[1]
|
Beard, W.A. (2020) DNA Polymerase β: Closing the Gap between Structure and Function. DNA Repair, 93, Article 102910. https://doi.org/10.1016/j.dnarep.2020.102910
|
[2]
|
Kuznetsova, A.A., Fedorova, O.S. and Kuznetsov, N.A. (2022) Structural and Molecular Kinetic Features of Activities of DNA Polymerases. International Journal of Molecular Sciences, 23, Article 6373. https://doi.org/10.3390/ijms23126373
|
[3]
|
Kazlauskas, D., Krupovic, M., Guglielmini, J., Forterre, P. and Venclovas, Č. (2020) Diversity and Evolution of B-Family DNA Polymerases. Nucleic Acids Research, 48, 10142-10156. https://doi.org/10.1093/nar/gkaa760
|
[4]
|
Al-Kawaz, A., Ali, R., Toss, M.S., Miligy, I.M., Mohammed, O.J., Green, A.R., et al. (2021) The Frequency and Clinical Significance of DNA Polymerase Beta (POLβ) Expression in Breast Ductal Carcinoma in Situ (DCIS). Breast Cancer Research and Treatment, 190, 39-51. https://doi.org/10.1007/s10549-021-06357-7
|
[5]
|
Qin, J., Zhu, Y., Ding, Y., Niu, T., Zhang, Y., Wu, H., et al. (2021) DNA Polymerase β Deficiency Promotes the Occurrence of Esophageal Precancerous Lesions in Mice. Neoplasia, 23, 663-675. https://doi.org/10.1016/j.neo.2021.05.001
|
[6]
|
Inanc, B., Fang, Q., Andrews, J.F., Zeng, X., Clark, J., Li, J., Dey, N.B., Ibrahim, M., Sykora, P., Yu, Z., Braganza, A., Verheij, M., Jonkers, J., Yates, N.A., Vens, C. and Sobol, R.W. (2024) TRIP12 Governs DNA Polymerase β Involvement in DNA Damage Response and Repair. BioRxiv.,2024.04.08.588474.
|
[7]
|
Shahi, A. and Kidane, D. (2024) Aberrant DNA Polymerase Beta Expression Is Associated with Dysregulated Tumor Immune Microenvironment and Its Prognostic Value in Gastric Cancer. Clinical and Experimental Medicine, 24, Article No. 239. https://doi.org/10.1007/s10238-024-01498-7
|
[8]
|
Vaziri, C., Rogozin, I.B., Gu, Q., Wu, D. and Day, T.A. (2021) Unravelling Roles of Error-Prone DNA Polymerases in Shaping Cancer Genomes. Oncogene, 40, 6549-6565. https://doi.org/10.1038/s41388-021-02032-9
|
[9]
|
Kumar, A., Reed, A.J., Zahurancik, W.J., Daskalova, S.M., Hecht, S.M. and Suo, Z. (2022) Interlocking Activities of DNA Polymerase β in the Base Excision Repair Pathway. Proceedings of the National Academy of Sciences, 119, e2118940119. https://doi.org/10.1073/pnas.2118940119
|
[10]
|
Chen, S., Zhang, W., Li, X., Cao, Z. and Liu, C. (2024) DNA Polymerase Beta Connects Tumorigenicity with the Circadian Clock in Liver Cancer through the Epigenetic Demethylation of Per1. Cell Death & Disease, 15, Article No. 78. https://doi.org/10.1038/s41419-024-06462-7
|
[11]
|
Reshetor, S.S, Golovin, R.K., Podobed, K.K. and Starostin, O.D. (2025) DNA Repair Affecting Drugs. In: Kolchin, G.E. and Levin, B.M., Eds., Horizonts in Molecular Pharmacology, Krasnodar State University Press, 92-109.
