[1]
|
Xie, J., Zhang, P., Crite, M., Lindsay, C.V. and DiMaio, D. (2021) Retromer Stabilizes Transient Membrane Insertion of L2 Capsid Protein during Retrograde Entry of Human Papillomavirus. Science Advances, 7, eabh4276. https://doi.org/10.1126/sciadv.abh4276
|
[2]
|
Baedyananda, F., Sasivimolrattana, T., Chaiwongkot, A., Varadarajan, S. and Bhattarakosol, P. (2022) Role of HPV16 E1 in Cervical Carcinogenesis. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 955847. https://doi.org/10.3389/fcimb.2022.955847
|
[3]
|
Olczak, P. and Roden, R.B.S. (2020) Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines, 8, Article No. 568. https://doi.org/10.3390/vaccines8040568
|
[4]
|
Chen, J., Wang, D., Wang, Z., Wu, K., Wei, S., Chi, X., et al. (2023) Critical Residues Involved in the Coassembly of L1 and L2 Capsid Proteins of Human Papillomavirus 16. Journal of Virology, 97, e0181922. https://doi.org/10.1128/jvi.01819-22
|
[5]
|
Chen, B., Zhao, L., Yang, R. and Xu, T. (2023) Advances in Molecular Mechanism of HPV16 E5 Oncoprotein Carcinogenesis. Archives of Biochemistry and Biophysics, 745, Article ID: 109716. https://doi.org/10.1016/j.abb.2023.109716
|
[6]
|
Evande, R., Rana, A., Biswas-Fiss, E.E. and Biswas, S.B. (2023) Protein-DNA Interactions Regulate Human Papillomavirus DNA Replication, Transcription, and Oncogenesis. International Journal of Molecular Sciences, 24, Article No. 8493. https://doi.org/10.3390/ijms24108493
|
[7]
|
Wei, T., Grace, M., Uberoi, A., Romero-Masters, J.C., Lee, D., Lambert, P.F., et al. (2021) The Mus Musculus Papillomavirus Type 1 E7 Protein Binds to the Retinoblastoma Tumor Suppressor: Implications for Viral Pathogenesis. mBio, 12, e0227721. https://doi.org/10.1128/mbio.02277-21
|
[8]
|
Sharma, S. and Munger, K. (2020) The Role of Long Noncoding RNAs in Human Papillomavirus-Associated Pathogenesis. Pathogens, 9, Article No. 289. https://doi.org/10.3390/pathogens9040289
|
[9]
|
Lim, J., Lilie, H., Kalbacher, H., Roos, N., Frecot, D.I., Feige, M., et al. (2023) Evidence for Direct Interaction between the Oncogenic Proteins E6 and E7 of High-Risk Human Papillomavirus (HPV). Journal of Biological Chemistry, 299, Article ID: 104954. https://doi.org/10.1016/j.jbc.2023.104954
|
[10]
|
Dust, K., Carpenter, M., Chen, J.C., Grant, C., McCorrister, S., Westmacott, G.R., et al. (2022) Human Papillomavirus 16 E6 and E7 Oncoproteins Alter the Abundance of Proteins Associated with DNA Damage Response, Immune Signaling and Epidermal Differentiation. Viruses, 14, Article No. 1764. https://doi.org/10.3390/v14081764
|
[11]
|
Chiantore, M.V., Iuliano, M., Mongiovì, R.M., Dutta, S., Tommasino, M., Di Bonito, P., et al. (2022) The E6 and E7 Proteins of Beta3 Human Papillomavirus 49 Can Deregulate Both Cellular and Extracellular Vesicles-Carried microRNAs. Infectious Agents and Cancer, 17, Article No. 29. https://doi.org/10.1186/s13027-022-00445-z
|
[12]
|
Zheng, Y., Li, X., Jiao, Y. and Wu, C. (2022) High-Risk Human Papillomavirus Oncogenic E6/E7 mRNAs Splicing Regulation. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 929666. https://doi.org/10.3389/fcimb.2022.929666
|
[13]
|
James, C.D., Fontan, C.T., Otoa, R., Das, D., Prabhakar, A.T., Wang, X., et al. (2020) Human Papillomavirus 16 E6 and E7 Synergistically Repress Innate Immune Gene Transcription. mSphere, 5, e00828-19. https://doi.org/10.1128/msphere.00828-19
|
[14]
|
Howie, H.L., Katzenellenbogen, R.A. and Galloway, D.A. (2009) Papillomavirus E6 Proteins. Virology, 384, 324-334. https://doi.org/10.1016/j.virol.2008.11.017
|
[15]
|
Conrady, M.C., Suarez, I., Gogl, G., Frecot, D.I., Bonhoure, A., Kostmann, C., et al. (2020) Structure of High-Risk Papillomavirus 31 E6 Oncogenic Protein and Characterization of E6/E6AP/p53 Complex Formation. Journal of Virology, 95, e00730-20. https://doi.org/10.1128/jvi.00730-20
|
[16]
|
Bruyere, D., Roncarati, P., Lebeau, A., Lerho, T., Poulain, F., Hendrick, E., et al. (2023) Human Papillomavirus E6/E7 Oncoproteins Promote Radiotherapy-Mediated Tumor Suppression by Globally Hijacking Host DNA Damage Repair. Theranostics, 13, 1130-1149. https://doi.org/10.7150/thno.78091
