[1]
|
Barnhill, J., Blanco, R.A., Napier, K. and Soda, T. (2023) Pharmacology, Psychopharmacology, and Adverse Drug Reactions. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F. and Yager, J.Y., Eds., Neurodevelopmental Pediatrics, Springer International Publishing, 713-729. https://doi.org/10.1007/978-3-031-20792-1_44
|
[2]
|
Stingl, J.C., Just, K.S., Schurig, M., Böhme, M., Steffens, M., Schwab, M., et al. (2020) Prevalence of Psychotropic Drugs in Cases of Severe Adverse Drug Reactions Leading to Unplanned Emergency Visits in General Hospitals. Pharmacopsychiatry, 53, 133-137. https://doi.org/10.1055/a-1110-1010
|
[3]
|
Patel, T.K. and Patel, P.B. (2018) Mortality among Patients Due to Adverse Drug Reactions That Lead to Hospitalization: A Meta-Analysis. European Journal of Clinical Pharmacology, 74, 819-832. https://doi.org/10.1007/s00228-018-2441-5
|
[4]
|
de Leon, J., Ruan, C., Schoretsanitis, G. and De las Cuevas, C. (2020) A Rational Use of Clozapine Based on Adverse Drug Reactions, Pharmacokinetics, and Clinical Pharmacopsychology. Psychotherapy and Psychosomatics, 89, 200-214. https://doi.org/10.1159/000507638
|
[5]
|
Oruch, R., Pryme, I., Engelsen, B. and Lund, A. (2017) Neuroleptic Malignant Syndrome: An Easily Overlooked Neurologic Emergency. Neuropsychiatric Disease and Treatment, 13, 161-175. https://doi.org/10.2147/ndt.s118438
|
[6]
|
Strawn, J.R., Keck, P.E. and Caroff, S.N. (2007) Neuroleptic Malignant Syndrome. American Journal of Psychiatry, 164, 870-876. https://doi.org/10.1176/ajp.2007.164.6.870
|
[7]
|
Mann, S.C., Caroff, S.N., Keck, P.E. and Lazarus, A. (2008) Neuroleptic Malignant Syndrome and Related Conditions. American Psychiatric Pub.
|
[8]
|
Velamoor, V.R. (1998) Neuroleptic Malignant Syndrome. Drug Safety, 19, 73-82. https://doi.org/10.2165/00002018-199819010-00006
|
[9]
|
Ananth, J., Aduri, K., Parameswaran, S. and Gunatilake, S. (2004) Neuroleptic Malignant Syndrome: Risk Factors, Pathophysiology, and Treatment. Acta Neuropsychiatrica, 16, 219-228. https://doi.org/10.1111/j.0924-2708.2004.00085.x
|
[10]
|
Berman, B.D. (2011) Neuroleptic Malignant Syndrome. The Neurohospitalist, 1, 41-47. https://doi.org/10.1177/1941875210386491
|
[11]
|
Cuccarelli, M., Zampogna, A. and Suppa, A. (2024) The Broad Spectrum of Malignant Syndromes. Neurobiology of Disease, 203, Article 106734. https://doi.org/10.1016/j.nbd.2024.106734
|
[12]
|
Ali, M. (2024) Anticholinergic Adverse Effects in Older People. Master’s Thesis, Lithuanian University of Health Sciences (Lithuania).
|
[13]
|
Gerretsen, P. and Pollock, B.G. (2011) Drugs with Anticholinergic Properties: A Current Perspective on Use and Safety. Expert Opinion on Drug Safety, 10, 751-765. https://doi.org/10.1517/14740338.2011.579899
|
[14]
|
Bisharah, D. (2023) Anticholinergics, Antipsychotics and Associated Risks in Dementia Seeking to improve the Safety of Prescribing.
|
[15]
|
Britt, D.M. and Day, G.S. (2016) Over-Prescribed Medications, Under-Appreciated Risks: A Review of the Cognitive Effects of Anticholinergic Medications in Older Adults. Missouri Medicine, 113, 207-214.
|
[16]
|
Pierce, D.V. (2024) Insights and Advancing Mental Health Care: The Utility of Ad-ministrative Health Records.
|
[17]
|
Jannink, L. (2025) Pharmacogentics in Transition: Overcoming Barriers to Pre-Emptive Pharmacogenetic Testing Implementation for Enhanced Healthcare in the Netherlands. Master’s Thesis, Utrecht University.
|
[18]
|
Schicktanz, S., Alpinar-Segawa, Z., Ulitsa, N., Perry, J. and Werner, P. (2024) Moving Towards Ethical-Practical Recommendations for Alzheimer’s Disease Prediction: Addressing Interindividual, Interprofessional, and Societal Aspects. Journal of Alzheimer’s Disease, 101, 1063-1081. https://doi.org/10.3233/jad-231137
|
[19]
|
Gurung, A. (2024) Transformative Ability of Artificial Intelligence in Risk Manage-ment.