|
[12]
|
Buchachenko, A.L. (2024) How Magnetic Fields Modify Chemistry and Biochemistry. In: Buchachenko, A.L., Ed., Magnetic Effects Across Biochemistry, Molecular Biology and Environmental Chemistry, Elsevier, 1-9. https://doi.org/10.1016/b978-0-443-29819-6.00003-1
|
[13]
|
Monzaffari, S.M., Beitollani, N., Bousnenri, A. and Samarian, K. (2024) DNA Repair in Malignacies. Amir Kabir University of Technology.
|
[14]
|
Hore, P.J. (2025) Magneto-Oncology: A Radical Pair Primer. Frontiers in Oncology, 15, Article 1539718. https://doi.org/10.3389/fonc.2025.1539718
|
[15]
|
Buchachenko, A., Bukhvostov, A., Ermakov, K. and Kuznetsov, D. (2019) Nuclear Spin Selectivity in Enzymatic Catalysis: A Caution for Applied Biophysics. Archives of Biochemistry and Biophysics, 667, 30-35. https://doi.org/10.1016/j.abb.2019.04.005
|
[16]
|
Buchachenko, A.L., Bukhvostov, A.A., Ermakov, K.V. and Kuznetsov, D.A. (2020) A Specific Role of Magnetic Isotopes in Biological and Ecological Systems. Physics and Biophysics beyond. Progress in Biophysics and Molecular Biology, 155, 1-19. https://doi.org/10.1016/j.pbiomolbio.2020.02.007
|
[17]
|
Buchvostov, A.A., Orlov, A.P., Shatalov, O.A. and Kusnetsov, D.A. (2014) Unique Beta-Like DNA Polymerase from ХРОМАТИН of Human Acute Myeloid Leukemia HL-60 Cells. Genes & Cells, 9, 46-52. https://doi.org/10.23868/gc120250
|
[18]
|
Srivastava, A., Idriss, H., Taha, K., Lee, S. and Homouz, D. (2022) Phosphorylation Induced Conformational Transitions in DNA Polymerase β. Frontiers in Molecular Biosciences, 9, Article 900771. https://doi.org/10.3389/fmolb.2022.900771
|
[19]
|
He, F., Yang, X.-P., Srivastava, D.K. and Wilson, S.H. (2003) DNA Polymerase β. Gene Expression: The Promoter Activator CREB-1 Is Upregulated in Chinese Hamster Ovary Cells by DNA Alkylating Agent-Induced Stress. Biological Chemistry, 384, 19-23. https://doi.org/10.1515/bc.2003.003
|
[20]
|
Beard, W.A. and Wilson, S.H. (2014) Structure and Mechanism of DNA Polymerase Β. Biochemistry, 53, 2768-2780. https://doi.org/10.1021/bi500139h
|
[21]
|
Homouz, D., Joyce-Tan, K.H., Shahir Shamsir, M., Moustafa, I.M. and Idriss, H.T. (2018) Molecular Dynamics Simulations Suggest Changes in Electrostatic Interactions as a Potential Mechanism through Which Serine Phosphorylation Inhibits DNA Polymerase β Activity. Journal of Molecular Graphics and Modelling, 84, 236-241. https://doi.org/10.1016/j.jmgm.2018.08.007
|
[22]
|
Sungchul, J. (2012) Molecular Theory of a Living Cell. Springer.