|
[17]
|
Brimer, N. and Vande Pol, S. (2022) Human Papillomavirus Type 16 E6 Induces Cell Competition. PLOS Pathogens, 18, e1010431. https://doi.org/10.1371/journal.ppat.1010431
|
[18]
|
Peng, Q., Wang, L., Zuo, L., Gao, S., Jiang, X., Han, Y., et al. (2023) HPV E6/E7: Insights into Their Regulatory Role and Mechanism in Signaling Pathways in HPV-Associated Tumor. Cancer Gene Therapy, 31, 9-17. https://doi.org/10.1038/s41417-023-00682-3
|
[19]
|
McLaughlin-Drubin, M.E. and Münger, K. (2009) The Human Papillomavirus E7 Oncoprotein. Virology, 384, 335-344. https://doi.org/10.1016/j.virol.2008.10.006
|
[20]
|
Roman, A. and Munger, K. (2013) The Papillomavirus E7 Proteins. Virology, 445, 138-168. https://doi.org/10.1016/j.virol.2013.04.013
|
[21]
|
Wallace, N.A. and Galloway, D.A. (2014) Manipulation of Cellular DNA Damage Repair Machinery Facilitates Propagation of Human Papillomaviruses. Seminars in Cancer Biology, 26, 30-42. https://doi.org/10.1016/j.semcancer.2013.12.003
|
[22]
|
Dreer, M., van de Poel, S. and Stubenrauch, F. (2017) Control of Viral Replication and Transcription by the Papillomavirus E8^E2 Protein. Virus Research, 231, 96-102. https://doi.org/10.1016/j.virusres.2016.11.005
|
[23]
|
Archambault, J. and Melendy, T. (2013) Targeting Human Papillomavirus Genome Replication for Antiviral Drug Discovery. Antiviral Therapy, 18, 271-283. https://doi.org/10.3851/imp2612
|
[24]
|
Bergvall, M., Melendy, T. and Archambault, J. (2013) The E1 Proteins. Virology, 445, 35-56. https://doi.org/10.1016/j.virol.2013.07.020
|
[25]
|
McBride, A.A. (2013) The Papillomavirus E2 Proteins. Virology, 445, 57-79. https://doi.org/10.1016/j.virol.2013.06.006
|
[26]
|
Jamal, D.F., Rozaimee, Q.A., Osman, N.H., Mohd Sukor, A., Elias, M.H., Shamaan, N.A., et al. (2022) Human Papillomavirus 16 E2 as an Apoptosis-Inducing Protein for Cancer Treatment: A Systematic Review. International Journal of Molecular Sciences, 23, Article No. 12554. https://doi.org/10.3390/ijms232012554
|
[27]
|
Das, D., Bristol, M.L., Pichierri, P. and Morgan, I.M. (2020) Using a Human Papillomavirus Model to Study DNA Replication and Repair of Wild Type and Damaged DNA Templates in Mammalian Cells. International Journal of Molecular Sciences, 21, Article No. 7564. https://doi.org/10.3390/ijms21207564
|
[28]
|
Jose, L., Gilson, T., Androphy, E. and DeSmet, M. (2021) Regulation of the Human Papillomavirus Lifecyle through Post-Translational Modifications of the Viral E2 Protein. Pathogens, 10, Article No. 793. https://doi.org/10.3390/pathogens10070793
|
[29]
|
Prabhakar, A.T., James, C.D., Das, D., Otoa, R., Day, M., Burgner, J., et al. (2021) CK2 Phosphorylation of Human Papillomavirus 16 E2 on Serine 23 Promotes Interaction with TopBP1 and Is Critical for E2 Interaction with Mitotic Chromatin and the Viral Life Cycle. mBio, 12, e0116321. https://doi.org/10.1128/mbio.01163-21
|
[30]
|
Rattay, S., Hufbauer, M., Hagen, C., Putschli, B., Coch, C., Akgül, B., et al. (2022) Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-Like Receptor MDA5. Viruses, 14, Article No. 1361. https://doi.org/10.3390/v14071361
|
[31]
|
Bhattacharjee, R., Das, S.S., Biswal, S.S., Nath, A., Das, D., Basu, A., et al. (2022) Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Critical Reviews in Oncology/Hematology, 174, Article ID: 103675. https://doi.org/10.1016/j.critrevonc.2022.103675
|
[32]
|
DiMaio, D. and Petti, L.M. (2013) The E5 Proteins. Virology, 445, 99-114. https://doi.org/10.1016/j.virol.2013.05.006
|
[33]
|
Torres, A.D., Spurgeon, M.E., Bilger, A., Blaine-Sauer, S., Uberoi, A., Buehler, D., et al. (2020) The Human Papillomavirus 16 E5 Gene Potentiates Mmupv1-Dependent Pathogenesis. Virology, 541, 1-12. https://doi.org/10.1016/j.virol.2019.12.002
|
[34]
|
Hemmat, N., Amin Doustvandi, M., Asadzadeh, Z., Mokhtarzadeh, A., Baradaran, B. and Bannazadeh Baghi, H. (2021) Suppression of Human Papillomavirus Type 16 E5 Oncoprotein: A Promising Step in Fostering the Treatment of Cervical Cancer. Oncology Research, 29, 141-148. https://doi.org/10.32604/or.2022.023346
|
[35]
|
