Linear Stability of Non-Axial Libration Points in the Kite Configuration of First Kind

Abstract

This paper deals with the linear stability of non-axial libration points in the kite configuration of first kind. It is to be noted that the kite configuration of the first kind exists for the mass parameter μ] 0,1/3 [ , where μ is the ratio of the smallest mass of the kite to the whole mass of the system. To check the linear stability of the libration points, the variational equation was derived in the neighbourhood of the libration points, and then the characteristic equation was formed. If all the roots of the characteristic equation are purely imaginary, then all criteria for stability will be satisfied and hence, the libration points will be stable; otherwise, unstable. For this, the stability criteria given in Equation (15) have been followed, and it was found that L 4 and L 5 are stable for μ=0.10 only and for all values of μ] 0,1/3 [ , L j ( j=1,2,3,6,7,8,9,10,11,12,13 ) are unstable.

Share and Cite:

Alam, M. , Hassan, M. , Suman, S. , Hassan, M. , Kumar, P. , Ahamad, M. and Sultana, S. (2025) Linear Stability of Non-Axial Libration Points in the Kite Configuration of First Kind. International Journal of Astronomy and Astrophysics, 15, 197-217. doi: 10.4236/ijaa.2025.153014.

1. Introduction

In space science, the two-body, the three-body and the restricted three-body problems have been studied by different authors starting from Newton to date. MacMillon et al. [1] provided detailed proof of two theorems for the existence of a quadrilateral configuration in the field of four-body configurations. Brumberg [2] invented a permanent solution for a four-body configuration. For the first time, Albouy et al. [3] [4] examined the symmetric central configuration of equal masses. Cors et al. [5] and Corbera et al. [6] examined the cyclic configuration in the Newtonian four-body problem, in which they used the six mutual distances of the particles as their coordinates and demonstrated that the four-point masses constitute a kite lying on a two-dimensional plane.

They have also demonstrated that a line of symmetry must exist in any central configuration with two equal masses on opposite sides. By describing the masses of the central configuration in terms of angle coordinates, Balint et al. [7] extended the work of Cors et al. [5] in three cases (two concave cases and one convex case). They further asserted that the exact analytical solutions of the four-body configuration are represented by the obtained formulas. Deng et al. [8] demonstrated that the diagonals of a cyclic quadrilateral can’t be perpendicular unless the configuration is a kite by using mutual distances as the coordinates. Further, they verified the same theorem in the four-vortex central configuration.

Hassan [9] [10] classified the kite configuration into two categories and proved three theorems on the existence of cyclic kite configurations. In the first theorem, he uniquely expressed the masses of the four particles in terms of a mass parameter μ and the total mass M of the system as m 1 = M( 1μ )/2 , m 2 =Mμ , m 3 = M( 13μ )/2 , m 4 =Mμ and their coordinates as ( R,0 ) , ( R/2 , 3 R/2 ) , ( R,0 ) , ( R/2 , 3 R/2 ) where R is the radius of the common circular orbit of the kite. Hassan [9] [10] calculated the mean motion of the rotating frame lying on the kite’s plane as a function of μ .

Khatun et al. [11] extended the work of Hassan [9] [10] by taking the first body of mass m 1 as an oblate spheroid and showed the effects of oblateness on the mean motion of the system. It is found that the mean motion increases with the increase of oblateness. Further, showed that the axial libration points move away from the origin due to an increase in the oblateness parameter A . As the analytical existence of non-axial libration points wasn’t possible so, we presently propose Python programming for finding the location of non-axial libration points with the help of points of intersection of contour plots of zero partial derivatives of the potential function of the satellite.

2. Equation of Motions

Let at any time t , P( x,y ) be the position of the satellite moving in the gravitational field of the four-point masses of the kite configuration, and P k ( x k , y k ),k=1,2,3,4 be the positions of the four vertices of the kite configuration at which the four bodies of respective masses ( 1μ )/2 ,μ, ( 13μ )/2 ,μ be located on the rotating frame ( O,XY ) as shown in Figure 1.

Let

OP=ρ , then ρ=xi+yj ρ 2 = x 2 + y 2 and

P k P=( x x k ) i ^ +( y y k ) j ^ = ρ k , ρ k 2 = ( x x k ) 2 + ( y y k ) 2 .

Figure 1. Cyclic kite configuration.

As P k ( x k , y k ) then

P 1 ( 1 2 ,0 ),     P 2 ( 1 4 , 3 4 ),     P 3 ( 1 2 ,0 ),     P 4 ( 1 4 , 3 4 ),

ρ 1 2 = ( x 1 2 ) 2 + y 2 ,      ρ 2 2 = ( x+ 1 4 ) 2 + ( y 3 4 ) 2 , ρ 3 2 = ( x+ 1 2 ) 2 + y 2 ,     ρ 4 2 = ( x+ 1 4 ) 2 + ( y+ 3 4 ) 2 . } (1)

In a rotating frame, the equations of motion of the satellite at P( x,y ) can be written as

x ¨ 2n y ˙ = Ω x = Ω x y ¨ +2n x ˙ = Ω y = Ω y } , (2)

where is n the mean motion of the rotating frame and Ω is the kinetic potential given by

Ω= n 2 2 ( x 2 + y 2 )+ 1μ 2 ρ 1 + μ ρ 2 + 13μ 2 ρ 3 + μ ρ 4 . (3)

Let us write the System (2) as

x ¨ 2n y ˙ = Ω x = Ω x =f( x,y ), y ¨ +2n x ˙ = Ω y = Ω y =g( x,y ). } (4)

3. Location of Libration Points

For libration points x ˙ = y ˙ = x ¨ = y ¨ =0 i.e., Ω x =0 and Ω y =0 .

The points of intersection of Ω x =0 and Ω y =0 give the locations of libration points of the kite configuration. The contour plots of these equations are given below:

The symbols L 1 , L 2 ,, L 7 in Figure 2 are the positions of seven libration points indicated through the intersection of Ω x =0 and Ω y =0 for μ=0.03 , n=1.901802 and those are in Figure 3 for μ=0.07 , n=1.888594 . Here black dots P i ( i=1,2,3,4 ) represent four bodies forming a kite and four pink spots L j ( j=4,5,6,7 ) represent non-axial libration points.

The symbols L 1 , L 2 ,, L 7 in Figure 4 are the positions of seven libration points indicated through the intersection of Ω x =0 and Ω y =0 for μ=0.09 , n=1.882361 and those are in Figure 5 for μ=0.11 , n=1.876288 . Here, black dots P i ( i=1,2,3,4 ) represent four bodies forming a kite and four pink spots L j ( j=4,5,6,7 ) represent nonaxial libration points.

The symbols L 1 , L 2 ,, L 13 in Figure 6 are the positions of thirteen libration points indicated through the intersection of Ω x =0 and Ω y =0 for μ=0.15 , n=1.821047 and those are in Figure 7 for μ=0.22 , n=1.624152 . Here black dots P i ( i=1,2,3,4 ) represent four bodies forming a kite and ten pink spots L j ( j=4,5,,13 ) represent non-axial libration points.

