Linear Stability of Non-Axial Libration Points in the Kite Configuration of First Kind ()
1. Introduction
In space science, the two-body, the three-body and the restricted three-body problems have been studied by different authors starting from Newton to date. MacMillon et al. [1] provided detailed proof of two theorems for the existence of a quadrilateral configuration in the field of four-body configurations. Brumberg [2] invented a permanent solution for a four-body configuration. For the first time, Albouy et al. [3] [4] examined the symmetric central configuration of equal masses. Cors et al. [5] and Corbera et al. [6] examined the cyclic configuration in the Newtonian four-body problem, in which they used the six mutual distances of the particles as their coordinates and demonstrated that the four-point masses constitute a kite lying on a two-dimensional plane.
They have also demonstrated that a line of symmetry must exist in any central configuration with two equal masses on opposite sides. By describing the masses of the central configuration in terms of angle coordinates, Balint et al. [7] extended the work of Cors et al. [5] in three cases (two concave cases and one convex case). They further asserted that the exact analytical solutions of the four-body configuration are represented by the obtained formulas. Deng et al. [8] demonstrated that the diagonals of a cyclic quadrilateral can’t be perpendicular unless the configuration is a kite by using mutual distances as the coordinates. Further, they verified the same theorem in the four-vortex central configuration.
Hassan [9] [10] classified the kite configuration into two categories and proved three theorems on the existence of cyclic kite configurations. In the first theorem, he uniquely expressed the masses of the four particles in terms of a mass parameter
and the total mass
of the system as
,
,
,
and their coordinates as
,
,
,
where
is the radius of the common circular orbit of the kite. Hassan [9] [10] calculated the mean motion of the rotating frame lying on the kite’s plane as a function of
.
Khatun et al. [11] extended the work of Hassan [9] [10] by taking the first body of mass
as an oblate spheroid and showed the effects of oblateness on the mean motion of the system. It is found that the mean motion increases with the increase of oblateness. Further, showed that the axial libration points move away from the origin due to an increase in the oblateness parameter
. As the analytical existence of non-axial libration points wasn’t possible so, we presently propose Python programming for finding the location of non-axial libration points with the help of points of intersection of contour plots of zero partial derivatives of the potential function of the satellite.
2. Equation of Motions
Let at any time
,
be the position of the satellite moving in the gravitational field of the four-point masses of the kite configuration, and
be the positions of the four vertices of the kite configuration at which the four bodies of respective masses
be located on the rotating frame
as shown in Figure 1.
Let
, then
and
Figure 1. Cyclic kite configuration.
As
then
(1)
In a rotating frame, the equations of motion of the satellite at
can be written as
, (2)
where is
the mean motion of the rotating frame and
is the kinetic potential given by
(3)
Let us write the System (2) as
(4)
3. Location of Libration Points
For libration points
i.e.,
and
.
The points of intersection of
and
give the locations of libration points of the kite configuration. The contour plots of these equations are given below:
The symbols
in Figure 2 are the positions of seven libration points indicated through the intersection of
and
for
,
and those are in Figure 3 for
,
. Here black dots
represent four bodies forming a kite and four pink spots
represent non-axial libration points.
The symbols
in Figure 4 are the positions of seven libration points indicated through the intersection of
and
for
,
and those are in Figure 5 for
,
. Here, black dots
represent four bodies forming a kite and four pink spots
represent nonaxial libration points.
The symbols
in Figure 6 are the positions of thirteen libration points indicated through the intersection of
and
for
,
and those are in Figure 7 for
,
. Here black dots
represent four bodies forming a kite and ten pink spots
represent non-axial libration points.
Figure 2. Positions of libration points for
.
Figure 3. Positions of libration points for
.
Figure 4. Positions of libration points for
.
Figure 5. Positions of libration points for
.
Figure 6. Positions of libration points for
.
Figure 7. Positions of libration points for
.
The symbols
in Figure 8 are the positions of eleven libration points indicated through the intersection of
and
for
,
and those are in Figure 9 for
,
. Here black dots
represent four bodies forming a kite and eight pink spots
represent non-axial libration points.
For different values of
and corresponding values of
, the coordinates
of libration points
are given in the 2nd, 3rd, 4th and 5th columns respectively of the Stability Tables 1-10.
4. Stability Criteria
The motion of a satellite is said to be stable near the libration points when given a very small displacement and small velocity, the satellite oscillates for a considerable time around the points.
Let
denote the small displacement of the infinitesimal body (artificial satellite) from the libration points
, then the variational equations of motion can be easily obtained by substituting
in Equation (4). Thus, Equation (4) becomes
(5)
Figure 8. Positions of libration points for
.
Figure 9. Positions of libration points for
.
Now applying Taylor’s theorem in the neighbourhood of
in the right-hand side of the above equations, we get
(6)
But at the libration points
So, from Equation (6), we get
For linear stability, neglecting the higher-order terms of
and
, the variational equations are reduced to
(7)
where
represent the second-order derivatives of
at the libration points
. The above system of equations can be extended as
(8)
The system of Equation (8) can be written in the form of a single matrix equation as
(9)
where
and
.
If any matrix
satisfy the equation
,(10)
then
is said to be an eigenvector of the coefficient matrix
and scalar
is its corresponding eigenvalue. If
is thought of as a transformation matrix, then the result of applying
to the particular vector
satisfying Equation (10) is to produce a vector in the same direction as
but of a different magnitude.
Now, Equation (10) can be written as
.
The set of four simultaneous linear equations in four unknowns
will have non-trivial solutions provided the determinant of the characteristic matrix
vanishes.
(11)
(12)
This equation is called a characteristic equation corresponding to the equations of a matrix
. Therefore, Equation (12) can be written as
,(13)
where
&
.
Equation (13) is biquadratic in
, so taking
, Equation (13) is reduced to a quadratic equation
(14)
Let
and
be the two roots of the characteristic Equation (14), then
But from Equation (13),
.
Let
As
, so let
and
, then
Let
For simplicity, let us write
as the four roots of the Characteristic Equation (13).
The criteria for linear stability of non-axial libration points are as follows:
Any libration point
is said to be stable if
are negative real and
Refer Szebehely [12] (15)
are satisfied together.
To satisfy the above conditions of stability, we need
and
. So, differentiating the potential function
partially twice with respect to
and
, we get
Figure 10. Positions of libration points
(Stable).
The symbols
in Figure 10 are the positions of seven libration points indicated through the intersection of
and
for
&
. Here black dots
represent four bodies forming a kite and four pink spots
represent non-axial libration points.
5. Stability Tables
The values of
are given in the 6th, 7th, 8th, 9th, 10th and 11th columns respectively in stability tables from Table 1-10. The nature of the stability of each non-axial libration point satisfying the conditions of Equation (15), is mentioned in the last column of each Stability table.