Ilahi, N.E. and Bhatti, A. (2020) Impact of HPV E5 on Viral Life Cycle via EGFR Signaling. Microbial Pathogenesis, 139, Article ID: 103923. https://doi.org/10.1016/j.micpath.2019.103923
|
[36]
|
Trammel, J., Amusan, O., Hultgren, A., Raikhy, G. and Bodily, J.M. (2024) Epidermal Growth Factor Receptor-Dependent Stimulation of Differentiation by Human Papillomavirus Type 16 E5. Virology, 590, Article ID: 109952. https://doi.org/10.1016/j.virol.2023.109952
|
[37]
|
Ganguly, N. (2012) Human Papillomavirus-16 E5 Protein: Oncogenic Role and Therapeutic Value. Cellular Oncology, 35, 67-76. https://doi.org/10.1007/s13402-011-0069-x
|
[38]
|
Miyauchi, S., Kim, S.S., Jones, R.N., Zhang, L., Guram, K., Sharma, S., et al. (2023) Human Papillomavirus E5 Suppresses Immunity via Inhibition of the Immunoproteasome and STING Pathway. Cell Reports, 42, Article ID: 112508. https://doi.org/10.1016/j.celrep.2023.112508
|
[39]
|
Scott, M.L., Woodby, B.L., Ulicny, J., Raikhy, G., Orr, A.W., Songock, W.K., et al. (2020) Human Papillomavirus 16 E5 Inhibits Interferon Signaling and Supports Episomal Viral Maintenance. Journal of Virology, 94, e01582-19. https://doi.org/10.1128/jvi.01582-19
|
[40]
|
Ren, S., Gaykalova, D.A., Guo, T., Favorov, A.V., Fertig, E.J., Tamayo, P., et al. (2020) HPV E2, E4, E5 Drive Alternative Carcinogenic Pathways in HPV Positive Cancers. Oncogene, 39, 6327-6339. https://doi.org/10.1038/s41388-020-01431-8
|
[41]
|
Yajid, A.I., Zakariah, M.A., Mat Zin, A.A. and Othman, N.H. (2017) Potential Role of E4 Protein in Human Papillomavirus Screening: a Review. Asian Pacific Journal of Cancer Prevention, 18, 315-319.
|
[42]
|
Bryant, D., Onions, T., Raybould, R., Flynn, Á., Tristram, A., Meyrick, S., et al. (2014) mRNA Sequencing of Novel Cell Lines from Human Papillomavirus Type-16 Related Vulval Intraepithelial Neoplasia: Consequences of Expression of HPV16 E4 and E5. Journal of Medical Virology, 86, 1534-1541. https://doi.org/10.1002/jmv.23994
|
[43]
|
Prescott, E.L., Brimacombe, C.L., Hartley, M., Bell, I., Graham, S. and Roberts, S. (2014) Human Papillomavirus Type 1 E1^E4 Protein Is a Potent Inhibitor of the Serine-Arginine (SR) Protein Kinase SRPK1 and Inhibits Phosphorylation of Host SR Proteins and of the Viral Transcription and Replication Regulator E2. Journal of Virology, 88, 12599-12611. https://doi.org/10.1128/jvi.02029-14
|
[44]
|
Peh, W.L., Brandsma, J.L., Christensen, N.D., Cladel, N.M., Wu, X. and Doorbar, J. (2004) The Viral E4 Protein Is Required for the Completion of the Cottontail Rabbit Papillomavirus Productive Cycle in Vivo. Journal of Virology, 78, 2142-2151. https://doi.org/10.1128/jvi.78.4.2142-2151.2004
|
[45]
|
Buck, C.B., Day, P.M. and Trus, B.L. (2013) The Papillomavirus Major Capsid Protein L1. Virology, 445, 169-174. https://doi.org/10.1016/j.virol.2013.05.038
|
[46]
|
Mahmoudvand, S., Shokri, S., Makvandi, M., Taherkhani, R., Rashno, M., Jalilian, F.A., et al. (2021) In Silico Prediction of T-Cell and B-Cell Epitopes of Human Papillomavirus Type 16 L1 Protein. Biotechnology and Applied Biochemistry, 69, 514-525. https://doi.org/10.1002/bab.2128
|
[47]
|
Wang, J.W. and Roden, R.B.S. (2013) L2, the Minor Capsid Protein of Papillomavirus. Virology, 445, 175-186. https://doi.org/10.1016/j.virol.2013.04.017
|
[48]
|
Campos, S. (2017) Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2. Viruses, 9, Article No. 370. https://doi.org/10.3390/v9120370
|
[49]
|
Van Doorslaer, K., Li, Z., Xirasagar, S., Maes, P., Kaminsky, D., Liou, D., et al. (2016) The Papillomavirus Episteme: A Major Update to the Papillomavirus Sequence Database. Nucleic Acids Research, 45, D499-D506. https://doi.org/10.1093/nar/gkw879
|
[50]
|
Pruitt, K., Brown, G., Tatusova, T., et al. (2002) Chapter 18. The Reference Sequence (RefSeq) Database. In: McEntyre, J. and Ostell, J., Eds., The NCBI Handbook, National Center for Biotechnology Information, Chapter 18. https://www.ncbi.nlm.nih.gov/books/NBK21091/
|
[51]
|
Tamura, K., Stecher, G. and Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38, 3022-3027. https://doi.org/10.1093/molbev/msab120
|
[52]
|
