbiology, 8, 1534-1548. https://doi.org/10.1038/s41564-023-01418-7
|
[79]
|
Milton-Laskibar, I., Aguirre, L., Etxeberria, U., Milagro, F.I., Martínez, J.A. and Portillo, M.P. (2018) Involvement of Autophagy in the Beneficial Effects of Resveratrol in Hepatic Steatosis Treatment. a Comparison with Energy Restriction. Food & Function, 9, 4207-4215. https://doi.org/10.1039/c8fo00930a
|
[80]
|
Ji, G., Wang, Y., Deng, Y., Li, X. and Jiang, Z. (2015) Resveratrol Ameliorates Hepatic Steatosis and Inflammation in Methionine/Choline-Deficient Diet-Induced Steatohepatitis through Regulating Autophagy. Lipids in Health and Disease, 14, Article No. 134. https://doi.org/10.1186/s12944-015-0139-6
|
[81]
|
Afshari, H., Noori, S. and Zarghi, A. (2023) A Novel Combination of Metformin and Resveratrol Alleviates Hepatic Steatosis by Activating Autophagy through the cAMP/AMPK/SIRT1 Signaling Pathway. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396, 3135-3148. https://doi.org/10.1007/s00210-023-02520-7
|
[82]
|
Yaskolka Meir, A., Rinott, E., Tsaban, G., Zelicha, H., Kaplan, A., Rosen, P., et al. (2021) Effect of Green-Mediterranean Diet on Intrahepatic Fat: The DIRECT PLUS Randomised Controlled Trial. Gut, 70, 2085-2095. https://doi.org/10.1136/gutjnl-2020-323106
|
[83]
|
Bates, J., Vijayakumar, A., Ghoshal, S., Marchand, B., Yi, S., Kornyeyev, D., et al. (2020) Acetyl-CoA Carboxylase Inhibition Disrupts Metabolic Reprogramming during Hepatic Stellate Cell Activation. Journal of Hepatology, 73, 896-905. https://doi.org/10.1016/j.jhep.2020.04.037
|
[84]
|
Zhang, X., She, Z., Wang, J., Sun, D., Shen, L., Xiang, H., et al. (2021) Multiple Omics Study Identifies an Interspecies Conserved Driver for Nonalcoholic Steatohepatitis. Science Translational Medicine, 13, eabg8117. https://doi.org/10.1126/scitranslmed.abg8117
|
[85]
|
Zhou, B., Luo, Y., Bi, H., Zhang, N., Ma, M., Dong, Z., et al. (2024) Amelioration of Nonalcoholic Fatty Liver Disease by Inhibiting the Deubiquitylating Enzyme RPN11. Cell Metabolism, 36, 2228-2244.E7. https://doi.org/10.1016/j.cmet.2024.07.014
|
[86]
|
Zhang, Y., Chen, M., Zhou, Y., Yi, L., Gao, Y., Ran, L., et al. (2015) Resveratrol Improves Hepatic Steatosis by Inducing Autophagy through the Camp Signaling Pathway. Molecular Nutrition & Food Research, 59, 1443-1457. https://doi.org/10.1002/mnfr.201500016
|
[87]
|
Niazpour, F. and Meshkani, R. (2025) Unlocking the Therapeutic Potential of Autophagy Modulation by Natural Products in Tackling Non‐Alcoholic Fatty Liver Disease. Phytotherapy Research, 39, 2357-2373. https://doi.org/10.1002/ptr.8463
|
[88]
|
Hendriks, D., Brouwers, J.F., Hamer, K., Geurts, M.H., Luciana, L., Massalini, S., et al. (2023) Engineered Human Hepatocyte Organoids Enable Crispr-Based Target Discovery and Drug Screening for Steatosis. Nature Biotechnology, 41, 1567-1581. https://doi.org/10.1038/s41587-023-01680-4
|
[89]
|
Trépo, E. and Valenti, L. (2020) Update on NAFLD Genetics: From New Variants to the Clinic. Journal of Hepatology, 72, 1196-1209. https://doi.org/10.1016/j.jhep.2020.02.020
|
[90]
|
Sun, X., Seidman, J.S., Zhao, P., Troutman, T.D., Spann, N.J., Que, X., et al. (2020) Neutralization of Oxidized Phospholipids Ameliorates Non-Alcoholic Steatohepatitis. Cell Metabolism, 31, 189-206.E8. https://doi.org/10.1016/j.cmet.2019.10.014