Table 1. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.01 |
1.908937 |
0.018715 |
0.409329 |
7.521447 |
3.934277 |
−5.47942 |
−3.12044 |
−0.43256 |
11.46739 |
Unstable |
2 |
0.02 |
1.905315 |
0.033261 |
−0.406280 |
8.186627 |
3.598856 |
5.545818 |
−2.73542 |
−1.29361 |
12.65693 |
Unstable |
3 |
0.03 |
1.901802 |
0.045526 |
−0.404160 |
8.665476 |
3.366872 |
5.590232 |
−2.43505 |
−2.07515 |
14.23005 |
Unstable |
4 |
0.04 |
1.898384 |
0.056352 |
0.402755 |
9.023149 |
3.201589 |
−5.61368 |
−2.19071 |
−2.62498 |
15.29915 |
Unstable |
5 |
0.05 |
1.895050 |
0.066202 |
0.401977 |
9.293269 |
3.084013 |
−5.61688 |
−1.98758 |
−2.88878 |
15.50559 |
Unstable |
6 |
0.06 |
1.891790 |
0.075363 |
−0.401760 |
9.495481 |
3.003024 |
5.600356 |
−1.81698 |
−2.84883 |
14.69673 |
Unstable |
7 |
0.07 |
1.888594 |
0.084026 |
−0.402060 |
9.642363 |
2.951490 |
5.564665 |
−1.67330 |
−2.50616 |
12.82457 |
Unstable |
8 |
0.08 |
1.885454 |
0.092319 |
0.402822 |
9.742692 |
2.924443 |
−5.51062 |
−1.55261 |
−1.87503 |
9.910718 |
Unstable |
9 |
0.09 |
1.882361 |
0.100333 |
−0.404010 |
9.803166 |
2.918111 |
5.439474 |
−1.45185 |
−0.98115 |
6.032460 |
Unstable |
10 |
0.10 |
1.879308 |
0.108129 |
0.405551 |
9.829358 |
2.929383 |
−5.35295 |
−1.36845 |
0.139929 |
1.312932 |
Stable |
11 |
0.11 |
1.876288 |
0.115746 |
0.407389 |
9.826224 |
2.955519 |
−5.25321 |
−1.30009 |
1.445367 |
−4.09124 |
Unstable |
12 |
0.12 |
1.873296 |
0.123207 |
−0.409450 |
9.798319 |
2.994022 |
5.142731 |
−1.24461 |
2.888699 |
−10.0057 |
Unstable |
13 |
0.13 |
1.870326 |
0.130525 |
0.411663 |
9.749836 |
3.042603 |
−5.024050 |
−1.20004 |
4.423827 |
−16.2552 |
Unstable |
14 |
0.14 |
1.847462 |
0.143400 |
0.429000 |
9.165740 |
3.228103 |
−4.40491 |
−1.25862 |
10.18476 |
−39.1549 |
Unstable |
15 |
0.15 |
1.821047 |
0.156395 |
0.446782 |
8.542373 |
3.408772 |
−3.79294 |
−1.31370 |
14.73263 |
−57.2047 |
Unstable |
16 |
0.16 |
1.794242 |
0.168838 |
0.463086 |
7.962130 |
3.561745 |
−3.25559 |
−1.35334 |
17.76020 |
−69.2093 |
Unstable |
17 |
0.17 |
1.767031 |
0.180929 |
0.478337 |
7.420572 |
3.688016 |
−2.77883 |
−1.38101 |
19.64528 |
−76.6740 |
Unstable |
18 |
0.18 |
1.739394 |
0.192808 |
0.492816 |
6.914108 |
3.788885 |
−2.35248 |
−1.39898 |
20.66262 |
−80.6933 |
Unstable |
19 |
0.19 |
1.711311 |
0.204579 |
0.506725 |
6.439730 |
3.865749 |
−1.96889 |
−1.40887 |
21.01786 |
−82.0865 |
Unstable |
20 |
0.20 |
1.682760 |
0.216329 |
−0.520210 |
5.994857 |
3.920004 |
1.622202 |
−1.41186 |
20.86832 |
−81.4799 |
Unstable |
21 |
0.21 |
1.653715 |
0.228131 |
−0.533400 |
5.577249 |
3.952989 |
1.307826 |
−1.40886 |
20.33640 |
−79.3607 |
Unstable |
22 |
0.22 |
1.624152 |
0.240051 |
0.546385 |
5.184944 |
3.965967 |
−1.02211 |
−1.40056 |
19.51860 |
−76.1128 |
Unstable |
23 |
0.23 |
1.594040 |
0.252152 |
−0.559250 |
4.816208 |
3.960111 |
0.762127 |
−1.38753 |
18.49188 |
−72.0423 |
Unstable |
24 |
0.24 |
1.563348 |
0.264494 |
0.572065 |
4.469504 |
3.936510 |
−0.52550 |
−1.37021 |
17.31810 |
−67.3949 |
Unstable |
25 |
0.25 |
1.532041 |
0.277140 |
−0.584900 |
4.143455 |
3.896170 |
0.310274 |
−1.34898 |
16.04733 |
−62.3696 |
Unstable |
26 |
0.26 |
1.500082 |
0.290155 |
0.597822 |
3.836823 |
3.840022 |
−0.11487 |
−1.32413 |
14.72029 |
−57.1278 |
Unstable |
27 |
0.27 |
1.467426 |
0.303607 |
−0.610890 |
3.548490 |
3.768930 |
−0.06202 |
−1.29593 |
13.37017 |
−51.8012 |
Unstable |
28 |
0.28 |
1.434027 |
0.317575 |
0.624162 |
3.277437 |
3.683698 |
0.221467 |
−1.26460 |
12.02404 |
−46.4970 |
Unstable |
29 |
0.29 |
1.399831 |
0.332143 |
0.637710 |
3.022729 |
3.585076 |
0.364358 |
−1.23030 |
10.70396 |
−41.3022 |
Unstable |
30 |
0.30 |
1.364779 |
0.347409 |
−0.651600 |
2.783505 |
3.473774 |
−0.49140 |
−1.19320 |
9.427794 |
−36.2874 |
Unstable |
31 |
0.31 |
1.328802 |
0.363486 |
−0.665910 |
2.558963 |
3.350464 |
−0.60316 |
−1.15343 |
8.209905 |
−31.5092 |
Unstable |
32 |
0.32 |
1.291824 |
0.380507 |
0.680710 |
2.348350 |
3.215788 |
0.700094 |
−1.11110 |
7.061664 |
−27.0121 |
Unstable |
Table 2. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.01 |
1.908937 |
0.018715 |
−0.40933 |
7.521447 |
3.934277 |
5.479417 |
−3.12044 |
−0.43256 |
11.46739 |
Unstable |
2 |
0.02 |
1.905315 |
0.033261 |
0.406282 |
8.186627 |
3.598856 |
−5.54582 |
−2.73542 |
−1.29361 |
12.65693 |
Unstable |
3 |
0.03 |
1.901802 |
0.045526 |
0.404156 |
8.665476 |
3.366872 |
−5.59023 |
−2.43505 |
−2.07515 |
14.23005 |
Unstable |
4 |