Figure 2. Positions of libration points for μ=0.03 .

Figure 3. Positions of libration points for μ=0.07 .

Figure 4. Positions of libration points for μ=0.09 .

Figure 5. Positions of libration points for μ=0.11 .

Figure 6. Positions of libration points for μ=0.15 .

Figure 7. Positions of libration points for μ=0.22 .

The symbols L 1 , L 2 ,, L 11 in Figure 8 are the positions of eleven libration points indicated through the intersection of Ω x =0 and Ω y =0 for μ=0.30 , n=1.364779 and those are in Figure 9 for μ=0.31 , n=1.328802 . Here black dots P i ( i=1,2,3,4 ) represent four bodies forming a kite and eight pink spots L j ( j=4,5,,11 ) represent non-axial libration points.

For different values of μ( 0, 3 1 ) and corresponding values of n , the coordinates ( x,y ) of libration points L j ( j=4,5,,13 ) are given in the 2nd, 3rd, 4th and 5th columns respectively of the Stability Tables 1-10.

4. Stability Criteria

The motion of a satellite is said to be stable near the libration points when given a very small displacement and small velocity, the satellite oscillates for a considerable time around the points.

Let ξ,η denote the small displacement of the infinitesimal body (artificial satellite) from the libration points ( x 0 , y 0 ) , then the variational equations of motion can be easily obtained by substituting x= x 0 +ξ,y= y 0 +η in Equation (4). Thus, Equation (4) becomes

ξ ¨ 2n η ˙ =f( x 0 +ξ, y 0 +η ), η ¨ +2n ξ ˙ =g( x 0 +ξ, y 0 +η ). } (5)

Figure 8. Positions of libration points for μ=0.30 .

Figure 9. Positions of libration points for μ=0.31 .

Now applying Taylor’s theorem in the neighbourhood of ( x 0 , y 0 ) in the right-hand side of the above equations, we get

ξ ¨ 2n η ˙ =f( x 0 , y 0 )+( ξ x +η y )f( x 0 , y 0 )++higher order term ofξ&η and η ¨ +2n ξ ˙ =g( x 0 , y 0 )+( ξ x +η y )g( x 0 , y 0 )++higher order term ofξ&η

ξ ¨ 2n η ˙ =f( x 0 , y 0 )+ξ ( f x ) 0 +η ( f y ) 0 ++higher order term ofξ&η and η ¨ +2n ξ ˙ =g( x 0 , y 0 )+ξ ( g x ) 0 +η ( g y ) 0 ++higher order term ofξ&η } (6)

But at the libration points Ω x 0 =f( x 0 , y 0 )= Ω y 0 =g( x 0 , y 0 )=0 So, from Equation (6), we get

ξ ¨ 2n η ˙ =ξ x ( Ω x ) 0 +η y ( Ω x ) 0 ++higher order term ofξ&η and η ¨ +2n ξ ˙ =ξ x ( Ω y ) 0 +η y ( Ω y ) 0 ++higher order term ofξ&η.

For linear stability, neglecting the higher-order terms of ξ and η , the variational equations are reduced to

ξ ¨ 2n η ˙ =ξ Ω xx 0 +η Ω yx 0 , η ¨ +2n ξ ˙ =ξ Ω xy 0 +η Ω yy 0 . } (7)

where Ω xx 0 , Ω xy 0 , Ω yx 0 , Ω yy 0 represent the second-order derivatives of Ω at the libration points ( x 0 , y 0 ) . The above system of equations can be extended as

ξ ˙ =ξ0+η0+ ξ ˙ 1+ η ˙ 0, η ˙ =ξ0+η0+ ξ ˙ 0+ η ˙ 1, ξ ¨ =ξ Ω xx 0 +η Ω xy 0 + ξ ˙ 0+ η ˙ 2n, η ¨ =ξ Ω xy 0 +η Ω yy 0 + ξ ˙ ( 2n )+ η ˙ 0. } (8)

The system of Equation (8) can be written in the form of a single matrix equation as

X ˙ =TX, (9)

where T=[ 0 0 1 0 0 0 0 1 Ω xx 0 Ω yx 0 0 2n Ω xy 0 Ω yx 0 2n 0 ] and X=[ ξ η ξ ˙ η ˙ ] .

If any matrix X satisfy the equation

TX=λX ,(10)

then X is said to be an eigenvector of the coefficient matrix T and scalar λ is its corresponding eigenvalue. If T is thought of as a transformation matrix, then the result of applying T to the particular vector X satisfying Equation (10) is to produce a vector in the same direction as X but of a different magnitude.

Now, Equation (10) can be written as ( TλI )X=0 .

The set of four simultaneous linear equations in four unknowns ξ,η, ξ ˙ , η ˙ will have non-trivial solutions provided the determinant of the characteristic matrix ( TλI ) vanishes.

i.e., | AλI |=0, (11)

λ 4 ( Ω xx 0 + Ω yy 0 4 n 2 ) λ 2 +2n( Ω yx 0 Ω xy 0 )λ+( Ω xx 0 Ω yy 0 Ω xy 0 Ω yx 0 )=0,

λ 4 ( Ω xx 0 + Ω yy 0 4 n 2 ) λ 2 +{ Ω xx 0 Ω yy 0 ( Ω xy 0 ) 2 }=0.( as Ω xy 0 = Ω yx 0 ) (12)

This equation is called a characteristic equation corresponding to the equations of a matrix A . Therefore, Equation (12) can be written as

λ 4 A λ 2 +B=0 ,(13)

where A= Ω xx 0 + Ω yy 0 4 n 2 & B= Ω xx 0 Ω yy 0 ( Ω xy 0 ) 2 .

Equation (13) is biquadratic in λ , so taking λ 2 = , Equation (13) is reduced to a quadratic equation

2 A+B=0. (14)

Let 1 and 2 be the two roots of the characteristic Equation (14), then

1 + 2 =A and  1 2 =B.

But from Equation (13), = λ 2 = A± A 2 4B 2 .

Let

1 = A+ A 2 4B 2 ,   2 = A A 2 4B 2 .

As λ 2 = , so let λ 1 2 = 1 and λ 2 2 = 2 , then

λ 1 2 = A+ A 2 4B 2   and  λ 2 2 = A A 2 4B 2 .

λ 1 =± ( A+ A 2 4B 2 ) 1 2   and  λ 2 =± ( A A 2 4B 2 ) 1 2 .

Let λ 11 =+ ( A+ A 2 4B 2 ) 1 2   and  λ 12 = ( A+ A 2 4B 2 ) 1 2 .

λ 21 =+ ( A A 2 4B 2 ) 1 2   and  λ 22 = ( A A 2 4B 2 ) 1 2 .

For simplicity, let us write

λ 1 * =+ ( A+ A 2 4B 2 ) 1 2   and  λ 2 * = ( A+ A 2 4B 2 ) 1 2 ,

λ 3 * =+ ( A A 2 4B 2 ) 1 2   and  λ 4 * = ( A A 2 4B 2 ) 1 2 .

as the four roots of the Characteristic Equation (13).