|
[91]
|
Fairlie, W.D., Tran, S. and Lee, E.F. (2020) Crosstalk between Apoptosis and Autophagy Signaling Pathways. In: International Review of Cell and Molecular Biology, Elsevier, 115-158. https://doi.org/10.1016/bs.ircmb.2020.01.003
|
[92]
|
Yahoo, N., Dudek, M., Knolle, P. and Heikenwälder, M. (2023) Role of Immune Responses in the Development of NAFLD-Associated Liver Cancer and Prospects for Therapeutic Modulation. Journal of Hepatology, 79, 538-551. https://doi.org/10.1016/j.jhep.2023.02.033
|
[93]
|
Gluchowski, N.L., Becuwe, M., Walther, T.C. and Farese, R.V. (2017) Lipid Droplets and Liver Disease: From Basic Biology to Clinical Implications. Nature Reviews Gastroenterology & Hepatology, 14, 343-355. https://doi.org/10.1038/nrgastro.2017.32
|
[94]
|
Gjorgjieva, M., Sobolewski, C., Dolicka, D., Correia de Sousa, M. and Foti, M. (2019) miRNAs and NAFLD: From Pathophysiology to Therapy. Gut, 68, 2065-2079. https://doi.org/10.1136/gutjnl-2018-318146
|
[95]
|
Samuel, V.T. and Shulman, G.I. (2018) Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metabolism, 27, 22-41. https://doi.org/10.1016/j.cmet.2017.08.002
|
[96]
|
Nauck, M.A., Wefers, J. and Meier, J.J. (2021) Treatment of Type 2 Diabetes: Challenges, Hopes, and Anticipated Successes. The Lancet Diabetes & Endocrinology, 9, 525-544. https://doi.org/10.1016/s2213-8587(21)00113-3
|
[97]
|
Leslie, R.D., Ma, R.C.W., Franks, P.W., Nadeau, K.J., Pearson, E.R. and Redondo, M.J. (2023) Understanding Diabetes Heterogeneity: Key Steps Towards Precision Medicine in Diabetes. The Lancet Diabetes & Endocrinology, 11, 848-860. https://doi.org/10.1016/s2213-8587(23)00159-6
|
[98]
|
Diabetes Prevention Program Research, Group (2015) Long-Term Effects of Lifestyle Intervention or Metformin on Diabetes Development and Microvascular Complications over 15-Year Follow-Up: The Diabetes Prevention Program Outcomes Study. The Lancet Diabetes & Endocrinology, 3, 866-875. https://doi.org/10.1016/S2213-8587(15)00291-0
|
[99]
|
Gao, H., Jin, Z., Bandyopadhyay, G., Cunha e Rocha, K., Liu, X., Zhao, H., et al. (2022) MiR-690 Treatment Causes Decreased Fibrosis and Steatosis and Restores Specific Kupffer Cell Functions in NASH. Cell Metabolism, 34, 978-990.E4. https://doi.org/10.1016/j.cmet.2022.05.008
|
[100]
|
Gloyn, A.L. and Drucker, D.J. (2018) Precision Medicine in the Management of Type 2 Diabetes. The Lancet Diabetes & Endocrinology, 6, 891-900. https://doi.org/10.1016/s2213-8587(18)30052-4
|
[101]
|
Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., et al. (2021) Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition). Autophagy, 17, 1-382. https://doi.org/10.1080/15548627.2020.1797280
|
[102]
|
Armstrong, M.J., Gaunt, P., Aithal, G.P., Barton, D., Hull, D., Parker, R., et al. (2016) Liraglutide Safety and Efficacy in Patients with Non-Alcoholic Steatohepatitis (LEAN): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Study. The Lancet, 387, 679-690. https://doi.org/10.1016/s0140-6736(15)00803-x
|
[103]
|
Bany Bakar, R., Reimann, F. and Gribble, F.M. (2023) The Intestine as an Endocrine Organ and the Role of Gut Hormones in Metabolic Regulation. Nature Reviews Gastroenterology & Hepatology, 20, 784-796. https://doi.org/10.1038/s41575-023-00830-y
|