|
[20]
|
Pore, A.V., Bais, S.K. and Kamble, M.M. (2024) Pharmacovigilance in Clinical Research. International Journal of Pharmacy and Herbal Technology, 2, 759-775.
|
[21]
|
Ahire, Y.S., Patil, J.H., Chordiya, H.N., Deore, R.A. and Bairagi, V.A. (2024) Advanced Applications of Artificial Intelligence in Pharmacovigilance: Current Trends and Future Perspectives. Journal of Pharmaceutical Research, 23, 23-33. https://doi.org/10.18579/jopcr/v23.1.24
|
[22]
|
Pappa, D. (2018) The Knowledge Discovery Cube Framework A Reference Framework for Collaborative, Information-Driven Pharmacovigilance. University of Surrey (United Kingdom).
|
[23]
|
Savaré, L. (2023) Enhancing the Role of Real-World Data in Healthcare Research through Advanced Statistical Methods.
|
[24]
|
Serretti, A., Drago, A. and De Ronchi, D. (2007) HTR2A Gene Variants and Psychiatric Disorders: A Review of Current Literature and Selection of SNPs for Future Studies. Current Medicinal Chemistry, 14, 2053-2069. https://doi.org/10.2174/092986707781368450
|
[25]
|
Cacabelos, R., Martinez-Bouza, R., Carlos Carril, J., Fernandez-Novoa, L., Lombardi, V., Carrera, I., et al. (2012) Genomics and Pharmacogenomics of Brain Disorders. Current Pharmaceutical Biotechnology, 13, 674-725. https://doi.org/10.2174/138920112799857576
|
[26]
|
Vuletić, V., Rački, V., Papić, E. and Peterlin, B. (2021) A Systematic Review of Parkinson’s Disease Pharmacogenomics: Is There Time for Translation into the Clinics? International Journal of Molecular Sciences, 22, Article 7213. https://doi.org/10.3390/ijms22137213
|
[27]
|
Arranz, M.J., Salazar, J. and Hernández, M.H. (2021) Pharmacogenetics of Antipsychotics: Clinical Utility and Implementation. Behavioural Brain Research, 401, Article 113058. https://doi.org/10.1016/j.bbr.2020.113058
|
[28]
|
Yoshida, K. and Müller, D.J. (2018) Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. Complex Psychiatry, 5, 1-26. https://doi.org/10.1159/000492332
|
[29]
|
Kirchmair, J., Göller, A.H., Lang, D., Kunze, J., Testa, B., Wilson, I.D., et al. (2015) Predicting Drug Metabolism: Experiment and/or Computation? Nature Reviews Drug Discovery, 14, 387-404. https://doi.org/10.1038/nrd4581
|
[30]
|
Terranova, N. and Venkatakrishnan, K. (2024) Machine Learning in Modeling Disease Trajectory and Treatment Outcomes: An Emerging Enabler for Model‐Informed Precision Medicine. Clinical Pharmacology & Therapeutics, 115, 720-726. https://doi.org/10.1002/cpt.3153
|
[31]
|
Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., et al. (2018) Opportunities and Obstacles for Deep Learning in Biology and Medicine. Journal of The Royal Society Interface, 15, Article 20170387. https://doi.org/10.1098/rsif.2017.0387
|
[32]
|
Ding, Y., Hou, K., Burch, K.S., Lapinska, S., Privé, F., Vilhjálmsson, B., et al. (2021) Large Uncertainty in Individual Polygenic Risk Score Estimation Impacts Prs-Based Risk Stratification. Nature Genetics, 54, 30-39. https://doi.org/10.1038/s41588-021-00961-5
|
[33]
|
Chatterjee, N., Shi, J. and García-Closas, M. (2016) Developing and Evaluating Polygenic Risk Prediction Models for Stratified Disease Prevention. Nature Reviews Genetics, 17, 392-406. https://doi.org/10.1038/nrg.2016.27
|
[34]
|
Konuma, T. and Okada, Y. (2021) Statistical Genetics and Polygenic Risk Score for Precision Medicine. Inflammation and Regeneration, 41, Article No. 18. https://doi.org/10.1186/s41232-021-00172-9
|
[35]
|
Krittanawong, C., Johnson, K.W., Choi, E., Kaplin, S., Venner, E., Murugan, M., et al. (2022) Artificial Intelligence and Cardiovascular Genetics. Life, 12, Article 279. https://doi.org/10.3390/life12020279
|
[36]
|
Alsubaie, M.G., Luo, S. and Shaukat, K. (2024) Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Machine Learning and Knowledge Extraction, 6, 464-505. https://doi.org/10.3390/make6010024
|
[37]
|
Ajnakina, O., Fadilah, I., Quattrone, D., Arango, C., Berardi, D., Bernardo, M., et al. (2023) Development and Validation of Predictive Model for a Diagnosis of First Episode Psychosis Using the Multinational EU-GEI Case-Control Study and Modern Statistical Learning Methods. Schizophrenia Bulletin Open, 4, sgad008. https://doi.org/10.1093/schizbullopen/sgad008
|
[38]
|
van Westrhenen, R., Aitchison, K.J., Ingelman-Sundberg, M. and Jukić, M.M. (2020) Pharmacogenomics of Antidepressant and Antipsychotic Treatment: How Far Have We Got and Where Are We Going? Frontiers in Psychiatry, 11, Article 94. https://doi.org/10.3389/fpsyt.2020.00094
|
[39]
|
Toffol, M. (2022) Pharmacogenomic Analysis of Neuroleptic Malignant Syndrome.