The criteria for linear stability of non-axial libration points are as follows:

Any libration point L j ( x j , y j ),j=4,5,6,,13 is said to be stable if λ 1 2 , λ 2 2 are negative real and

(i)  A= λ 1 2 + λ 2 2 <0 (ii)  B= λ 1 2 λ 2 2 >0 (iii) D= A 2 4B0 } Refer Szebehely [12] (15)

are satisfied together.

To satisfy the above conditions of stability, we need Ω xx 0 , Ω xy 0 and Ω xy 0 . So, differentiating the potential function Ω partially twice with respect to x and y , we get

Ω xx = n 2 [ 1μ 2 ρ 1 3 + μ ρ 2 3 + 13μ 2 ρ 3 3 + μ ρ 4 3 ]          +3[ ( 1μ ) ( x1/2 ) 2 2 ρ 1 5 + μ ( x+1/4 ) 2 ρ 2 5 + ( 13μ ) ( x+1/2 ) 2 2 ρ 3 5 + μ ( x+1/4 ) 2 ρ 4 5 ],

Figure 10. Positions of libration points μ=0.10 (Stable).

Ω yx = 3( 1μ )( x1/2 )y 2 ρ 1 5 + 3μ( x+1/4 )( y 3 /4 ) ρ 2 5           3( 13μ )( x+1/2 )y 2 ρ 3 5 + 3μ( x+1/4 )( y+ 3 /4 ) ρ 4 5 = Ω xy ,

Ω yy = n 2 [ 1μ 2 ρ 1 3 + μ ρ 2 3 + 13μ 2 ρ 3 3 + μ ρ 4 3 ]           +3[ ( 1μ ) y 2 2 ρ 1 5 + μ ( y 3 /4 ) 2 ρ 2 5 + ( 13μ ) y 2 2 ρ 3 5 + μ ( y+ 3 /4 ) 2 ρ 4 5 ].

The symbols L 1 , L 2 ,, L 7 in Figure 10 are the positions of seven libration points indicated through the intersection of Ω x =0 and Ω y =0 for μ=0.10 & n=1.879308 . Here black dots P i ( i=1,2,3,4 ) represent four bodies forming a kite and four pink spots L j ( j=4,5,6,7 ) represent non-axial libration points.

5. Stability Tables

The values of Ω xx 0 , Ω xy 0 , Ω yy 0 ,A,B,D are given in the 6th, 7th, 8th, 9th, 10th and 11th columns respectively in stability tables from Table 1-10. The nature of the stability of each non-axial libration point satisfying the conditions of Equation (15), is mentioned in the last column of each Stability table.

Table 1. Stability table of L 4 ( x 4 , y 4 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.01

1.908937

0.018715

0.409329

7.521447

3.934277

−5.47942

−3.12044

−0.43256

11.46739

Unstable

2

0.02

1.905315

0.033261

−0.406280

8.186627

3.598856

5.545818

−2.73542

−1.29361

12.65693

Unstable

3

0.03

1.901802

0.045526

−0.404160

8.665476

3.366872

5.590232

−2.43505

−2.07515

14.23005

Unstable

4

0.04

1.898384

0.056352

0.402755

9.023149

3.201589

−5.61368

−2.19071

−2.62498

15.29915

Unstable

5

0.05

1.895050

0.066202

0.401977

9.293269

3.084013

−5.61688

−1.98758

−2.88878

15.50559

Unstable

6

0.06

1.891790

0.075363

−0.401760

9.495481

3.003024

5.600356

−1.81698

−2.84883

14.69673

Unstable

7

0.07

1.888594

0.084026

−0.402060

9.642363

2.951490

5.564665

−1.67330

−2.50616

12.82457

Unstable

8

0.08

1.885454

0.092319

0.402822

9.742692

2.924443

−5.51062

−1.55261

−1.87503

9.910718

Unstable

9

0.09

1.882361

0.100333

−0.404010

9.803166

2.918111

5.439474

−1.45185

−0.98115

6.032460

Unstable

10

0.10

1.879308

0.108129

0.405551

9.829358

2.929383

−5.35295

−1.36845

0.139929

1.312932

Stable

11

0.11

1.876288

0.115746

0.407389

9.826224

2.955519

−5.25321

−1.30009

1.445367

−4.09124

Unstable

12

0.12

1.873296

0.123207

−0.409450

9.798319

2.994022

5.142731

−1.24461

2.888699

−10.0057

Unstable

13

0.13

1.870326

0.130525

0.411663

9.749836

3.042603

−5.024050

−1.20004

4.423827

−16.2552

Unstable

14

0.14

1.847462

0.143400

0.429000

9.165740

3.228103

−4.40491

−1.25862

10.18476

−39.1549

Unstable

15

0.15

1.821047

0.156395

0.446782

8.542373

3.408772

−3.79294

−1.31370

14.73263

−57.2047

Unstable

16

0.16

1.794242

0.168838

0.463086

7.962130

3.561745

−3.25559

−1.35334

17.76020

−69.2093

Unstable

17

0.17

1.767031

0.180929

0.478337

7.420572

3.688016

−2.77883

−1.38101

19.64528

−76.6740

Unstable

18

0.18

1.739394

0.192808

0.492816

6.914108

3.788885

−2.35248

−1.39898

20.66262

−80.6933

Unstable

19

0.19

1.711311

0.204579

0.506725

6.439730

3.865749

−1.96889

−1.40887

21.01786

−82.0865

Unstable

20

0.20

1.682760

0.216329

−0.520210

5.994857

3.920004

1.622202

−1.41186

20.86832

−81.4799

Unstable

21

0.21

1.653715

0.228131

−0.533400

5.577249

3.952989

1.307826

−1.40886

20.33640

−79.3607

Unstable

22

0.22

1.624152

0.240051

0.546385

5.184944

3.965967

−1.02211

−1.40056

19.51860

−76.1128

Unstable

23

0.23

1.594040

0.252152

−0.559250

4.816208

3.960111

0.762127

−1.38753

18.49188

−72.0423

Unstable

24

0.24

1.563348

0.264494

0.572065

4.469504

3.936510

−0.52550

−1.37021

17.31810

−67.3949

Unstable

25

0.25

1.532041

0.277140

−0.584900

4.143455

3.896170

0.310274

−1.34898

16.04733

−62.3696

Unstable

26

0.26

1.500082

0.290155

0.597822

3.836823

3.840022

−0.11487

−1.32413

14.72029

−57.1278

Unstable

27

0.27

1.467426

0.303607

−0.610890

3.548490

3.768930

−0.06202

−1.29593

13.37017

−51.8012

Unstable

28

0.28

1.434027

0.317575

0.624162

3.277437

3.683698

0.221467

−1.26460

12.02404

−46.4970

Unstable

29

0.29

1.399831

0.332143

0.637710

3.022729

3.585076

0.364358

−1.23030

10.70396

−41.3022

Unstable

30

0.30

1.364779

0.347409

−0.651600

2.783505

3.473774

−0.49140

−1.19320

9.427794

−36.2874

Unstable

31

0.31

1.328802

0.363486

−0.665910

2.558963

3.350464

−0.60316

−1.15343

8.209905

−31.5092

Unstable

32

0.32

1.291824

0.380507

0.680710

2.348350

3.215788

0.700094

−1.11110

7.061664

−27.0121

Unstable

Table 2. Stability table of L 5 ( x 5 , y 5 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.01