|
[23]
|
Perera, L., Freudenthal, B.D., Beard, W.A., Pedersen, L.G. and Wilson, S.H. (2017) Revealing the Role of the Product Metal in DNA Polymerase β Catalysis. Nucleic Acids Research, 45, 2736-2745. https://doi.org/10.1093/nar/gkw1363
|
[24]
|
Gong, S., Kirmizialtin, S., Chang, A., Mayfield, J.E., Zhang, Y.J. and Johnson, K.A. (2021) Kinetic and Thermodynamic Analysis Defines Roles for Two Metal Ions in DNA Polymerase Specificity and Catalysis. Journal of Biological Chemistry, 296, Article 100184. https://doi.org/10.1074/jbc.ra120.016489
|
[25]
|
Mentegari, E., Kissova, M., Bavagnoli, L., Maga, G. and Crespan, E. (2016) DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair. Genes, 7, Article 57. https://doi.org/10.3390/genes7090057
|
[26]
|
Wallace, S.S., Murphy, D.L. and Sweasy, J.B. (2012) Base Excision Repair and Cancer. Cancer Letters, 327, 73-89. https://doi.org/10.1016/j.canlet.2011.12.038
|
[27]
|
Sweasy, J.B., Lang, T. and DiMaio, D. (2006) Is Base Excision Repair a Tumor Suppressor Mechanism? Cell Cycle, 5, 250-259. https://doi.org/10.4161/cc.5.3.2414
|
[28]
|
Wang, M., Long, K., Li, E., Li, L., Li, B., Ci, S., et al. (2020) DNA Polymerase Beta Modulates Cancer Progression via Enhancing CDH13 Expression by Promoter Demethylation. Oncogene, 39, 5507-5519. https://doi.org/10.1038/s41388-020-1386-1
|
[29]
|
Nemec, A.A., Donigan, K.A., Murphy, D.L., Jaeger, J. and Sweasy, J.B. (2012) Colon Cancer-Associated DNA Polymerase β Variant Induces Genomic Instability and Cellular Transformation. Journal of Biological Chemistry, 287, 23840-23849. https://doi.org/10.1074/jbc.m112.362111
|
[30]
|
Bukhvostov, A.A., Pavlov, K.A., Ermakov, K.V., Sidoruk, K.N., Rybakova, I.V., Kuznetsov, D.A. and Rumyantsev, S.A. (2018) An Atypical β-Like DNA Polymerase of Retinoblastoma as a Target for Spin-Selective Inhibitory Cytostatics. Journal of fundamental Biology and Medicine, 2, 50-53.
|
[31]
|
Martin, S.A., McCabe, N., Mullarkey, M., Cummins, R., Burgess, D.J., Nakabeppu, Y., et al. (2010) DNA Polymerases as Potential Therapeutic Targets for Cancers Deficient in the DNA Mismatch Repair Proteins MSH2 or Mlh1. Cancer Cell, 17, 235-248. https://doi.org/10.1016/j.ccr.2009.12.046
|
[32]
|
Zheng, H., Xue, P., Li, M., Zhao, J., Dong, Z. and Zhao, G. (2013) DNA Polymerase Beta Overexpression Correlates with Poor Prognosis in Esophageal Cancer Patients. Chinese Science Bulletin, 58, 3274-3279. https://doi.org/10.1007/s11434-013-5956-2
|
[33]
|
Vedenkin, A.S., Stovbun, S.V., Bukhvostov, A.A., Zlenko, D.V., Stovbun, I.S., Silnikov, V.N., et al. (2023) Anti-Cancer Activity of Ultra-Short Single-Stranded Polydeoxyribonucleotides. Investigational New Drugs, 41, 153-161. https://doi.org/10.1007/s10637-023-01333-y
|
[34]
|
Starcevic, D., Dalal, S. and Sweasy, J.B. (2004) Is There a Link between DNA Polymerase Beta and Cancer? Cell Cycle, 3, 996-999. https://doi.org/10.4161/cc.3.8.1062
|
[35]
|
Jaiswal, A.S., Banerjee, S., Aneja, R., Sarkar, F.H., Ostrov, D.A. and Narayan, S. (2011) DNA Polymerase β as a Novel Target for Chemotherapeutic Intervention of Colorectal Cancer. PLOS ONE, 6, e16691. https://doi.org/10.1371/journal.pone.0016691
|
[36]
|