Bernard, H., Burk, R.D., Chen, Z., van Doorslaer, K., Hausen, H.Z. and de Villiers, E. (2010) Classification of Papillomaviruses (PVs) Based on 189 PV Types and Proposal of Taxonomic Amendments. Virology, 401, 70-79. https://doi.org/10.1016/j.virol.2010.02.002
|
[53]
|
Ko, J., Park, H., Heo, L. and Seok, C. (2012) GalaxyWEB Server for Protein Structure Prediction and Refinement. Nucleic Acids Research, 40, W294-W297. https://doi.org/10.1093/nar/gks493
|
[54]
|
Murahwa, A.T., Tshabalala, M. and Williamson, A. (2020) Recombination between High-Risk Human Papillomaviruses and Non-Human Primate Papillomaviruses: Evidence of Ancient Host Switching among Alphapapillomaviruses. Journal of Molecular Evolution, 88, 453-462. https://doi.org/10.1007/s00239-020-09946-0
|
[55]
|
Egawa, N., Egawa, K., Griffin, H. and Doorbar, J. (2015) Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses, 7, 3863-3890. https://doi.org/10.3390/v7072802
|
[56]
|
Hirsch-Behnam, A., Delius, H. and de Villiers, E. (1990) A Comparative Sequence Analysis of Two Human Papillomavirus (HPV) Types 2a and 57. Virus Research, 18, 81-97. https://doi.org/10.1016/0168-1702(90)90091-o
|
[57]
|
Egawa, K., Delius, H., Matsukura, T., Kawashima, M. and de Villiers, E. (1993) Two Novel Types of Human Papillomavirus, HPV 63 and HPV 65: Comparisons of Their Clinical and Histological Features and DNA Sequences to Other HPV Types. Virology, 194, 789-799. https://doi.org/10.1006/viro.1993.1320
|
[58]
|
Delius, H. and Hofmann, B. (1994) Primer-Directed Sequencing of Human Papillomavirus Types. In: Hausen, H., Ed., Human Pathogenic Papillomaviruses, Springer, 13-31. https://doi.org/10.1007/978-3-642-78487-3_2
|
[59]
|
Hirt, L., Hirsch-Behnam, A. and de Villiers, E. (1991) Nucleotide Sequence of Human Papillomavirus (HPV) Type 41: An Unusual HPV Type without a Typical E2 Binding Site Consensus Sequence. Virus Research, 18, 179-189. https://doi.org/10.1016/0168-1702(91)90017-p
|
[60]
|
Müller, M., Kelly, G., Fiedler, M. and Gissmann, L. (1989) Human Papillomavirus Type 48. Journal of Virology, 63, 4907-4908. https://doi.org/10.1128/jvi.63.11.4907-4908.1989
|
[61]
|
Favre, M., Obalek, S., Jablonska, S. and Orth, G. (1989) Human Papillomavirus (HPV) Type 50, a Type Associated with Epidermodysplasia Verruciformis (EV) and Only Weakly Related to Other EV-Specific HPVs. Journal of Virology, 63, Article No. 4910. https://doi.org/10.1128/jvi.63.11.4910-.1989
|
[62]
|
Matsukura, T., Iwasaki, T. and Kawashima, M. (1992) Molecular Cloning of a Novel Human Papillomavirus (Type 60) from a Plantar Cyst with Characteristic Pathological Changes. Virology, 190, 561-564. https://doi.org/10.1016/0042-6822(92)91254-r
|
[63]
|
Kullander, J., Handisurya, A., Forslund, O., Geusau, A., Kirnbauer, R. and Dillner, J. (2007) Cutaneous Human Papillomavirus 88: Remarkable Differences in Viral Load. International Journal of Cancer, 122, 477-480. https://doi.org/10.1002/ijc.23115
|
[64]
|
Terai, M. and Burk, R.D. (2002) Identification and Characterization of 3 Novel Genital Human Papillomaviruses by Overlapping Polymerase Chain Reaction: CandHPV89, can-dHPV90, and candHPV91. The Journal of Infectious Diseases, 185, 1794-1797. https://doi.org/10.1086/340824
|
[65]
|
Forslund, O., Antonsson, A., Higgins, G., Ly, H., Delius, H., Hunziker, A., et al. (2003) Nucleotide Sequence and Phylogenetic Classification of Candidate Human Papilloma Virus Type 92. Virology, 312, 255-260. https://doi.org/10.1016/s0042-6822(03)00391-x
|
[66]
|
Vasiljević, N., Hazard, K., Eliasson, L., Ly, H., Hunziker, A., de Villiers, E., et al. (2007) Characterization of Two Novel Cutaneous Human Papillomaviruses, HPV93 and HPV96. Journal of General Virology, 88, 1479-1483. https://doi.org/10.1099/vir.0.82679-0
|
[67]
|
Chen, Z., Schiffman, M., Herrero, R., DeSalle, R. and Burk, R.D. (2007) Human Papillomavirus (HPV) Types 101 and 103 Isolated from Cervicovaginal Cells Lack an E6 Open Reading Frame (ORF) and Are Related to Gamma-Papillomaviruses. Virology, 360, 447-453. https://doi.org/10.1016/j.virol.2006.10.022
|
[68]
|