0.04 |
1.898384 |
0.056352 |
−0.40276 |
9.023149 |
3.201589 |
5.613680 |
−2.19071 |
−2.62498 |
15.29915 |
Unstable |
5 |
0.05 |
1.895050 |
0.066202 |
−0.40198 |
9.293269 |
3.084013 |
5.616880 |
−1.98758 |
−2.88878 |
15.50559 |
Unstable |
6 |
0.06 |
1.891790 |
0.075363 |
0.40176 |
9.495481 |
3.003024 |
−5.60036 |
−1.81698 |
−2.84883 |
14.69673 |
Unstable |
7 |
0.07 |
1.888594 |
0.084026 |
0.402056 |
9.642363 |
2.951490 |
−5.56466 |
−1.67330 |
−2.50616 |
12.82457 |
Unstable |
8 |
0.08 |
1.885454 |
0.092319 |
−0.40282 |
9.742692 |
2.924443 |
5.510624 |
−1.55261 |
−1.87503 |
9.910718 |
Unstable |
9 |
0.09 |
1.882361 |
0.100333 |
0.404006 |
9.803166 |
2.918111 |
−5.43947 |
−1.45185 |
−0.98115 |
6.032460 |
Unstable |
10 |
0.10 |
1.879308 |
0.108129 |
−0.40555 |
9.829358 |
2.929383 |
5.352945 |
−1.36845 |
0.139929 |
1.312932 |
Stable |
11 |
0.11 |
1.876288 |
0.115746 |
−0.40739 |
9.826224 |
2.955519 |
5.253211 |
−1.30009 |
1.445367 |
−4.09124 |
Unstable |
12 |
0.12 |
1.873296 |
0.123207 |
0.409449 |
9.798319 |
2.994022 |
−5.14273 |
−1.24461 |
2.888699 |
−10.0057 |
Unstable |
13 |
0.13 |
1.870326 |
0.130525 |
−0.41166 |
9.749836 |
3.042603 |
5.024047 |
−1.20004 |
4.423827 |
−16.2552 |
Unstable |
14 |
0.14 |
1.847462 |
0.143400 |
−0.42900 |
9.165740 |
3.228103 |
4.404906 |
−1.25862 |
10.18476 |
−39.1549 |
Unstable |
15 |
0.15 |
1.821047 |
0.156395 |
−0.44678 |
8.542373 |
3.408772 |
3.792937 |
−1.31370 |
14.73263 |
−57.2047 |
Unstable |
16 |
0.16 |
1.794242 |
0.168838 |
−0.46309 |
7.962130 |
3.561745 |
3.255591 |
−1.35334 |
17.76020 |
−69.2093 |
Unstable |
17 |
0.17 |
1.767031 |
0.180929 |
−0.47834 |
7.420572 |
3.688016 |
2.778831 |
−1.38101 |
19.64528 |
−76.6740 |
Unstable |
18 |
0.18 |
1.739394 |
0.192808 |
−0.49282 |
6.914108 |
3.788885 |
2.352475 |
−1.39898 |
20.66262 |
−80.6933 |
Unstable |
19 |
0.19 |
1.711311 |
0.204579 |
−0.50672 |
6.439730 |
3.865749 |
1.968888 |
−1.40887 |
21.01786 |
−82.0865 |
Unstable |
20 |
0.20 |
1.682760 |
0.216329 |
0.520214 |
5.994857 |
3.920004 |
−1.62220 |
−1.41186 |
20.86832 |
−81.4799 |
Unstable |
21 |
0.21 |
1.653715 |
0.228131 |
0.533401 |
5.577249 |
3.952989 |
−1.30783 |
−1.40886 |
20.33640 |
−79.3607 |
Unstable |
22 |
0.22 |
1.624152 |
0.240051 |
−0.54639 |
5.184944 |
3.965967 |
1.022112 |
−1.40056 |
19.51860 |
−76.1128 |
Unstable |
23 |
0.23 |
1.594040 |
0.252152 |
0.559249 |
4.816208 |
3.960111 |
−0.76213 |
−1.38753 |
18.49188 |
−72.0423 |
Unstable |
24 |
0.24 |
1.563348 |
0.264494 |
−0.57207 |
4.469504 |
3.936510 |
0.525495 |
−1.37021 |
17.31810 |
−67.3949 |
Unstable |
25 |
0.25 |
1.532041 |
0.277140 |
0.584902 |
4.143455 |
3.896170 |
−0.31027 |
−1.34898 |
16.04733 |
−62.3696 |
Unstable |
26 |
0.26 |
1.500082 |
0.290155 |
−0.59782 |
3.836823 |
3.840022 |
0.114873 |
−1.32413 |
14.72029 |
−57.1278 |
Unstable |
27 |
0.27 |
1.467426 |
0.303607 |
0.610888 |
3.548490 |
3.768930 |
0.062016 |
−1.29593 |
13.37017 |
−51.8012 |
Unstable |
28 |
0.28 |
1.434027 |
0.317575 |
−0.62416 |
3.277437 |
3.683698 |
−0.22147 |
−1.26460 |
12.02404 |
−46.4970 |
Unstable |
29 |
0.29 |
1.399831 |
0.332143 |
−0.63771 |
3.022729 |
3.585076 |
−0.36436 |
−1.23030 |
10.70396 |
−41.3022 |
Unstable |
30 |
0.30 |
1.364779 |
0.347409 |
0.651600 |
2.783505 |
3.473774 |
0.491400 |
−1.19320 |
9.427794 |
−36.2874 |
Unstable |
31 |
0.31 |
1.328802 |
0.363486 |
0.665906 |
2.558963 |
3.350464 |
0.603164 |
−1.15343 |
8.209905 |
−31.5092 |
Unstable |
32 |
0.32 |
1.291824 |
0.380507 |
−0.68071 |
2.348350 |
3.215788 |
−0.70009 |
−1.11110 |
7.061664 |
−27.0121 |
Unstable |
Table 3. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.01 |
1.908937 |
−0.30853 |
0.393918 |
32.94522 |
9.486996 |
32.11377 |
27.85605 |
−718.743 |
3650.931 |
Unstable |
2 |
0.02 |
1.905315 |
−0.32414 |
−0.37538 |
22.54720 |
16.16054 |
−26.7476 |
24.18684 |
−351.060 |
1989.242 |
Unstable |
3 |
0.03 |
1.901802 |
−0.33419 |
0.361271 |
17.44210 |
19.90883 |
23.86824 |
22.88353 |
−222.441 |
1413.421 |
Unstable |
4 |
0.04 |
1.898384 |
−0.34178 |
−0.34955 |
14.15295 |
22.51164 |
−21.8060 |
22.24914 |
−156.895 |
1122.603 |
Unstable |
5 |
0.05 |
1.895050 |
−0.34800 |
0.339360 |
11.75889 |
24.49184 |
20.14218 |
21.88586 |
−117.710 |
949.8328 |
Unstable |
6 |
0.06 |
1.891790 |
−0.35335 |
0.330221 |
9.889723 |
26.07636 |
18.71288 |
21.65060 |
−92.2837 |
837.8833 |
Unstable |
7 |
0.07 |
1.888594 |
−0.35811 |
0.321854 |
8.362198 |
27.38453 |
17.43774 |
21.47957 |