|
[40]
|
Pouget, J.G., Shams, T.A., Tiwari, A.K. and Müller, D.J. (2014) Pharmacogenetics and Outcome with Antipsychotic Drugs. Dialogues in Clinical Neuroscience, 16, 555-566. https://doi.org/10.31887/dcns.2014.16.4/jpouget
|
[41]
|
van Veen, E.M., Brentnall, A.R., Byers, H., Harkness, E.F., Astley, S.M., Sampson, S., et al. (2018) Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Classic Risk Factors for Breast Cancer Risk Prediction. JAMA Oncology, 4, 476-482. https://doi.org/10.1001/jamaoncol.2017.4881
|
[42]
|
Leaché, A.D. and Oaks, J.R. (2017) The Utility of Single Nucleotide Polymorphism (SNP) Data in Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 48, 69-84. https://doi.org/10.1146/annurev-ecolsys-110316-022645
|
[43]
|
Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., Carranza, N.L., Grzywaczewski, A.H., Oteri, F., Dallago, C., et al. (2024) Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics. bioRxiv Preprint.
|
[44]
|
Hammad, M.M. (2024) Deep Learning Activation Functions: Fixed-Shape, Parametric, Adaptive, Stochastic, Miscellaneous, Non-Standard, Ensemble. arXiv:2407.11090.
|
[45]
|
Dubey, S.R., Singh, S.K. and Chaudhuri, B.B. (2022) Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark. Neurocomputing, 503, 92-108. https://doi.org/10.1016/j.neucom.2022.06.111
|
[46]
|
Misra, D. (2019) Mish: A Self Regularized Non-Monotonic Activation Function. arXiv:1908.08681.
|
[47]
|
Laios, A., Kalampokis, E., Johnson, R., Munot, S., Thangavelu, A., Hutson, R., et al. (2022) Factors Predicting Surgical Effort Using Explainable Artificial Intelligence in Advanced Stage Epithelial Ovarian Cancer. Cancers, 14, Article 3447. https://doi.org/10.3390/cancers14143447
|
[48]
|
Rotink, D. (2024) Identifying Influential Variables for an Explainable AI Based Clinical Decision Support System in the Healthcare Industry. Master’s Thesis, University of Twente.