1.908937

0.018715

−0.40933

7.521447

3.934277

5.479417

−3.12044

−0.43256

11.46739

Unstable

2

0.02

1.905315

0.033261

0.406282

8.186627

3.598856

−5.54582

−2.73542

−1.29361

12.65693

Unstable

3

0.03

1.901802

0.045526

0.404156

8.665476

3.366872

−5.59023

−2.43505

−2.07515

14.23005

Unstable

4

0.04

1.898384

0.056352

−0.40276

9.023149

3.201589

5.613680

−2.19071

−2.62498

15.29915

Unstable

5

0.05

1.895050

0.066202

−0.40198

9.293269

3.084013

5.616880

−1.98758

−2.88878

15.50559

Unstable

6

0.06

1.891790

0.075363

0.40176

9.495481

3.003024

−5.60036

−1.81698

−2.84883

14.69673

Unstable

7

0.07

1.888594

0.084026

0.402056

9.642363

2.951490

−5.56466

−1.67330

−2.50616

12.82457

Unstable

8

0.08

1.885454

0.092319

−0.40282

9.742692

2.924443

5.510624

−1.55261

−1.87503

9.910718

Unstable

9

0.09

1.882361

0.100333

0.404006

9.803166

2.918111

−5.43947

−1.45185

−0.98115

6.032460

Unstable

10

0.10

1.879308

0.108129

−0.40555

9.829358

2.929383

5.352945

−1.36845

0.139929

1.312932

Stable

11

0.11

1.876288

0.115746

−0.40739

9.826224

2.955519

5.253211

−1.30009

1.445367

−4.09124

Unstable

12

0.12

1.873296

0.123207

0.409449

9.798319

2.994022

−5.14273

−1.24461

2.888699

−10.0057

Unstable

13

0.13

1.870326

0.130525

−0.41166

9.749836

3.042603

5.024047

−1.20004

4.423827

−16.2552

Unstable

14

0.14

1.847462

0.143400

−0.42900

9.165740

3.228103

4.404906

−1.25862

10.18476

−39.1549

Unstable

15

0.15

1.821047

0.156395

−0.44678

8.542373

3.408772

3.792937

−1.31370

14.73263

−57.2047

Unstable

16

0.16

1.794242

0.168838

−0.46309

7.962130

3.561745

3.255591

−1.35334

17.76020

−69.2093

Unstable

17

0.17

1.767031

0.180929

−0.47834

7.420572

3.688016

2.778831

−1.38101

19.64528

−76.6740

Unstable

18

0.18

1.739394

0.192808

−0.49282

6.914108

3.788885

2.352475

−1.39898

20.66262

−80.6933

Unstable

19

0.19

1.711311

0.204579

−0.50672

6.439730

3.865749

1.968888

−1.40887

21.01786

−82.0865

Unstable

20

0.20

1.682760

0.216329

0.520214

5.994857

3.920004

−1.62220

−1.41186

20.86832

−81.4799

Unstable

21

0.21

1.653715

0.228131

0.533401

5.577249

3.952989

−1.30783

−1.40886

20.33640

−79.3607

Unstable

22

0.22

1.624152

0.240051

−0.54639

5.184944

3.965967

1.022112

−1.40056

19.51860

−76.1128

Unstable

23

0.23

1.594040

0.252152

0.559249

4.816208

3.960111

−0.76213

−1.38753

18.49188

−72.0423

Unstable

24

0.24

1.563348

0.264494

−0.57207

4.469504

3.936510

0.525495

−1.37021

17.31810

−67.3949

Unstable

25

0.25

1.532041

0.277140

0.584902

4.143455

3.896170

−0.31027

−1.34898

16.04733

−62.3696

Unstable

26

0.26

1.500082

0.290155

−0.59782

3.836823

3.840022

0.114873

−1.32413

14.72029

−57.1278

Unstable

27

0.27

1.467426

0.303607

0.610888

3.548490

3.768930

0.062016

−1.29593

13.37017

−51.8012

Unstable

28

0.28

1.434027

0.317575

−0.62416

3.277437

3.683698

−0.22147

−1.26460

12.02404

−46.4970

Unstable

29

0.29

1.399831

0.332143

−0.63771

3.022729

3.585076

−0.36436

−1.23030

10.70396

−41.3022

Unstable

30

0.30

1.364779

0.347409

0.651600

2.783505

3.473774

0.491400

−1.19320

9.427794

−36.2874

Unstable

31

0.31

1.328802

0.363486

0.665906

2.558963

3.350464

0.603164

−1.15343

8.209905

−31.5092

Unstable

32

0.32

1.291824

0.380507

−0.68071

2.348350

3.215788

−0.70009

−1.11110

7.061664

−27.0121

Unstable

Table 3. Stability table of L 6 ( x 6 , y 6 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.01