−75.0800 |
761.6920 |
Unstable |
8 |
0.08 |
1.885454 |
−0.36245 |
0.314069 |
7.073176 |
28.48690 |
16.27159 |
21.34033 |
−63.2719 |
708.4974 |
Unstable |
9 |
0.09 |
1.882361 |
−0.36647 |
−0.30673 |
5.959291 |
29.42860 |
−15.1865 |
21.21476 |
−55.2568 |
671.0935 |
Unstable |
10 |
0.10 |
1.879308 |
−0.37026 |
−0.29975 |
4.979040 |
30.24019 |
−14.1641 |
21.09204 |
−50.0540 |
645.0898 |
Unstable |
11 |
0.11 |
1.876288 |
−0.37387 |
0.293042 |
4.103867 |
30.94325 |
13.19141 |
20.96529 |
−47.0265 |
627.6490 |
Unstable |
12 |
0.12 |
1.873296 |
0.044160 |
0.221381 |
13.12205 |
1.702497 |
−8.86067 |
0.787590 |
−56.1711 |
225.3049 |
Unstable |
13 |
0.13 |
1.870326 |
0.060263 |
0.248422 |
13.00582 |
1.764334 |
−9.10249 |
0.777683 |
−59.9087 |
240.2398 |
Unstable |
14 |
0.14 |
1.847462 |
0.064304 |
−0.24742 |
12.99683 |
1.698913 |
9.172979 |
1.043281 |
−62.0631 |
249.3407 |
Unstable |
15 |
0.15 |
1.821047 |
0.066922 |
−0.24362 |
12.98263 |
1.624584 |
9.237542 |
1.342370 |
−64.2408 |
258.7652 |
Unstable |
16 |
0.16 |
1.794242 |
0.069440 |
0.239884 |
12.95645 |
1.555328 |
−9.29301 |
1.634556 |
−66.2085 |
267.5059 |
Unstable |
17 |
0.17 |
1.767031 |
0.071866 |
−0.23621 |
12.91935 |
1.490625 |
9.339860 |
1.920382 |
−67.9751 |
275.5882 |
Unstable |
18 |
0.18 |
1.739394 |
0.074210 |
0.232592 |
12.87226 |
1.430024 |
−9.37849 |
2.200315 |
−69.5484 |
283.0350 |
Unstable |
19 |
0.19 |
1.711311 |
0.076479 |
0.229014 |
12.81597 |
1.373133 |
−9.40923 |
2.474756 |
−70.9355 |
289.8666 |
Unstable |
20 |
0.20 |
1.682760 |
0.078678 |
−0.22547 |
12.75117 |
1.319609 |
9.432363 |
2.744058 |
−72.1429 |
296.1015 |
Unstable |
21 |
0.21 |
1.653715 |
0.080814 |
0.221964 |
12.67848 |
1.269148 |
−9.44813 |
3.008532 |
−73.1763 |
301.7563 |
Unstable |
22 |
0.22 |
1.624152 |
0.082891 |
−0.21848 |
12.59845 |
1.221477 |
9.456718 |
3.268452 |
−74.0408 |
306.8460 |
Unstable |
23 |
0.23 |
1.594040 |
0.084915 |
−0.21501 |
12.51156 |
1.176353 |
9.458293 |
3.524062 |
−74.7413 |
311.3842 |
Unstable |
24 |
0.24 |
1.563348 |
0.086889 |
−0.21156 |
12.41825 |
1.133554 |
9.452978 |
3.775580 |
−75.2820 |
315.3831 |
Unstable |
25 |
0.25 |
1.532041 |
0.088817 |
0.208119 |
12.31892 |
1.092881 |
−9.44087 |
4.023202 |
−75.6669 |
318.8539 |
Unstable |
26 |
0.26 |
1.500082 |
0.090702 |
−0.20468 |
12.21393 |
1.054150 |
9.422043 |
4.267104 |
−75.8996 |
321.8065 |
Unstable |
27 |
0.27 |
1.467426 |
0.092547 |
0.201245 |
12.10361 |
1.017191 |
−9.39654 |
4.507445 |
−75.9832 |
324.2499 |
Unstable |
28 |
0.28 |
1.434027 |
0.094355 |
0.197805 |
11.98825 |
0.981848 |
−9.36437 |
4.744369 |
−75.9208 |
326.1922 |
Unstable |
29 |
0.29 |
1.399831 |
0.096129 |
−0.19436 |
11.86814 |
0.947976 |
9.325539 |
4.978008 |
−75.7150 |
327.6405 |
Unstable |
30 |
0.30 |
1.364779 |
0.097871 |
−0.19090 |
11.74352 |
0.915438 |
9.280013 |
5.208480 |
−75.3682 |
328.6009 |
Unstable |
31 |
0.31 |
1.328802 |
0.099583 |
0.187420 |
11.61465 |
0.884106 |
−9.22774 |
5.435894 |
−74.8825 |
329.0791 |
Unstable |
32 |
0.32 |
1.291824 |
0.101267 |
−0.18392 |
11.48172 |
0.853859 |
9.168631 |
5.660348 |
−74.2600 |
329.0797 |
Unstable |
Table 4. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.01 |
1.908937 |
−0.30853 |
−0.39392 |
32.94522 |
9.486996 |
−32.1138 |
27.85605 |
−718.743 |
3650.931 |
Unstable |
2 |
0.02 |
1.905315 |
−0.32414 |
0.375377 |
22.5472 |
16.16054 |
26.74761 |
24.18684 |
−351.060 |
1989.242 |
Unstable |
3 |
0.03 |
1.901802 |
−0.33419 |
−0.36127 |
17.44210 |
19.90883 |
−23.8682 |
22.88353 |
−222.441 |
1413.421 |
Unstable |
4 |
0.04 |
1.898384 |
−0.34178 |
0.349555 |
14.15295 |
22.51164 |
21.80598 |
22.24914 |
−156.895 |
1122.603 |
Unstable |
5 |
0.05 |
1.895050 |
−0.34800 |
−0.33936 |
11.75889 |
24.49184 |
−20.1422 |
21.88586 |
−117.710 |
949.8328 |
Unstable |
6 |
0.06 |
1.891790 |
−0.35335 |
−0.33022 |
9.889723 |
26.07636 |
−18.7129 |
21.65060 |
−92.2837 |
837.8833 |
Unstable |
7 |
0.07 |
1.888594 |
−0.35811 |
−0.32185 |
8.362198 |
27.38453 |
−17.4377 |
21.47957 |
−75.0800 |
761.6920 |
Unstable |
8 |
0.08 |
1.885454 |
−0.36245 |
−0.31407 |
7.073176 |
28.48690 |
−16.2716 |
21.34033 |
−63.2719 |
708.4974 |
Unstable |
9 |
0.09 |
1.882361 |
−0.36647 |
0.306735 |
5.959291 |
29.42860 |
15.18652 |
21.21476 |
−55.2568 |
671.0935 |
Unstable |
10 |
0.10 |
1.879308 |
−0.37026 |
0.299751 |
4.979040 |
30.24019 |
14.16408 |
21.09204 |
−50.0540 |
645.0898 |
Unstable |
11 |
0.11 |
1.876288 |
−0.37387 |
−0.29304 |