Nobre, R.J., Herráez-Hernández, E., Fei, J., Langbein, L., Kaden, S., Gröne, H., et al. (2009) E7 Oncoprotein of Novel Human Papillomavirus Type 108 Lacking the E6 Gene Induces Dysplasia in Organotypic Keratinocyte Cultures. Journal of Virology, 83, 2907-2916. https://doi.org/10.1128/jvi.02490-08
|
[69]
|
Ekström, J., Forslund, O. and Dillner, J. (2010) Three Novel Papillomaviruses (HPV109, HPV112 and HPV114) and Their Presence in Cutaneous and Mucosal Samples. Virology, 397, 331-336. https://doi.org/10.1016/j.virol.2009.11.027
|
[70]
|
Li, L., Barry, P., Yeh, E., Glaser, C., Schnurr, D. and Delwart, E. (2009) Identification of a Novel Human Gammapapillomavirus Species. Journal of General Virology, 90, 2413-2417. https://doi.org/10.1099/vir.0.012344-0
|
[71]
|
Egawa, N., Kawai, K., Egawa, K., Honda, Y., Kanekura, T. and Kiyono, T. (2012) Molecular Cloning and Characterization of a Novel Human Papillomavirus, HPV 126, Isolated from a Flat Wart-Like Lesion with Intracytoplasmic Inclusion Bodies and a Peculiar Distribution of Ki-67 and P53. Virology, 422, 99-104. https://doi.org/10.1016/j.virol.2011.10.011
|
[72]
|
Schowalter, R.M., Pastrana, D.V., Pumphrey, K.A., Moyer, A.L. and Buck, C.B. (2010) Merkel Cell Polyomavirus and Two Previously Unknown Polyomaviruses Are Chronically Shed from Human Skin. Cell Host & Microbe, 7, 509-515. https://doi.org/10.1016/j.chom.2010.05.006
|
[73]
|
Köhler, A., Gottschling, M., Manning, K., Lehmann, M.D., Schulz, E., Krüger-Corcoran, D., et al. (2011) Genomic Characterization of Ten Novel Cutaneous Human Papillomaviruses from Keratotic Lesions of Immunosuppressed Patients. Journal of General Virology, 92, 1585-1594. https://doi.org/10.1099/vir.0.030593-0
|
[74]
|
Bottalico, D., Chen, Z., Dunne, A., Ostoloza, J., McKinney, S., Sun, C., et al. (2011) The Oral Cavity Contains Abundant Known and Novel Human Papillomaviruses from the Betapapillomavirus and Gammapapillomavirus Genera. The Journal of Infectious Diseases, 204, 787-792. https://doi.org/10.1093/infdis/jir383
|
[75]
|
Ure, A.E. and Forslund, O. (2014) Characterization of Human Papillomavirus Type 154 and Tissue Tropism of Gammapapillomaviruses. PLOS ONE, 9, e89342. https://doi.org/10.1371/journal.pone.0089342
|
[76]
|
Li, J., Cai, H., Xu, Z., Wang, Q., Hang, D., Shen, N., et al. (2012) Nine Complete Genome Sequences of Cutaneous Human Papillomavirus Genotypes Isolated from Healthy Skin of Individuals Living in Rural He Nan Province, China. Journal of Virology, 86, 11936-11936. https://doi.org/10.1128/jvi.01988-12
|
[77]
|
Li, J., Pan, Y., Deng, Q., Cai, H. and Ke, Y. (2013) Identification and Characterization of Eleven Novel Human Gamma-Papillomavirus Isolates from Healthy Skin, Found at Low Frequency in a Normal Population. PLOS ONE, 8, e77116. https://doi.org/10.1371/journal.pone.0077116
|
[78]
|
Johansson, H. and Forslund, O. (2014) Complete Genome Sequences of Three Novel Human Papillomavirus Types, 175, 178, and 180. Genome Announcements, 2, e00443-14. https://doi.org/10.1128/genomea.00443-14
|
[79]
|
Arroyo Mühr, L.S., Bzhalava, D., Lagheden, C., Eklund, C., Johansson, H., Forslund, O., et al. (2015) Does Human Papillomavirus-Negative Condylomata Exist? Virology, 485, 283-288. https://doi.org/10.1016/j.virol.2015.07.023
|
[80]
|
Ahola, H., Bergman, P., Ström, A.C., Moreno-Lopéz, J. and Pettersson, U. (1986) Organization and Expression of the Transforming Region from the European Elk Papillomavirus (EEPV). Gene, 50, 195-205. https://doi.org/10.1016/0378-1119(86)90324-0
|
[81]
|
Terai, M., DeSalle, R. and Burk, R.D. (2002) Lack of Canonical E6 and E7 Open Reading Frames in Bird Papillomaviruses: Fringilla coelebs Papillomavirus and Psittacus erithacus timneh Papillomavirus. Journal of Virology, 76, 10020-10023. https://doi.org/10.1128/jvi.76.19.10020-10023.2002
|
[82]
|
Ogawa, T., Tomita, Y., Okada, M. and Shirasawa, H. (2007) Complete Genome and Phylogenetic Position of Bovine Papillomavirus Type 7. Journal of General Virology, 88, 1934-1938. https://doi.org/10.1099/vir.0.82794-0
|
[83]
|
Bennett, M.D., Reiss, A., Stevens, H., Heylen, E., Van Ranst, M., Wayne, A., et al. (2010) The First Complete Papillomavirus Genome Characterized from a Marsupial Host: A Novel Isolate from Bettongia penicillata. Journal of Virology, 84, 5448-5453. https://doi.org/10.1128/jvi.02635-09