1.908937

−0.30853

0.393918

32.94522

9.486996

32.11377

27.85605

−718.743

3650.931

Unstable

2

0.02

1.905315

−0.32414

−0.37538

22.54720

16.16054

−26.7476

24.18684

−351.060

1989.242

Unstable

3

0.03

1.901802

−0.33419

0.361271

17.44210

19.90883

23.86824

22.88353

−222.441

1413.421

Unstable

4

0.04

1.898384

−0.34178

−0.34955

14.15295

22.51164

−21.8060

22.24914

−156.895

1122.603

Unstable

5

0.05

1.895050

−0.34800

0.339360

11.75889

24.49184

20.14218

21.88586

−117.710

949.8328

Unstable

6

0.06

1.891790

−0.35335

0.330221

9.889723

26.07636

18.71288

21.65060

−92.2837

837.8833

Unstable

7

0.07

1.888594

−0.35811

0.321854

8.362198

27.38453

17.43774

21.47957

−75.0800

761.6920

Unstable

8

0.08

1.885454

−0.36245

0.314069

7.073176

28.48690

16.27159

21.34033

−63.2719

708.4974

Unstable

9

0.09

1.882361

−0.36647

−0.30673

5.959291

29.42860

−15.1865

21.21476

−55.2568

671.0935

Unstable

10

0.10

1.879308

−0.37026

−0.29975

4.979040

30.24019

−14.1641

21.09204

−50.0540

645.0898

Unstable

11

0.11

1.876288

−0.37387

0.293042

4.103867

30.94325

13.19141

20.96529

−47.0265

627.6490

Unstable

12

0.12

1.873296

0.044160

0.221381

13.12205

1.702497

−8.86067

0.787590

−56.1711

225.3049

Unstable

13

0.13

1.870326

0.060263

0.248422

13.00582

1.764334

−9.10249

0.777683

−59.9087

240.2398

Unstable

14

0.14

1.847462

0.064304

−0.24742

12.99683

1.698913

9.172979

1.043281

−62.0631

249.3407

Unstable

15

0.15

1.821047

0.066922

−0.24362

12.98263

1.624584

9.237542

1.342370

−64.2408

258.7652

Unstable

16

0.16

1.794242

0.069440

0.239884

12.95645

1.555328

−9.29301

1.634556

−66.2085

267.5059

Unstable

17

0.17

1.767031

0.071866

−0.23621

12.91935

1.490625

9.339860

1.920382

−67.9751

275.5882

Unstable

18

0.18

1.739394

0.074210

0.232592

12.87226

1.430024

−9.37849

2.200315

−69.5484

283.0350

Unstable

19

0.19

1.711311

0.076479

0.229014

12.81597

1.373133

−9.40923

2.474756

−70.9355

289.8666

Unstable

20

0.20

1.682760

0.078678

−0.22547

12.75117

1.319609

9.432363

2.744058

−72.1429

296.1015

Unstable

21

0.21

1.653715

0.080814

0.221964

12.67848

1.269148

−9.44813

3.008532

−73.1763

301.7563

Unstable

22

0.22

1.624152

0.082891

−0.21848

12.59845

1.221477

9.456718

3.268452

−74.0408

306.8460

Unstable

23

0.23

1.594040

0.084915

−0.21501

12.51156

1.176353

9.458293

3.524062

−74.7413

311.3842

Unstable

24

0.24

1.563348

0.086889

−0.21156

12.41825

1.133554

9.452978

3.775580

−75.2820

315.3831

Unstable

25

0.25

1.532041

0.088817

0.208119

12.31892

1.092881

−9.44087

4.023202

−75.6669

318.8539

Unstable

26

0.26

1.500082

0.090702

−0.20468

12.21393

1.054150

9.422043

4.267104

−75.8996

321.8065

Unstable

27

0.27

1.467426

0.092547

0.201245

12.10361

1.017191

−9.39654

4.507445

−75.9832

324.2499

Unstable

28

0.28

1.434027

0.094355

0.197805

11.98825

0.981848

−9.36437

4.744369

−75.9208

326.1922

Unstable

29

0.29

1.399831

0.096129

−0.19436

11.86814

0.947976

9.325539

4.978008

−75.7150

327.6405

Unstable

30

0.30

1.364779

0.097871

−0.19090

11.74352

0.915438

9.280013

5.208480

−75.3682

328.6009

Unstable

31

0.31

1.328802

0.099583

0.187420

11.61465

0.884106

−9.22774

5.435894

−74.8825

329.0791

Unstable

32

0.32

1.291824

0.101267

−0.18392

11.48172

0.853859

9.168631

5.660348

−74.2600

329.0797

Unstable

Table 4. Stability table of L 7 ( x 7 , y 7 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.01

1.908937

−0.30853

−0.39392

32.94522

9.486996

−32.1138

27.85605

−718.743

3650.931

Unstable

2

0.02

1.905315

−0.32414

0.375377

22.5472

16.16054

26.74761

24.18684

−351.060

1989.242

Unstable

3

0.03

1.901802

−0.33419

−0.36127

17.44210

19.90883

−23.8682

22.88353

−222.441

1413.421

Unstable

4

0.04

1.898384

−0.34178

0.349555

14.15295

22.51164

21.80598

22.24914

−156.895

1122.603

Unstable

5

0.05

1.895050

−0.34800

−0.33936

11.75889

24.49184

−20.1422

21.88586

−117.710

949.8328

Unstable

6

0.06

1.891790

−0.35335

−0.33022

9.889723

26.07636

−18.7129

21.65060

−92.2837

837.8833

Unstable

7

0.07

1.888594

−0.35811

−0.32185

8.362198

27.38453

−17.4377

21.47957

−75.0800

761.6920

Unstable

8

0.08

1.885454

−0.36245

−0.31407

7.073176

28.48690

−16.2716

21.34033

−63.2719

708.4974

Unstable

9

0.09

1.882361

−0.36647

0.306735

5.959291

29.42860

15.18652

21.21476

−55.2568

671.0935

Unstable

10

0.10

1.879308

−0.37026

0.299751

4.979040

30.24019

14.16408

21.09204

−50.0540

645.0898

Unstable

11

0.11

1.876288

−0.37387

−0.29304

4.103867

30.94325

−13.1914

20.96529

−47.0265

627.6490

Unstable

12

0.12

1.873296

0.044160

−0.22138

13.12205

1.702497

8.860666

0.787590

−56.1711

225.3049

Unstable

13

0.13

1.870326

0.060263

−0.24842

13.00582

1.764334

9.102492

0.777683

−59.9087

240.2398

Unstable

14

0.14

1.847462

0.064304

0.247420

12.99683

1.698913

−9.17298

1.043281

−62.0631

249.3407

Unstable

15

0.15

1.821047

0.066922

0.243616

12.98263

1.624584

−9.23754

1.342370

−64.2408

258.7652

Unstable

16

0.16

1.794242

0.069440

−0.23988

12.95645

1.555328

9.293011

1.634556

−66.2085

267.5059

Unstable

17

0.17

1.767031

0.071866

0.236212

12.91935

1.490625

−9.33986

1.920382

−67.9751

275.5882

Unstable

18

0.18

1.739394

0.074210

−0.23259

12.87226

1.430024

9.378488

2.200315

−69.5484

283.0350

Unstable

19

0.19

1.711311

0.076479

−0.22901

12.81597

1.373133

9.409228

2.474756

−70.9355

289.8666

Unstable

20

0.20

1.682760

0.078678

0.225474

12.75117

1.319609

−9.43236

2.744058

−72.1429

296.1015

Unstable

21

0.21

1.653715

0.080814

−0.22196

12.67848

1.269148

9.448128

3.008532

−73.1763

301.7563

Unstable

22

0.22

1.624152

0.082891

0.218478

12.59845

1.221477

−9.45672

3.268452

−74.0408

306.8460

Unstable

23

0.23

1.594040

0.084915

0.215012

12.51156

1.176353

−9.45829

3.524062

−74.7413

311.3842

Unstable

24

0.24

1.563348

0.086889

0.211561

12.41825

1.133554

−9.45298

3.775580

−75.2820

315.3831

Unstable

25

0.25

1.532041

0.088817

−0.20812

12.31892

1.092881

9.440871

4.023202

−75.6669

318.8539

Unstable

26

0.26

1.500082

0.090702

0.204682

12.21393

1.054150

−9.42204

4.267104

−75.8996

321.8065

Unstable

27

0.27

1.467426

0.092547

−0.20125

12.10361

1.017191

9.396537

4.507445

−75.9832

324.2499

Unstable

28

0.28

1.434027

0.094355

−0.19781

11.98825

0.981848

9.364371

4.744369

−75.9208

326.1922

Unstable

29

0.29

1.399831

0.096129

0.194357

11.86814

0.947976

−9.32554

4.978008

−75.7150

327.6405

Unstable

30

0.30

1.364779

0.097871

0.190897

11.74352

0.915438

−9.28001

5.208480

−75.3682

328.6009

Unstable

31

0.31

1.328802

0.099583

−0.18742

11.61465

0.884106

9.227737

5.435894

−74.8825

329.0791

Unstable

32

0.32

1.291824

0.101267

0.183923

11.48172

0.853859

−9.16863

5.660348

−74.2600

329.0797

Unstable

Table 5. Stability table of L 8 ( x 8 , y 8 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.12