4.103867 |
30.94325 |
−13.1914 |
20.96529 |
−47.0265 |
627.6490 |
Unstable |
12 |
0.12 |
1.873296 |
0.044160 |
−0.22138 |
13.12205 |
1.702497 |
8.860666 |
0.787590 |
−56.1711 |
225.3049 |
Unstable |
13 |
0.13 |
1.870326 |
0.060263 |
−0.24842 |
13.00582 |
1.764334 |
9.102492 |
0.777683 |
−59.9087 |
240.2398 |
Unstable |
14 |
0.14 |
1.847462 |
0.064304 |
0.247420 |
12.99683 |
1.698913 |
−9.17298 |
1.043281 |
−62.0631 |
249.3407 |
Unstable |
15 |
0.15 |
1.821047 |
0.066922 |
0.243616 |
12.98263 |
1.624584 |
−9.23754 |
1.342370 |
−64.2408 |
258.7652 |
Unstable |
16 |
0.16 |
1.794242 |
0.069440 |
−0.23988 |
12.95645 |
1.555328 |
9.293011 |
1.634556 |
−66.2085 |
267.5059 |
Unstable |
17 |
0.17 |
1.767031 |
0.071866 |
0.236212 |
12.91935 |
1.490625 |
−9.33986 |
1.920382 |
−67.9751 |
275.5882 |
Unstable |
18 |
0.18 |
1.739394 |
0.074210 |
−0.23259 |
12.87226 |
1.430024 |
9.378488 |
2.200315 |
−69.5484 |
283.0350 |
Unstable |
19 |
0.19 |
1.711311 |
0.076479 |
−0.22901 |
12.81597 |
1.373133 |
9.409228 |
2.474756 |
−70.9355 |
289.8666 |
Unstable |
20 |
0.20 |
1.682760 |
0.078678 |
0.225474 |
12.75117 |
1.319609 |
−9.43236 |
2.744058 |
−72.1429 |
296.1015 |
Unstable |
21 |
0.21 |
1.653715 |
0.080814 |
−0.22196 |
12.67848 |
1.269148 |
9.448128 |
3.008532 |
−73.1763 |
301.7563 |
Unstable |
22 |
0.22 |
1.624152 |
0.082891 |
0.218478 |
12.59845 |
1.221477 |
−9.45672 |
3.268452 |
−74.0408 |
306.8460 |
Unstable |
23 |
0.23 |
1.594040 |
0.084915 |
0.215012 |
12.51156 |
1.176353 |
−9.45829 |
3.524062 |
−74.7413 |
311.3842 |
Unstable |
24 |
0.24 |
1.563348 |
0.086889 |
0.211561 |
12.41825 |
1.133554 |
−9.45298 |
3.775580 |
−75.2820 |
315.3831 |
Unstable |
25 |
0.25 |
1.532041 |
0.088817 |
−0.20812 |
12.31892 |
1.092881 |
9.440871 |
4.023202 |
−75.6669 |
318.8539 |
Unstable |
26 |
0.26 |
1.500082 |
0.090702 |
0.204682 |
12.21393 |
1.054150 |
−9.42204 |
4.267104 |
−75.8996 |
321.8065 |
Unstable |
27 |
0.27 |
1.467426 |
0.092547 |
−0.20125 |
12.10361 |
1.017191 |
9.396537 |
4.507445 |
−75.9832 |
324.2499 |
Unstable |
28 |
0.28 |
1.434027 |
0.094355 |
−0.19781 |
11.98825 |
0.981848 |
9.364371 |
4.744369 |
−75.9208 |
326.1922 |
Unstable |
29 |
0.29 |
1.399831 |
0.096129 |
0.194357 |
11.86814 |
0.947976 |
−9.32554 |
4.978008 |
−75.7150 |
327.6405 |
Unstable |
30 |
0.30 |
1.364779 |
0.097871 |
0.190897 |
11.74352 |
0.915438 |
−9.28001 |
5.208480 |
−75.3682 |
328.6009 |
Unstable |
31 |
0.31 |
1.328802 |
0.099583 |
−0.18742 |
11.61465 |
0.884106 |
9.227737 |
5.435894 |
−74.8825 |
329.0791 |
Unstable |
32 |
0.32 |
1.291824 |
0.101267 |
0.183923 |
11.48172 |
0.853859 |
−9.16863 |
5.660348 |
−74.2600 |
329.0797 |
Unstable |
Table 5. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.12 |
1.873296 |
0.007779 |
−0.10043 |
14.34202 |
0.642134 |
5.018361 |
0.947195 |
−15.9745 |
64.79499 |
Unstable |
2 |
0.13 |
1.870326 |
−0.38071 |
0.280212 |
2.592424 |
32.08279 |
11.36054 |
20.68274 |
−45.8896 |
611.3342 |
Unstable |
3 |
0.14 |
1.847462 |
−0.38256 |
0.273095 |
1.616787 |
32.79207 |
10.33920 |
20.75639 |
−53.8812 |
646.3526 |
Unstable |
4 |
0.15 |
1.821047 |
−0.38413 |
0.265947 |
0.698534 |
33.40784 |
9.286233 |
20.84154 |
−62.8976 |
685.9600 |
Unstable |
5 |
0.16 |
1.794242 |
−0.38565 |
0.258869 |
−0.11916 |
33.89554 |
8.224326 |
20.89917 |
−71.6784 |
723.4888 |
Unstable |
6 |
0.17 |
1.767031 |
−0.38715 |
0.251818 |
−0.84529 |
34.26381 |
7.153661 |
20.92892 |
−80.1378 |
758.5708 |
Unstable |
7 |
0.18 |
1.739394 |
−0.38864 |
0.244750 |
−1.48659 |
34.51889 |
6.073773 |
20.93033 |
−88.2060 |
790.9029 |
Unstable |
8 |
0.19 |
1.711311 |
−0.39012 |
−0.23762 |
−2.04782 |
34.66493 |
−4.98361 |
20.90276 |
−95.8238 |
820.2205 |
Unstable |
9 |
0.20 |
1.682760 |
−0.39162 |
0.230390 |
−2.53200 |
34.70409 |
3.881531 |
20.84537 |
−102.937 |
846.2777 |
Unstable |
10 |
0.21 |
1.653715 |
−0.39314 |
0.223001 |
−2.94045 |
34.63657 |
2.765284 |
20.75703 |
−109.494 |
868.8298 |
Unstable |
11 |
0.22 |
1.624152 |
−0.39469 |
0.215401 |
−3.27266 |
34.46041 |
1.631855 |
20.63628 |
−115.440 |
887.6165 |
Unstable |
12 |
0.23 |
1.594040 |
−0.39628 |
0.207521 |
−3.52602 |
34.17110 |
0.477288 |
20.48123 |
−120.716 |
902.3434 |
Unstable |
13 |
0.24 |
1.563348 |
−0.39794 |
0.199280 |
−3.69523 |
33.76086 |
−0.70364 |
20.28941 |
−125.249 |
912.6570 |
Unstable |
14 |
0.25 |
1.532041 |
−0.39968 |
0.190574 |
−3.77128 |
33.21745 |
−1.91792 |
20.05757 |
−128.951 |
918.1093 |