|
[84]
|
Isegawa, N., Ohta, M., Shirasawa, H., Tokita, H., Yamaura, A. and Simizu, B. (1995) Nucleotide-Sequence of a Canine Oral Papillomavirus Containing a Long Noncoding Region. International Journal of Oncology, 7, 155-159. https://doi.org/10.3892/ijo.7.1.155
|
[85]
|
Yuan, H., Ghim, S., Newsome, J., Apolinario, T., Olcese, V., Martin, M., et al. (2007) An Epidermotropic Canine Papillomavirus with Malignant Potential Contains an E5 Gene and Establishes a Unique Genus. Virology, 359, 28-36. https://doi.org/10.1016/j.virol.2006.08.029
|
[86]
|
Tobler, K., Favrot, C., Nespeca, G. and Ackermann, M. (2006) Detection of the Prototype of a Potential Novel Genus in the Family Papillomaviridae in Association with Canine Epidermodysplasia Verruciformis. Journal of General Virology, 87, 3551-3557. https://doi.org/10.1099/vir.0.82305-0
|
[87]
|
Lange, C.E., Tobler, K., Ackermann, M., Panakova, L., Thoday, K.L. and Favrot, C. (2009) Three Novel Canine Papillomaviruses Support Taxonomic Clade Formation. Journal of General Virology, 90, 2615-2621. https://doi.org/10.1099/vir.0.014498-0
|
[88]
|
Lange, C.E., Tobler, K., Lehner, A., Vetsch, E. and Favrot, C. (2011) A Case of a Canine Pigmented Plaque Associated with the Presence of a Chi-Papillomavirus. Veterinary Dermatology, 23, 76-80, e18-9. https://doi.org/10.1111/j.1365-3164.2011.01007.x
|
[89]
|
Yuan, H., Luff, J., Zhou, D., Wang, J., Affolter, V., Moore, P., et al. (2012) Complete Genome Sequence of Canine Papillomavirus Type 9. Journal of Virology, 86, 5966-5966. https://doi.org/10.1128/jvi.00543-12
|
[90]
|
Lange, C.E., Tobler, K., Schraner, E.M., Vetsch, E., Fischer, N.M., Ackermann, M., et al. (2013) Complete Canine Papillomavirus Life Cycle in Pigmented Lesions. Veterinary Microbiology, 162, 388-395. https://doi.org/10.1016/j.vetmic.2012.10.012
|
[91]
|
Erdélyi, K., Bálint, Á., Dencső, L., Dán, Á. and Ursu, K. (2008) Characterisation of the First Complete Genome Sequence of the Roe Deer (Capreolus capreolus) Papillomavirus. Virus Research, 135, 307-311. https://doi.org/10.1016/j.virusres.2008.03.002
|
[92]
|
Rogovskyy, A.S., Chen, Z., Burk, R.D. and Bankhead, T. (2014) Characterization of the North American Beaver (Castor canadensis) Papillomavirus Genome. Veterinary Microbiology, 168, 214-220. https://doi.org/10.1016/j.vetmic.2013.11.011
|
[93]
|
Stevens, H., Heylen, E., De Keyser, K., Maes, R., Kiupel, M., Wise, A., et al. (2013) Complete Genome Sequence of the Crocuta crocuta Papillomavirus Type 1 (CcrPV1) from a Spotted Hyena, the First Papillomavirus Characterized in a Member of the Hyaenidae. Genome Announcements, 1, e00062-12. https://doi.org/10.1128/genomea.00062-12
|
[94]
|
Ure, A.E., Elfadl, A.K., Khalafalla, A.I., Gameel, A.A.R., Dillner, J. and Forslund, O. (2011) Characterization of the Complete Genomes of Camelus Dromedarius Papillomavirus Types 1 and 2. Journal of General Virology, 92, 1769-1777. https://doi.org/10.1099/vir.0.031039-0
|
[95]
|
Wood, C.E., Tannehill-Gregg, S.H., Chen, Z., Doorslaer, K.V., Nelson, D.R., Cline, J.M., et al. (2010) Novel Betapapillomavirus Associated with Hand and Foot Papillomas in a Cynomolgus Macaque. Veterinary Pathology, 48, 731-736. https://doi.org/10.1177/0300985810383875
|
[96]
|
Van Doorslaer, K., Rector, A., Vos, P. and Van Ranst, M. (2006) Genetic Characterization of the Capra hircus Papillomavirus: A Novel Close-to-Root Artiodactyl Papillomavirus. Virus Research, 118, 164-169. https://doi.org/10.1016/j.virusres.2005.12.007
|
[97]
|
Lecis, R., Tore, G., Scagliarini, A., Antuofermo, E., Dedola, C., Cacciotto, C., et al. (2014) Equus asinus Papillomavirus (EaPV1) Provides New Insights into Equine Papillomavirus Diversity. Veterinary Microbiology, 170, 213-223. https://doi.org/10.1016/j.vetmic.2014.02.016
|
[98]
|
Ghim, S., Rector, A., Delius, H., Sundberg, J.P., Jenson, A.B. and Van Ranst, M. (2004) Equine Papillomavirus Type 1: Complete Nucleotide Sequence and Characterization of Recombinant Virus-Like Particles Composed of the EcPV-1 L1 Major Capsid Protein. Biochemical and Biophysical Research Communications, 324, 1108-1115. https://doi.org/10.1016/j.bbrc.2004.09.154