1.873296

0.007779

−0.10043

14.34202

0.642134

5.018361

0.947195

−15.9745

64.79499

Unstable

2

0.13

1.870326

−0.38071

0.280212

2.592424

32.08279

11.36054

20.68274

−45.8896

611.3342

Unstable

3

0.14

1.847462

−0.38256

0.273095

1.616787

32.79207

10.33920

20.75639

−53.8812

646.3526

Unstable

4

0.15

1.821047

−0.38413

0.265947

0.698534

33.40784

9.286233

20.84154

−62.8976

685.9600

Unstable

5

0.16

1.794242

−0.38565

0.258869

−0.11916

33.89554

8.224326

20.89917

−71.6784

723.4888

Unstable

6

0.17

1.767031

−0.38715

0.251818

−0.84529

34.26381

7.153661

20.92892

−80.1378

758.5708

Unstable

7

0.18

1.739394

−0.38864

0.244750

−1.48659

34.51889

6.073773

20.93033

−88.2060

790.9029

Unstable

8

0.19

1.711311

−0.39012

−0.23762

−2.04782

34.66493

−4.98361

20.90276

−95.8238

820.2205

Unstable

9

0.20

1.682760

−0.39162

0.230390

−2.53200

34.70409

3.881531

20.84537

−102.937

846.2777

Unstable

10

0.21

1.653715

−0.39314

0.223001

−2.94045

34.63657

2.765284

20.75703

−109.494

868.8298

Unstable

11

0.22

1.624152

−0.39469

0.215401

−3.27266

34.46041

1.631855

20.63628

−115.440

887.6165

Unstable

12

0.23

1.594040

−0.39628

0.207521

−3.52602

34.17110

0.477288

20.48123

−120.716

902.3434

Unstable

13

0.24

1.563348

−0.39794

0.199280

−3.69523

33.76086

−0.70364

20.28941

−125.249

912.6570

Unstable

14

0.25

1.532041

−0.39968

0.190574

−3.77128

33.21745

−1.91792

20.05757

−128.951

918.1093

Unstable

15

0.26

1.500082

−0.40152

−0.18127

−3.73956

32.52194

3.175151

19.78140

−131.699

918.1009

Unstable

16

0.27

1.467426

−0.40349

0.171163

−3.57631

31.64468

−4.48885

19.45502

−133.321

911.7814

Unstable

17

0.28

1.434027

−0.40564

−0.15999

−3.24148

30.53736

5.878835

19.07015

−133.547

897.8579

Unstable

18

0.29

1.399831

−0.40802

0.147290

−2.66268

29.11531

−7.37537

18.61452

−131.921

874.1844

Unstable

19

0.30

1.364779

−0.41074

0.132304

−1.69354

27.21263

−9.02657

18.06860

−127.565

836.7332

Unstable

20

0.31

1.328802

−0.41397

−0.11344

0.021976

24.43853

10.90685

17.39764

−118.422

776.3676

Unstable

21

0.32

1.291824

−0.41812

0.086355

3.705489

19.49560

−13.0352

16.52585

−97.6748

663.8030

Unstable

Table 6. Stability table of L 9 ( x 9 , y 9 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.12

1.873296

0.007779

0.100428

14.34202

0.642134

−5.01836

0.947195

−15.9745

64.79499

Unstable

2

0.13

1.870326

−0.38071

−0.28021

2.592424

32.08279

−11.3605

20.68274

−45.8896

611.3342

Unstable

3

0.14

1.847462

−0.38256

−0.27309

1.616787

32.79207

−10.3392

20.75639

−53.8812

646.3526

Unstable

4

0.15

1.821047

−0.38413

−0.26595

0.698534

33.40784

−9.28623

20.84154

−62.8976

685.9600

Unstable

5

0.16

1.794242

−0.38565

−0.25887

−0.11916

33.89554

−8.22433

20.89917

−71.6784

723.4888

Unstable

6

0.17

1.767031

−0.38715

−0.25182

−0.84529

34.26381

−7.15366

20.92892

−80.1378

758.5708

Unstable

7

0.18

1.739394

−0.38864

−0.24475

−1.48659

34.51889

−6.07377

20.93033

−88.2060

790.9029

Unstable

8

0.19

1.711311

−0.39012

0.237623

−2.04782

34.66493

4.983607

20.90276

−95.8238

820.2205

Unstable

9

0.20

1.682760

−0.39162

−0.23039

−2.53200

34.70409

−3.88153

20.84537

−102.937

846.2777

Unstable

10

0.21

1.653715

−0.39314

−0.22300

−2.94045

34.63657

−2.76528

20.75703

−109.494

868.8298

Unstable

11

0.22

1.624152

−0.39469

−0.21540

−3.27266

34.46041

−1.63185

20.63628

−115.440

887.6165

Unstable

12

0.23

1.594040

−0.39628

−0.20752

−3.52602

34.17110

−0.47729

20.48123

−120.716

902.3434

Unstable

13

0.24

1.563348

−0.39794

−0.19928

−3.69523

33.76086

0.703639

20.28941

−125.249

912.6570

Unstable

14

0.25

1.532041

−0.39968

−0.19057

−3.77128

33.21745

1.917924

20.05757

−128.951

918.1093

Unstable

15

0.26

1.500082

−0.40152

0.181266

−3.73956

32.52194

−3.17515

19.78140

−131.699

918.1009

Unstable

16

0.27

1.467426

−0.40349

−0.17116

−3.57631

31.64468

4.488850

19.45502

−133.321

911.7814

Unstable

17

0.28

1.434027

−0.40564

0.159985

−3.24148

30.53736

−5.87883

19.07015

−133.547

897.8579

Unstable

18

0.29

1.399831

−0.40802

−0.14729

−2.66268

29.11531

7.375375

18.61452

−131.921

874.1844

Unstable

19

0.30

1.364779

−0.41074

−0.13230

−1.69354

27.21263

9.026568

18.06860

−127.565

836.7332

Unstable

20

0.31

1.328802

−0.41397

0.113442

0.021976

24.43853

−10.9069

17.39764

−118.422

776.3676

Unstable

21

0.32

1.291824

−0.41812

−0.08636

3.705489

19.49560

13.03516

16.52585

−97.6748

663.8030

Unstable

Table 7. Stability table of L 10 ( x 10 , y 10 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.12