Unstable |
15 |
0.26 |
1.500082 |
−0.40152 |
−0.18127 |
−3.73956 |
32.52194 |
3.175151 |
19.78140 |
−131.699 |
918.1009 |
Unstable |
16 |
0.27 |
1.467426 |
−0.40349 |
0.171163 |
−3.57631 |
31.64468 |
−4.48885 |
19.45502 |
−133.321 |
911.7814 |
Unstable |
17 |
0.28 |
1.434027 |
−0.40564 |
−0.15999 |
−3.24148 |
30.53736 |
5.878835 |
19.07015 |
−133.547 |
897.8579 |
Unstable |
18 |
0.29 |
1.399831 |
−0.40802 |
0.147290 |
−2.66268 |
29.11531 |
−7.37537 |
18.61452 |
−131.921 |
874.1844 |
Unstable |
19 |
0.30 |
1.364779 |
−0.41074 |
0.132304 |
−1.69354 |
27.21263 |
−9.02657 |
18.06860 |
−127.565 |
836.7332 |
Unstable |
20 |
0.31 |
1.328802 |
−0.41397 |
−0.11344 |
0.021976 |
24.43853 |
10.90685 |
17.39764 |
−118.422 |
776.3676 |
Unstable |
21 |
0.32 |
1.291824 |
−0.41812 |
0.086355 |
3.705489 |
19.49560 |
−13.0352 |
16.52585 |
−97.6748 |
663.8030 |
Unstable |
Table 6. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.12 |
1.873296 |
0.007779 |
0.100428 |
14.34202 |
0.642134 |
−5.01836 |
0.947195 |
−15.9745 |
64.79499 |
Unstable |
2 |
0.13 |
1.870326 |
−0.38071 |
−0.28021 |
2.592424 |
32.08279 |
−11.3605 |
20.68274 |
−45.8896 |
611.3342 |
Unstable |
3 |
0.14 |
1.847462 |
−0.38256 |
−0.27309 |
1.616787 |
32.79207 |
−10.3392 |
20.75639 |
−53.8812 |
646.3526 |
Unstable |
4 |
0.15 |
1.821047 |
−0.38413 |
−0.26595 |
0.698534 |
33.40784 |
−9.28623 |
20.84154 |
−62.8976 |
685.9600 |
Unstable |
5 |
0.16 |
1.794242 |
−0.38565 |
−0.25887 |
−0.11916 |
33.89554 |
−8.22433 |
20.89917 |
−71.6784 |
723.4888 |
Unstable |
6 |
0.17 |
1.767031 |
−0.38715 |
−0.25182 |
−0.84529 |
34.26381 |
−7.15366 |
20.92892 |
−80.1378 |
758.5708 |
Unstable |
7 |
0.18 |
1.739394 |
−0.38864 |
−0.24475 |
−1.48659 |
34.51889 |
−6.07377 |
20.93033 |
−88.2060 |
790.9029 |
Unstable |
8 |
0.19 |
1.711311 |
−0.39012 |
0.237623 |
−2.04782 |
34.66493 |
4.983607 |
20.90276 |
−95.8238 |
820.2205 |
Unstable |
9 |
0.20 |
1.682760 |
−0.39162 |
−0.23039 |
−2.53200 |
34.70409 |
−3.88153 |
20.84537 |
−102.937 |
846.2777 |
Unstable |
10 |
0.21 |
1.653715 |
−0.39314 |
−0.22300 |
−2.94045 |
34.63657 |
−2.76528 |
20.75703 |
−109.494 |
868.8298 |
Unstable |
11 |
0.22 |
1.624152 |
−0.39469 |
−0.21540 |
−3.27266 |
34.46041 |
−1.63185 |
20.63628 |
−115.440 |
887.6165 |
Unstable |
12 |
0.23 |
1.594040 |
−0.39628 |
−0.20752 |
−3.52602 |
34.17110 |
−0.47729 |
20.48123 |
−120.716 |
902.3434 |
Unstable |
13 |
0.24 |
1.563348 |
−0.39794 |
−0.19928 |
−3.69523 |
33.76086 |
0.703639 |
20.28941 |
−125.249 |
912.6570 |
Unstable |
14 |
0.25 |
1.532041 |
−0.39968 |
−0.19057 |
−3.77128 |
33.21745 |
1.917924 |
20.05757 |
−128.951 |
918.1093 |
Unstable |
15 |
0.26 |
1.500082 |
−0.40152 |
0.181266 |
−3.73956 |
32.52194 |
−3.17515 |
19.78140 |
−131.699 |
918.1009 |
Unstable |
16 |
0.27 |
1.467426 |
−0.40349 |
−0.17116 |
−3.57631 |
31.64468 |
4.488850 |
19.45502 |
−133.321 |
911.7814 |
Unstable |
17 |
0.28 |
1.434027 |
−0.40564 |
0.159985 |
−3.24148 |
30.53736 |
−5.87883 |
19.07015 |
−133.547 |
897.8579 |
Unstable |
18 |
0.29 |
1.399831 |
−0.40802 |
−0.14729 |
−2.66268 |
29.11531 |
7.375375 |
18.61452 |
−131.921 |
874.1844 |
Unstable |
19 |
0.30 |
1.364779 |
−0.41074 |
−0.13230 |
−1.69354 |
27.21263 |
9.026568 |
18.06860 |
−127.565 |
836.7332 |
Unstable |
20 |
0.31 |
1.328802 |
−0.41397 |
0.113442 |
0.021976 |
24.43853 |
−10.9069 |
17.39764 |
−118.422 |
776.3676 |
Unstable |
21 |
0.32 |
1.291824 |
−0.41812 |
−0.08636 |
3.705489 |
19.49560 |
13.03516 |
16.52585 |
−97.6748 |
663.8030 |
Unstable |
Table 7. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.12 |
1.873296 |
−0.37734 |
0.286545 |
3.313352 |
31.55353 |
12.25923 |
20.82993 |
−45.7407 |
616.8488 |
Unstable |
2 |
0.14 |
1.847462 |
−0.49372 |
−0.59153 |
8.562976 |
5.758836 |
8.303592 |
0.669346 |
−19.6369 |
78.99551 |
Unstable |
3 |
0.15 |
1.821047 |
−0.48877 |
−0.61316 |
7.447650 |
6.373874 |
8.592281 |
0.556683 |
−26.3569 |
105.7375 |
Unstable |
4 |
0.16 |
1.794242 |
−0.48648 |
0.630625 |
6.564147 |
6.762434 |
−8.57096 |
0.449363 |
−29.0718 |
116.4889 |
Unstable |
5 |
0.17 |
1.767031 |
−0.48539 |
0.646212 |
5.825240 |
7.013568 |
−8.41090 |
0.349213 |
−29.8875 |
119.6721 |
Unstable |
6 |
0.18 |
1.739394 |
−0.48501 |
0.660737 |
5.191923 |
7.166377 |
−8.17508 |
0.256330 |
−29.6246 |
118.5642 |
Unstable |
7 |
0.19 |
1.711311 |
−0.48512 |
0.674614 |
4.641029 |
7.243760 |
−7.89461 |
0.170442 |
−28.7063 |
114.8544 |
Unstable |
8 |
0.20 |