|
[99]
|
Rector, A., Tachezy, R., Van Doorslaer, K., MacNamara, T., Burk, R.D., Sundberg, J.P., et al. (2005) Isolation and Cloning of a Papillomavirus from a North American Porcupine by Using Multiply Primed Rolling-Circle Amplification: The Erethizon dorsatum Papillomavirus Type 1. Virology, 331, 449-456. https://doi.org/10.1016/j.virol.2004.10.033
|
[100]
|
Schulz, E., Gottschling, M., Bravo, I.G., Wittstatt, U., Stockfleth, E. and Nindl, I. (2009) Genomic Characterization of the First Insectivoran Papillomavirus Reveals an Unusually Long, Second Non-Coding Region and Indicates a Close Relationship to Betapapillomavirus. Journal of General Virology, 90, 626-633. https://doi.org/10.1099/vir.0.008011-0
|
[101]
|
Munday, J.S., Dunowska, M., Hills, S.F. and Laurie, R.E. (2013) Genomic Characterization of Felis catus Papillomavirus-3: A Novel Papillomavirus Detected in a Feline Bowenoid in Situ Carcinoma. Veterinary Microbiology, 165, 319-325. https://doi.org/10.1016/j.vetmic.2013.04.006
|
[102]
|
Van Doorslaer, K., Ould M'hamed Ould Sidi, A., Zanier, K., Rybin, V., Deryckère, F., Rector, A., et al. (2009) Identification of Unusual E6 and E7 Proteins within Avian Papillomaviruses: Cellular Localization, Biophysical Characterization, and Phylogenetic Analysis. Journal of Virology, 83, 8759-8770. https://doi.org/10.1128/jvi.01777-08
|
[103]
|
Chen, Z., van Doorslaer, K., DeSalle, R., Wood, C.E., Kaplan, J.R., Wagner, J.D., et al. (2009) Genomic Diversity and Interspecies Host Infection of Α12 Macaca Fascicularis Papillomaviruses (MfPVs). Virology, 393, 304-310. https://doi.org/10.1016/j.virol.2009.07.012
|
[104]
|
Ostrow, R.S., Liu, Z., Schneider, J.F., McGlennen, R.C., Forslund, K. and Faras, A.J. (1993) The Products of the E5, E6, or E7 Open Reading Frames of RhPV 1 Can Individually Transform NIH 3T3 Cells or in Cotransfections with Activated Ras Can Transform Primary Rodent Epithelial Cells. Virology, 196, 861-867. https://doi.org/10.1006/viro.1993.1547
|
[105]
|
Van Doorslaer, K., Rector, A., Jenson, A.B., Sundberg, J.P., Van Ranst, M. and Ghim, S. (2007) Complete Genomic Characterization of a Murine Papillomavirus Isolated from Papillomatous Lesions of a European Harvest Mouse (Micromys minutus). Journal of General Virology, 88, 1484-1488. https://doi.org/10.1099/vir.0.82615-0
|
[106]
|
Joh, J., Jenson, A.B., King, W., Proctor, M., Ingle, A., Sundberg, J.P., et al. (2010) Genomic Analysis of the First Laboratory-Mouse Papillomavirus. Journal of General Virology, 92, 692-698. https://doi.org/10.1099/vir.0.026138-0
|
[107]
|
Tan, C., Tachezy, R., Van Ranst, M., Chan, S., Bernard, H. and Burk, R.D. (1994) The Mastomys natalensis Papillomavirus: Nucleotide Sequence, Genome Organization, and Phylogenetic Relationship of a Rodent Papillomavirus Involved in Tumorigenesis of Cutaneous Epithelia. Virology, 198, 534-541. https://doi.org/10.1006/viro.1994.1064
|
[108]
|
Smits, S.L., Raj, V.S., Oduber, M.D., Schapendonk, C.M.E., Bodewes, R., Provacia, L., et al. (2013) Metagenomic Analysis of the Ferret Fecal Viral Flora. PLOS ONE, 8, e71595. https://doi.org/10.1371/journal.pone.0071595
|
[109]
|
Lange, C.E., Favrot, C., Ackermann, M., Gull, J., Vetsch, E. and Tobler, K. (2011) Novel Snake Papillomavirus Does Not Cluster with Other Non-Mammalian Papillomaviruses. Virology Journal, 8, Article No. 436. https://doi.org/10.1186/1743-422x-8-436
|
[110]
|
Christensen, N.D., Cladel, N.M., Reed, C.A. and Han, R. (2000) Rabbit Oral Papillomavirus Complete Genome Sequence and Immunity Following Genital Infection. Virology, 269, 451-461. https://doi.org/10.1006/viro.2000.0237
|
[111]
|
Groff, D.E. and Lancaster, W.D. (1985) Molecular Cloning and Nucleotide Sequence of Deer Papillomavirus. Journal of Virology, 56, 85-91. https://doi.org/10.1128/jvi.56.1.85-91.1985
|
[112]
|
Varsani, A., Kraberger, S., Jennings, S., Porzig, E.L., Julian, L., Massaro, M., et al. (2014) A Novel Papillomavirus in Adélie Penguin (Pygoscelis adeliae) Faeces Sampled at the Cape Crozier Colony, Antarctica. Journal of General Virology, 95, 1352-1365. https://doi.org/10.1099/vir.0.064436-0