1.873296

−0.37734

0.286545

3.313352

31.55353

12.25923

20.82993

−45.7407

616.8488

Unstable

2

0.14

1.847462

−0.49372

−0.59153

8.562976

5.758836

8.303592

0.669346

−19.6369

78.99551

Unstable

3

0.15

1.821047

−0.48877

−0.61316

7.447650

6.373874

8.592281

0.556683

−26.3569

105.7375

Unstable

4

0.16

1.794242

−0.48648

0.630625

6.564147

6.762434

−8.57096

0.449363

−29.0718

116.4889

Unstable

5

0.17

1.767031

−0.48539

0.646212

5.825240

7.013568

−8.41090

0.349213

−29.8875

119.6721

Unstable

6

0.18

1.739394

−0.48501

0.660737

5.191923

7.166377

−8.17508

0.256330

−29.6246

118.5642

Unstable

7

0.19

1.711311

−0.48512

0.674614

4.641029

7.243760

−7.89461

0.170442

−28.7063

114.8544

Unstable

8

0.20

1.682760

−0.48557

−0.68809

4.156924

7.260992

7.587171

0.091194

−27.3818

109.5354

Unstable

9

0.21

1.653715

−0.48631

0.701348

3.728285

7.229043

−7.26368

0.018230

−25.8090

103.2365

Unstable

10

0.22

1.624152

−0.48728

0.714505

3.346525

7.156169

−6.93122

−0.04878

−24.0936

96.37662

Unstable

11

0.23

1.594040

−0.48844

0.727669

3.004927

7.048790

−6.59461

−0.11013

−22.3078

89.24341

Unstable

12

0.24

1.563348

−0.48980

−0.74093

2.698111

6.912022

6.257176

−0.16609

−20.5028

82.03896

Unstable

13

0.25

1.532041

−0.49132

−0.75437

2.421692

6.750024

5.921275

−0.21689

−18.7150

74.90710

Unstable

14

0.26

1.500082

−0.49301

−0.76807

2.172038

6.566228

5.588611

−0.26271

−16.9705

67.95091

Unstable

15

0.27

1.467426

−0.49486

−0.78210

1.946107

6.363505

5.260424

−0.30374

−15.2880

61.24424

Unstable

16

0.28

1.434027

−0.49688

0.796563

1.741324

6.144286

−4.93763

−0.34012

−13.6810

54.83956

Unstable

17

0.29

1.399831

−0.49908

−0.81153

1.555487

5.910653

4.620900

−0.37197

−12.1588

48.77346

Unstable

18

0.30

1.364779

−0.50146

−0.82711

1.386698

5.664403

4.310752

−0.39938

−10.7278

43.07058

Unstable

19

0.31

1.328802

−0.50404

0.843406

1.233309

5.407107

−4.00757

−0.42244

−9.39197

37.74636

Unstable

20

0.32

1.291824

−0.50684

−0.86055

1.093881

5.140147

3.71165

−0.44121

−8.15363

32.80920

Unstable

Table 8. Stability table of L 11 ( x 11 , y 11 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.12

1.873296

−0.37734

−0.28655

3.313352

31.55353

−12.2592

20.82993

−45.7407

616.8488

Unstable

2

0.14

1.847462

−0.49372

0.591532

8.562976

5.758836

−8.30359

0.669346

−19.6369

78.99551

Unstable

3

0.15

1.821047

−0.48877

0.613157

7.447650

6.373874

−8.59228

0.556683

−26.3569

105.7375

Unstable

4

0.16

1.794242

−0.48648

−0.63063

6.564147

6.762434

8.570961

0.449363

−29.0718

116.4889

Unstable

5

0.17

1.767031

−0.48539

−0.64621

5.825240

7.013568

8.410901

0.349213

−29.8875

119.6721

Unstable

6

0.18

1.739394

−0.48501

−0.66074

5.191923

7.166377

8.175079

0.256330

−29.6246

118.5642

Unstable

7

0.19

1.711311

−0.48512

−0.67461

4.641029

7.243760

7.894608

0.170442

−28.7063

114.8544

Unstable

8

0.20

1.682760

−0.48557

0.688094

4.156924

7.260992

−7.58717

0.091194

−27.3818

109.5354

Unstable

9

0.21

1.653715

−0.48631

−0.70135

3.728285

7.229043

7.263676

0.018230

−25.8090

103.2365

Unstable

10

0.22

1.624152

−0.48728

−0.71451

3.346525

7.156169

6.931224

−0.04878

−24.0936

96.37662

Unstable

11

0.23

1.594040

−0.48844

−0.72767

3.004927

7.048790

6.594613

−0.11013

−22.3078

89.24341

Unstable

12

0.24

1.563348

−0.48980

0.740930

2.698111

6.912022

−6.25718

−0.16609

−20.5028

82.03896

Unstable

13

0.25

1.532041

−0.49132

0.754370

2.421692

6.750024

−5.92127

−0.21689

−18.7150

74.90710

Unstable

14

0.26

1.500082

−0.49301

0.768068

2.172038

6.566228

−5.58861

−0.26271

−16.9705

67.95091

Unstable

15

0.27

1.467426

−0.49486

0.782105

1.946107

6.363505

−5.26042

−0.30374

−15.2880

61.24424

Unstable

16

0.28

1.434027

−0.49688

−0.79656

1.741324

6.144286

4.937627

−0.34012

−13.6810

54.83956

Unstable

17

0.29

1.399831

−0.49908

0.811531

1.555487

5.910653

−4.62090

−0.37197

−12.1588

48.77346

Unstable

18

0.30

1.364779

−0.50146

0.827108

1.386698

5.664403

−4.31075

−0.39938

−10.7278

43.07058

Unstable

19

0.31

1.328802

−0.50404

−0.84341

1.233309

5.407107

4.007569

−0.42244

−9.39197

37.74636

Unstable

20

0.32

1.291824

−0.50684

0.860552

1.093881

5.140147

−3.71165

−0.44121

−8.15363

32.80920

Unstable

Table 9. Stability table of L 12 ( x 12 , y 12 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.14