1.682760 |
−0.48557 |
−0.68809 |
4.156924 |
7.260992 |
7.587171 |
0.091194 |
−27.3818 |
109.5354 |
Unstable |
9 |
0.21 |
1.653715 |
−0.48631 |
0.701348 |
3.728285 |
7.229043 |
−7.26368 |
0.018230 |
−25.8090 |
103.2365 |
Unstable |
10 |
0.22 |
1.624152 |
−0.48728 |
0.714505 |
3.346525 |
7.156169 |
−6.93122 |
−0.04878 |
−24.0936 |
96.37662 |
Unstable |
11 |
0.23 |
1.594040 |
−0.48844 |
0.727669 |
3.004927 |
7.048790 |
−6.59461 |
−0.11013 |
−22.3078 |
89.24341 |
Unstable |
12 |
0.24 |
1.563348 |
−0.48980 |
−0.74093 |
2.698111 |
6.912022 |
6.257176 |
−0.16609 |
−20.5028 |
82.03896 |
Unstable |
13 |
0.25 |
1.532041 |
−0.49132 |
−0.75437 |
2.421692 |
6.750024 |
5.921275 |
−0.21689 |
−18.7150 |
74.90710 |
Unstable |
14 |
0.26 |
1.500082 |
−0.49301 |
−0.76807 |
2.172038 |
6.566228 |
5.588611 |
−0.26271 |
−16.9705 |
67.95091 |
Unstable |
15 |
0.27 |
1.467426 |
−0.49486 |
−0.78210 |
1.946107 |
6.363505 |
5.260424 |
−0.30374 |
−15.2880 |
61.24424 |
Unstable |
16 |
0.28 |
1.434027 |
−0.49688 |
0.796563 |
1.741324 |
6.144286 |
−4.93763 |
−0.34012 |
−13.6810 |
54.83956 |
Unstable |
17 |
0.29 |
1.399831 |
−0.49908 |
−0.81153 |
1.555487 |
5.910653 |
4.620900 |
−0.37197 |
−12.1588 |
48.77346 |
Unstable |
18 |
0.30 |
1.364779 |
−0.50146 |
−0.82711 |
1.386698 |
5.664403 |
4.310752 |
−0.39938 |
−10.7278 |
43.07058 |
Unstable |
19 |
0.31 |
1.328802 |
−0.50404 |
0.843406 |
1.233309 |
5.407107 |
−4.00757 |
−0.42244 |
−9.39197 |
37.74636 |
Unstable |
20 |
0.32 |
1.291824 |
−0.50684 |
−0.86055 |
1.093881 |
5.140147 |
3.71165 |
−0.44121 |
−8.15363 |
32.80920 |
Unstable |
Table 8. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.12 |
1.873296 |
−0.37734 |
−0.28655 |
3.313352 |
31.55353 |
−12.2592 |
20.82993 |
−45.7407 |
616.8488 |
Unstable |
2 |
0.14 |
1.847462 |
−0.49372 |
0.591532 |
8.562976 |
5.758836 |
−8.30359 |
0.669346 |
−19.6369 |
78.99551 |
Unstable |
3 |
0.15 |
1.821047 |
−0.48877 |
0.613157 |
7.447650 |
6.373874 |
−8.59228 |
0.556683 |
−26.3569 |
105.7375 |
Unstable |
4 |
0.16 |
1.794242 |
−0.48648 |
−0.63063 |
6.564147 |
6.762434 |
8.570961 |
0.449363 |
−29.0718 |
116.4889 |
Unstable |
5 |
0.17 |
1.767031 |
−0.48539 |
−0.64621 |
5.825240 |
7.013568 |
8.410901 |
0.349213 |
−29.8875 |
119.6721 |
Unstable |
6 |
0.18 |
1.739394 |
−0.48501 |
−0.66074 |
5.191923 |
7.166377 |
8.175079 |
0.256330 |
−29.6246 |
118.5642 |
Unstable |
7 |
0.19 |
1.711311 |
−0.48512 |
−0.67461 |
4.641029 |
7.243760 |
7.894608 |
0.170442 |
−28.7063 |
114.8544 |
Unstable |
8 |
0.20 |
1.682760 |
−0.48557 |
0.688094 |
4.156924 |
7.260992 |
−7.58717 |
0.091194 |
−27.3818 |
109.5354 |
Unstable |
9 |
0.21 |
1.653715 |
−0.48631 |
−0.70135 |
3.728285 |
7.229043 |
7.263676 |
0.018230 |
−25.8090 |
103.2365 |
Unstable |
10 |
0.22 |
1.624152 |
−0.48728 |
−0.71451 |
3.346525 |
7.156169 |
6.931224 |
−0.04878 |
−24.0936 |
96.37662 |
Unstable |
11 |
0.23 |
1.594040 |
−0.48844 |
−0.72767 |
3.004927 |
7.048790 |
6.594613 |
−0.11013 |
−22.3078 |
89.24341 |
Unstable |
12 |
0.24 |
1.563348 |
−0.48980 |
0.740930 |
2.698111 |
6.912022 |
−6.25718 |
−0.16609 |
−20.5028 |
82.03896 |
Unstable |
13 |
0.25 |
1.532041 |
−0.49132 |
0.754370 |
2.421692 |
6.750024 |
−5.92127 |
−0.21689 |
−18.7150 |
74.90710 |
Unstable |
14 |
0.26 |
1.500082 |
−0.49301 |
0.768068 |
2.172038 |
6.566228 |
−5.58861 |
−0.26271 |
−16.9705 |
67.95091 |
Unstable |
15 |
0.27 |
1.467426 |
−0.49486 |
0.782105 |
1.946107 |
6.363505 |
−5.26042 |
−0.30374 |
−15.2880 |
61.24424 |
Unstable |
16 |
0.28 |
1.434027 |
−0.49688 |
−0.79656 |
1.741324 |
6.144286 |
4.937627 |
−0.34012 |
−13.6810 |
54.83956 |
Unstable |
17 |
0.29 |
1.399831 |
−0.49908 |
0.811531 |
1.555487 |
5.910653 |
−4.62090 |
−0.37197 |
−12.1588 |
48.77346 |
Unstable |
18 |
0.30 |
1.364779 |
−0.50146 |
0.827108 |
1.386698 |
5.664403 |
−4.31075 |
−0.39938 |
−10.7278 |
43.07058 |
Unstable |
19 |
0.31 |
1.328802 |
−0.50404 |
−0.84341 |
1.233309 |
5.407107 |
4.007569 |
−0.42244 |
−9.39197 |
37.74636 |
Unstable |
20 |
0.32 |
1.291824 |
−0.50684 |
0.860552 |
1.093881 |
5.140147 |
−3.71165 |
−0.44121 |
−8.15363 |
32.80920 |
Unstable |
Table 9. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.14 |
1.847462 |
−0.54522 |
0.514416 |
10.35123 |
3.870755 |
−3.64157 |
0.569523 |
26.80606 |
−106.900 |
Unstable |
2 |
0.15 |
1.821047 |
−0.56769 |
0.495212 |
9.862545 |
3.813450 |
−2.05915 |
0.411153 |
33.37021 |
−133.312 |
Unstable |
3 |
0.16 |
1.794242 |
−0.58778 |