|
[49]
|
Chari, S., Acharya, P., Gruen, D.M., Zhang, O., Eyigoz, E.K., Ghalwash, M., et al. (2023) Informing Clinical Assessment by Contextualizing Post-Hoc Explanations of Risk Prediction Models in Type-2 Diabetes. Artificial Intelligence in Medicine, 137, Article 102498. https://doi.org/10.1016/j.artmed.2023.102498
|
[50]
|
Hall, K.T., Loscalzo, J. and Kaptchuk, T.J. (2019) Systems Pharmacogenomics—Gene, Disease, Drug and Placebo Interactions: A Case Study in COMT. Pharmacogenomics, 20, 529-551. https://doi.org/10.2217/pgs-2019-0001
|
[51]
|
Meyer-Lindenberg, A., Nichols, T., Callicott, J.H., Ding, J., Kolachana, B., Buckholtz, J., et al. (2006) Impact of Complex Genetic Variation in COMT on Human Brain Function. Molecular Psychiatry, 11, 867-877. https://doi.org/10.1038/sj.mp.4001860
|
[52]
|
Jostins, L. and Barrett, J.C. (2011) Genetic Risk Prediction in Complex Disease. Human Molecular Genetics, 20, R182-R188. https://doi.org/10.1093/hmg/ddr378
|
[53]
|
Wray, N.R., Goddard, M.E. and Visscher, P.M. (2008) Prediction of Individual Genetic Risk of Complex Disease. Current Opinion in Genetics & Development, 18, 257-263. https://doi.org/10.1016/j.gde.2008.07.006
|
[54]
|
Kamps, R., Brandão, R., Bosch, B., Paulussen, A., Xanthoulea, S., Blok, M., et al. (2017) Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences, 18, Article 308. https://doi.org/10.3390/ijms18020308
|
[55]
|
Nebert, D.W., Zhang, G. and Vesell, E.S. (2013) Genetic Risk Prediction: Individualized Variability in Susceptibility to Toxicants. Annual Review of Pharmacology and Toxicology, 53, 355-375. https://doi.org/10.1146/annurev-pharmtox-011112-140241
|
[56]
|
Wilke, R.A., Lin, D.W., Roden, D.M., Watkins, P.B., Flockhart, D., Zineh, I., et al. (2007) Identifying Genetic Risk Factors for Serious Adverse Drug Reactions: Current Progress and Challenges. Nature Reviews Drug Discovery, 6, 904-916. https://doi.org/10.1038/nrd2423
|
[57]
|
Karczewski, K.J. and Snyder, M.P. (2018) Integrative Omics for Health and Disease. Nature Reviews Genetics, 19, 299-310. https://doi.org/10.1038/nrg.2018.4
|
[58]
|
Ogunjobi, T.T., Ohaeri, P.N., Akintola, O.T., Atanda, D.O., Orji, F.P., Adebayo, J.O., et al. (2024) Bioinformatics Applications in Chronic Diseases: A Comprehensive Review of Genomic, Transcriptomics, Proteomic, Metabolomics, and Machine Learning Approaches. Medinformatics, 1-18. https://doi.org/10.47852/bonviewmedin42022335
|
[59]
|
Ng, K., Kartoun, U., Stavropoulos, H., Zambrano, J.A. and Tang, P.C. (2021) Personalized Treatment Options for Chronic Diseases Using Precision Cohort Analytics. Scientific Reports, 11, Article 1139. https://doi.org/10.1038/s41598-021-80967-5
|
[60]
|
Sendak, M., Elish, M.C., Gao, M., Futoma, J., Ratliff, W., Nichols, M., et al. (2020) “The Human Body Is a Black Box”: Supporting Clinical Decision-Making with Deep Learning. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, 27-30 January 2020, 99-109. https://doi.org/10.1145/3351095.3372827
|
[61]
|
Nasarian, E., Alizadehsani, R., Acharya, U.R. and Tsui, K. (2024) Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework. Information Fusion, 108, Article 102412. https://doi.org/10.1016/j.inffus.2024.102412
|
[62]
|
Sampson, C.J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., et al. (2019) Transparency in Decision Modelling: What, Why, Who and How? PharmacoEconomics, 37, 1355-1369. https://doi.org/10.1007/s40273-019-00819-z
|
[63]
|
Kaur, S., Kim, R., Javagal, N., Calderon, J., Rodriguez, S., Murugan, N., et al. (2024) Precision Medicine with Data-Driven Approaches: A Framework for Clinical Translation. Advanced International Journal of Multidisciplinary Research, 2. https://doi.org/10.62127/aijmr.2024.v02i05.1077
|
[64]
|
Cogno, N., Axenie, C., Bauer, R. and Vavourakis, V. (2024) Agent-Based Modeling in Cancer Biomedicine: Applications and Tools for Calibration and Validation. Cancer Biology & Therapy, 25, Article 2344600. https://doi.org/10.1080/15384047.2024.2344600
|
[65]
|
Chianumba, E.C., Ikhalea, N., Mustapha, A.Y. and Forkuo, A.Y. (2022) Developing a Framework for Using AI in Personalized Medicine to Optimize Treatment Plans. Journal of Frontiers in Multidisciplinary Research, 3, 57-71. https://doi.org/10.54660/.ijfmr.2022.3.1.57-71
|
[66]
|
Jin, P., Zhu, B., Li, Y. and Yan, S. (2024) Moh: Multi-Head Attention as Mixture-of-Head Attention. arXiv:2410.11842.
|
[67]
|
Zhang, Y., Liu, C., Liu, M., Liu, T., Lin, H., Huang, C., et al. (2023) Attention Is All You Need: Utilizing Attention in AI-Enabled Drug Discovery. Briefings in Bioinformatics, 25, bbad467. https://doi.org/10.1093/bib/bbad467
|
[68]
|
An, Z. and Joe, I. (2024) TMH: Two-Tower Multi-Head Attention Neural Network for CTR Prediction. PLOS ONE, 19, e0295440. https://doi.org/10.1371/journal.pone.0295440
|