1.847462

−0.54522

0.514416

10.35123

3.870755

−3.64157

0.569523

26.80606

−106.900

Unstable

2

0.15

1.821047

−0.56769

0.495212

9.862545

3.813450

−2.05915

0.411153

33.37021

−133.312

Unstable

3

0.16

1.794242

−0.58778

−0.47914

9.310829

3.839356

0.874584

0.272967

34.98269

−139.856

Unstable

4

0.17

1.767031

−0.60700

0.463839

8.764180

3.875943

0.090941

0.150529

33.96119

−135.822

Unstable

5

0.18

1.739394

−0.62590

−0.44836

8.247443

3.896096

−0.90576

0.041568

31.31243

−125.248

Unstable

6

0.19

1.711311

−0.64478

0.432119

7.773699

3.885179

1.604297

−0.05547

27.62844

−110.511

Unstable

7

0.20

1.682760

−0.66382

0.414628

7.352043

3.832910

2.205408

−0.14177

23.31589

−93.2435

Unstable

8

0.21

1.653715

−0.68316

0.395397

6.990623

3.730188

2.718614

−0.21829

18.68548

−74.6943

Unstable

9

0.22

1.624152

−0.70293

−0.37385

6.698345

3.567318

−3.14617

−0.28581

13.99671

−55.9052

Unstable

10

0.23

1.594040

−0.72323

0.349221

6.486286

3.332564

3.482815

−0.34500

9.485964

−37.8248

Unstable

11

0.24

1.563348

−0.74417

0.320443

6.369348

3.010470

3.712919

−0.39641

5.388962

−21.3987

Unstable

12

0.25

1.532041

−0.76585

0.285803

6.368697

2.579407

3.802980

−0.44050

1.964805

−7.66518

Unstable

13

0.26

1.500082

−0.78838

0.242186

6.515836

2.007490

3.681213

−0.47765

−0.47086

2.111582

Unstable

14

0.27

1.467426

−0.81185

0.182335

6.860132

1.245050

3.167237

−0.50817

−1.49019

6.218982

Unstable

15

0.28

1.434027

−0.83637

−0.07098

7.484022

0.209439

−1.41863

−0.53227

−0.44507

2.063593

Unstable

Table 10. Stability table of L 13 ( x 13 , y 13 ) for μ( 0, 3 1 ) and corresponding values of n .

No.

μ

n

x

y

Ω xx 0

Ω yy 0

Ω xy 0

A

B

D

Nature

1

0.14

1.847462

−0.54522

−0.51442

10.35123

3.870755

3.641569

0.569523

26.80606

−106.900

Unstable

2

0.15

1.821047

−0.56769

−0.49521

9.862545

3.813450

2.059154

0.411153

33.37021

−133.312

Unstable

3

0.16

1.794242

−0.58778

0.479141

9.310829

3.839356

−0.87458

0.272967

34.98269

−139.856

Unstable

4

0.17

1.767031

−0.60700

−0.46384

8.764180

3.875943

−0.09094

0.150529

33.96119

−135.822

Unstable

5

0.18

1.739394

−0.62590

0.448360

8.247443

3.896096

0.905758

0.041568

31.31243

−125.248

Unstable

6

0.19

1.711311

−0.64478

−0.43212

7.773699

3.885179

−1.60430

−0.05547

27.62844

−110.511

Unstable

7

0.20

1.682760

−0.66382

−0.41463

7.352043

3.832910

−2.20541

−0.14177

23.31589

−93.2435

Unstable

8

0.21

1.653715

−0.68316

−0.39540

6.990623

3.730188

−2.71861

−0.21829

18.68548

−74.6943

Unstable

9

0.22

1.624152

−0.70293

0.373846

6.698345

3.567318

3.146175

−0.28581

13.99671

−55.9052

Unstable

10

0.23

1.594040

−0.72323

−0.34922

6.486286

3.332564

−3.48281

−0.34500

9.485964

−37.8248

Unstable

11

0.24

1.563348

−0.74417

−0.32044

6.369348

3.010470

−3.71292

−0.39641

5.388962

−21.3987

Unstable

12

0.25

1.532041

−0.76585

−0.28580

6.368697

2.579407

−3.80298

−0.44050

1.964805

−7.66518

Unstable

13

0.26

1.500082

−0.78838

−0.24219

6.515836

2.007490

−3.68121

−0.47765

−0.47086

2.111582

Unstable

14

0.27

1.467426

−0.81185

−0.18233

6.860132

1.245050

−3.16724

−0.50817

−1.49019

6.218982

Unstable

15

0.28

1.434027

−0.83637

0.070982

7.484022

0.209439

1.418632

−0.53227

−0.44507

2.063593

Unstable

6. Conclusion

The paper concludes the study of stability of libration points in the kite configuration of first kind. In Section 1, previous works have been reviewed starting from MacMillon et al. [1] to Khatun et. al. [11]. In Section 2, the equations of motion of the satellite moving in the gravitational field of the kite have been derived. In Section 3, we discussed the locations of non-axial libration points that have been exhibited with the intersection of contour plots of Ω x =0 and Ω y =0 . In Section 4, only the value of μ=0.10 , the libration points L 4 and L 5 are found stable, but for all other values of μ all libration points are unstable. The stable case is shown in Figure 10. In Section 5, the stability criteria are discussed through stability tables.

Acknowledgements

We express our heartfelt gratitude to the “Variant Research Centre”, Bhagalpur, Bihar, India, for extending their generous support and excellent research facilities.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] MacMillan, W.D. and Bartky, W. (1932) Permanent Configurations in the Problem of Four Bodies. Transactions of the American Mathematical Society, 34, 838-875.
https://doi.org/10.1090/s0002-9947-1932-1501666-7
[2] Brumberg, V.A. (1957) Permanent Configuration in the Problem of Four-Bodies and their Stability. Translated from Soviet Astronomy, 1, 57-79.
https://adsabs.harvard.edu/full/1957SvA.....1...57B
[3] Albouy, A. (1996) The Symmetric Central Configurations of Four Equal Masses. Contemporary Mathematics, 198, 131-136.
[4] Albouy, A., Fu, Y. and Sun, S. (2008) Symmetry of Planar Four-Body Convex Central Configurations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464, 1355-1365.
https://doi.org/10.1098/rspa.2007.0320
[5] Cors, J.M. and Roberts, G.E. (2012) Four-Body Co-Circular Central Configurations. Nonlinearity, 25, 343-370.
https://doi.org/10.1088/0951-7715/25/2/343
[6] Corbera, M., Cors, J.M. and Roberts, G.E. (2017) A Four-Body Convex Central Configuration with Perpendicular Diagonals Is Necessarily a Kite. Qualitative Theory of Dynamical Systems, 17, 367-374.
https://doi.org/10.1007/s12346-017-0238-z
[7] Érdi, B. and Czirják, Z. (2016) Central Configurations of Four Bodies with an Axis of Symmetry. Celestial Mechanics and Dynamical Astronomy, 125, 33-70.
https://doi.org/10.1007/s10569-016-9672-5
[8] Deng, Y., Li, B. and Zhang, S. (2017) Four-body Central Configurations with Adjacent Equal Masses. Journal of Geometry and Physics, 114, 329-335.
https://doi.org/10.1016/j.geomphys.2016.12.009
[9] Hassan, M.R., Ullah, M.S., Hassan, M.A. and Prasad, U. (2017) Applications of Planar Newtonian Four-Body Problem to the Central Configuration. Applications and Applied Mathematics, 12, 1088-1108.
https://digitalcommons.pvamu.edu/aam/vol12/iss2/28
[10] Hassan, M.R. (2023) Existence of Cyclic Kite Configuration and Its Application to the Newtonian Four-Body Problem for Mean Motion. Journal of Propulsion Technology, 44, 4041-4056.
https://www.propulsiontechjournal.com/index.php/journal/article/view/4391
[11] Khatun, M., Hassan, M.R. and Suman, S. (2024) The Effect of Oblateness on the Mean Motion of Rotating Cyclic Kite Configuration. Tuijin Jishu/Journal of Propulsion Technology, 45, 3646-3660.
https://www.propulsiontechjournal.com/index.php/journal/article/view/4893
[12] Szebehely, V. (1967) Theory of Orbits. Academic Press.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.