|
[113]
|
Tachezy, R., Rector, A., Havelkova, M., Wollants, E., Fiten, P., Opdenakker, G., et al. (2002) Avian Papillomaviruses: The Parrot Psittacus Erithacus Papillomavirus (PEPV) Genome Has a Unique Organization of the Early Protein Region and Is Phylogenetically Related to the Chaffinch Papillomavirus. BMC Microbiology, 2, Article No. 19. https://doi.org/10.1186/1471-2180-2-19
|
[114]
|
Bergin, I.L., Bell, J.D., Chen, Z., Zochowski, M.K., Chai, D., Schmidt, K., et al. (2012) Novel Genital Alphapapillomaviruses in Baboons (Papio hamadryas anubis) with Cervical Dysplasia. Veterinary Pathology, 50, 200-208. https://doi.org/10.1177/0300985812439725
|
[115]
|
Rector, A., Van Doorslaer, K., Bertelsen, M., Barker, I.K., Olberg, R., Lemey, P., et al. (2005) Isolation and Cloning of the Raccoon (Procyon lotor) Papillomavirus Type 1 by Using Degenerate Papillomavirus-Specific Primers. Journal of General Virology, 86, 2029-2033. https://doi.org/10.1099/vir.0.80874-0
|
[116]
|
Van Bressem, M., Cassonnet, P., Rector, A., Desaintes, C., Van Waerebeek, K., Alfaro-Shigueto, J., et al. (2007) Genital Warts in Burmeister’s Porpoises: Characterization of Phocoena spinipinnis Papillomavirus Type 1 (PsPV-1) and Evidence for a Second, Distantly Related PSPV. Journal of General Virology, 88, 1928-1933. https://doi.org/10.1099/vir.0.82694-0
|
[117]
|
Rector, A., Mostmans, S., Van Doorslaer, K., McKnight, C.A., Maes, R.K., Wise, A.G., et al. (2006) Genetic Characterization of the First Chiropteran Papillomavirus, Isolated from a Basosquamous Carcinoma in an Egyptian Fruit Bat: The Rousettus aegyptiacus Papillomavirus Type 1. Veterinary Microbiology, 117, 267-275. https://doi.org/10.1016/j.vetmic.2006.06.010
|
[118]
|
Mengual-Chuliá, B., Domenis, L., Robetto, S. and Bravo, I.G. (2014) A Novel Papillomavirus Isolated from a Nasal Neoplasia in an Italian Free-Ranging Chamois (Rupicapra r. rupicapra). Veterinary Microbiology, 172, 108-119. https://doi.org/10.1016/j.vetmic.2014.05.006
|
[119]
|
Smits, S.L., Schapendonk, C.M.E., van Leeuwen, M., Kuiken, T., Bodewes, R., Stalin Raj, V., et al. (2013) Identification and Characterization of Two Novel Viruses in Ocular Infections in Reindeer. PLOS ONE, 8, e69711. https://doi.org/10.1371/journal.pone.0069711
|
[120]
|
Giri, I., Danos, O. and Yaniv, M. (1985) Genomic Structure of the Cottontail Rabbit (Shope) Papillomavirus. Proceedings of the National Academy of Sciences, 82, 1580-1584. https://doi.org/10.1073/pnas.82.6.1580
|
[121]
|
Stevens, H., Rector, A., Van Der Kroght, K. and Van Ranst, M. (2008) Isolation and Cloning of Two Variant Papillomaviruses from Domestic Pigs: Sus Scrofa Papillomaviruses Type 1 Variants A and B. Journal of General Virology, 89, 2475-2481. https://doi.org/10.1099/vir.0.2008/003186-0
|
[122]
|
Rector, A., Bossart, G.D., Ghim, S., Sundberg, J.P., Jenson, A.B. and Van Ranst, M. (2004) Characterization of a Novel Close-to-Root Papillomavirus from a Florida Manatee by Using Multiply Primed Rolling-Circle Amplification: Trichechus manatus latirostris Papillomavirus Type 1. Journal of Virology, 78, 12698-12702. https://doi.org/10.1128/jvi.78.22.12698-12702.2004
|
[123]
|
Rector, A., Stevens, H., Lacave, G., Lemey, P., Mostmans, S., Salbany, A., et al. (2008) Genomic Characterization of Novel Dolphin Papillomaviruses Provides Indications for Recombination within the Papillomaviridae. Virology, 378, 151-161. https://doi.org/10.1016/j.virol.2008.05.020
|
[124]
|
Rehtanz, M., Ghim, S., Rector, A., Van Ranst, M., Fair, P.A., Bossart, G.D., et al. (2006) Isolation and Characterization of the First American Bottlenose Dolphin Papillomavirus: Tursiops Truncatus Papillomavirus Type 2. Journal of General Virology, 87, 3559-3565. https://doi.org/10.1099/vir.0.82388-0
|
[125]
|
Stevens, H., Rector, A., Bertelsen, M.F., Leifsson, P.S. and Van Ranst, M. (2008) Novel Papillomavirus Isolated from the Oral Mucosa of a Polar Bear Does Not Cluster with Other Papillomaviruses of Carnivores. Veterinary Microbiology, 129, 108-116. https://doi.org/10.1016/j.vetmic.2007.11.037
|