−0.47914 |
9.310829 |
3.839356 |
0.874584 |
0.272967 |
34.98269 |
−139.856 |
Unstable |
4 |
0.17 |
1.767031 |
−0.60700 |
0.463839 |
8.764180 |
3.875943 |
0.090941 |
0.150529 |
33.96119 |
−135.822 |
Unstable |
5 |
0.18 |
1.739394 |
−0.62590 |
−0.44836 |
8.247443 |
3.896096 |
−0.90576 |
0.041568 |
31.31243 |
−125.248 |
Unstable |
6 |
0.19 |
1.711311 |
−0.64478 |
0.432119 |
7.773699 |
3.885179 |
1.604297 |
−0.05547 |
27.62844 |
−110.511 |
Unstable |
7 |
0.20 |
1.682760 |
−0.66382 |
0.414628 |
7.352043 |
3.832910 |
2.205408 |
−0.14177 |
23.31589 |
−93.2435 |
Unstable |
8 |
0.21 |
1.653715 |
−0.68316 |
0.395397 |
6.990623 |
3.730188 |
2.718614 |
−0.21829 |
18.68548 |
−74.6943 |
Unstable |
9 |
0.22 |
1.624152 |
−0.70293 |
−0.37385 |
6.698345 |
3.567318 |
−3.14617 |
−0.28581 |
13.99671 |
−55.9052 |
Unstable |
10 |
0.23 |
1.594040 |
−0.72323 |
0.349221 |
6.486286 |
3.332564 |
3.482815 |
−0.34500 |
9.485964 |
−37.8248 |
Unstable |
11 |
0.24 |
1.563348 |
−0.74417 |
0.320443 |
6.369348 |
3.010470 |
3.712919 |
−0.39641 |
5.388962 |
−21.3987 |
Unstable |
12 |
0.25 |
1.532041 |
−0.76585 |
0.285803 |
6.368697 |
2.579407 |
3.802980 |
−0.44050 |
1.964805 |
−7.66518 |
Unstable |
13 |
0.26 |
1.500082 |
−0.78838 |
0.242186 |
6.515836 |
2.007490 |
3.681213 |
−0.47765 |
−0.47086 |
2.111582 |
Unstable |
14 |
0.27 |
1.467426 |
−0.81185 |
0.182335 |
6.860132 |
1.245050 |
3.167237 |
−0.50817 |
−1.49019 |
6.218982 |
Unstable |
15 |
0.28 |
1.434027 |
−0.83637 |
−0.07098 |
7.484022 |
0.209439 |
−1.41863 |
−0.53227 |
−0.44507 |
2.063593 |
Unstable |
Table 10. Stability table of
for
and corresponding values of
.
No. |
|
|
|
|
|
|
|
|
|
|
Nature |
1 |
0.14 |
1.847462 |
−0.54522 |
−0.51442 |
10.35123 |
3.870755 |
3.641569 |
0.569523 |
26.80606 |
−106.900 |
Unstable |
2 |
0.15 |
1.821047 |
−0.56769 |
−0.49521 |
9.862545 |
3.813450 |
2.059154 |
0.411153 |
33.37021 |
−133.312 |
Unstable |
3 |
0.16 |
1.794242 |
−0.58778 |
0.479141 |
9.310829 |
3.839356 |
−0.87458 |
0.272967 |
34.98269 |
−139.856 |
Unstable |
4 |
0.17 |
1.767031 |
−0.60700 |
−0.46384 |
8.764180 |
3.875943 |
−0.09094 |
0.150529 |
33.96119 |
−135.822 |
Unstable |
5 |
0.18 |
1.739394 |
−0.62590 |
0.448360 |
8.247443 |
3.896096 |
0.905758 |
0.041568 |
31.31243 |
−125.248 |
Unstable |
6 |
0.19 |
1.711311 |
−0.64478 |
−0.43212 |
7.773699 |
3.885179 |
−1.60430 |
−0.05547 |
27.62844 |
−110.511 |
Unstable |
7 |
0.20 |
1.682760 |
−0.66382 |
−0.41463 |
7.352043 |
3.832910 |
−2.20541 |
−0.14177 |
23.31589 |
−93.2435 |
Unstable |
8 |
0.21 |
1.653715 |
−0.68316 |
−0.39540 |
6.990623 |
3.730188 |
−2.71861 |
−0.21829 |
18.68548 |
−74.6943 |
Unstable |
9 |
0.22 |
1.624152 |
−0.70293 |
0.373846 |
6.698345 |
3.567318 |
3.146175 |
−0.28581 |
13.99671 |
−55.9052 |
Unstable |
10 |
0.23 |
1.594040 |
−0.72323 |
−0.34922 |
6.486286 |
3.332564 |
−3.48281 |
−0.34500 |
9.485964 |
−37.8248 |
Unstable |
11 |
0.24 |
1.563348 |
−0.74417 |
−0.32044 |
6.369348 |
3.010470 |
−3.71292 |
−0.39641 |
5.388962 |
−21.3987 |
Unstable |
12 |
0.25 |
1.532041 |
−0.76585 |
−0.28580 |
6.368697 |
2.579407 |
−3.80298 |
−0.44050 |
1.964805 |
−7.66518 |
Unstable |
13 |
0.26 |
1.500082 |
−0.78838 |
−0.24219 |
6.515836 |
2.007490 |
−3.68121 |
−0.47765 |
−0.47086 |
2.111582 |
Unstable |
14 |
0.27 |
1.467426 |
−0.81185 |
−0.18233 |
6.860132 |
1.245050 |
−3.16724 |
−0.50817 |
−1.49019 |
6.218982 |
Unstable |
15 |
0.28 |
1.434027 |
−0.83637 |
0.070982 |
7.484022 |
0.209439 |
1.418632 |
−0.53227 |
−0.44507 |
2.063593 |
Unstable |
6. Conclusion
The paper concludes the study of stability of libration points in the kite configuration of first kind. In Section 1, previous works have been reviewed starting from MacMillon et al. [1] to Khatun et. al. [11]. In Section 2, the equations of motion of the satellite moving in the gravitational field of the kite have been derived. In Section 3, we discussed the locations of non-axial libration points that have been exhibited with the intersection of contour plots of
and
. In Section 4, only the value of
, the libration points
and
are found stable, but for all other values of
all libration points are unstable. The stable case is shown in Figure 10. In Section 5, the stability criteria are discussed through stability tables.
Acknowledgements
We express our heartfelt gratitude to the “Variant Research Centre”, Bhagalpur, Bihar, India, for extending their generous support and excellent research facilities.