Canitrot, Y., Cazaux, C., Fréchet, M., Bouayadi, K., Lesca, C., Salles, B., et al. (1998) Overexpression of DNA Polymerase β in Cell Results in a Mutator Phenotype and a Decreased Sensitivity to Anticancer Drugs. Proceedings of the National Academy of Sciences, 95, 12586-12590. https://doi.org/10.1073/pnas.95.21.12586
|
[37]
|
Zhao, W., Wu, M., Lai, Y., Deng, W., Liu, Y. and Zhang, Z. (2013) Involvement of DNA Polymerase Beta Overexpression in the Malignant Transformation Induced by Benzo[a]Pyrene. Toxicology, 309, 73-80. https://doi.org/10.1016/j.tox.2013.04.017
|
[38]
|
Magrin, L., Fanale, D., Brando, C., Fiorino, A., Corsini, L.R., Sciacchitano, R., et al. (2021) POLE, POLD1, and NTHL1: The Last but Not the Least Hereditary Cancer-Predisposing Genes. Oncogene, 40, 5893-5901. https://doi.org/10.1038/s41388-021-01984-2
|
[39]
|
Wang, F., Zhao, Q., Wang, Y., Jin, Y., He, M., Liu, Z., et al. (2019) Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes across Multiple Cancer Types. JAMA Oncology, 5, 1504-1506. https://doi.org/10.1001/jamaoncol.2019.2963
|
[40]
|
Donigan, K.A., Sun, K., Nemec, A.A., Murphy, D.L., Cong, X., Northrup, V., et al. (2012) Human POLB Gene Is Mutated in High Percentage of Colorectal Tumors. Journal of Biological Chemistry, 287, 23830-23839. https://doi.org/10.1074/jbc.m111.324947
|
[41]
|
Wu, Q., Zhou, S., Liu, J., Tong, H., Sun, Y., Tian, W., et al. (2020) Two Polymorphic Mutations in Promoter Region of DNA Polymerase β in Relatively Higher Percentage of Thymic Hyperplasia Patients. Thoracic Cancer, 12, 588-592. https://doi.org/10.1111/1759-7714.13773
|
[42]
|
Beard, W.A. and Wilson, S.H. (2006) Structure and Mechanism of DNA Polymerase β. Chemical Reviews, 106, 361-382. https://doi.org/10.1021/cr0404904
|
[43]
|
Stovbun, S.V., Vedenkin, A.S., Zlenko, D.V., Bukhvostov, A.A. and Kuznetsov, D.A. (2022) Oligomerization of β-Like DNA Polymerases in the Presence of Fe2+ Ions. Bulletin of Experimental Biology and Medicine, 173, 611-614. https://doi.org/10.1007/s10517-022-05597-x
|
[44]
|
Stovbun, S., Ermakov, K., Bukhvostov, A., Vedenkin, A. and Kuznetsov, D. (2019) A New DNA Repair-Related Platform for Pharmaceutical Outlook in Cancer Therapies: Ultrashort Single-Stranded Polynucleotides. Scientia Pharmaceutica, 87, Article 25. https://doi.org/10.3390/scipharm87040025
|
[45]
|
Bukhvostov, A.A. (2013) An Atypical DNA Polymerase Beta Overexpressed in Human Aml/Hl-60 Malignant Cells. Journal of Cancer Science & Therapy, 5, 94-99. https://doi.org/10.4172/1948-5956.1000191
|
[46]
|
Bukhvostov, A.A., Dvornikov, A.S., Ermakov, K.V. and Kuznetsov, D.A. (2019) A Critical Study of Retinoblastoma Case: Shall We Get a Paramagnetic Trend in Chemotherapy? Current Trends in Medicine and Medical Research, 1, 71-77.
|
[47]
|
Chagovetz, A.M., Sweasy, J.B. and Preston, B.D. (1997) Increased Activity and Fidelity of DNA Polymerase β on Single-Nucleotide Gapped DNA. Journal of Biological Chemistry, 272, 27501-27504. https://doi.org/10.1074/jbc.272.44.27501
|
[48]
|
McLeod, J.N., Rooney, A. and Schramm, D.K. (2020) Atypical Catalytic Properties in DNA Polymerase β Family. In: Sharma, K. and Lemke, A.J., Eds., DNA Repair, Perth Pres, 203-221.
|
[49]
|
Rosenbrough, G.S. and Maler, K.D. (2018) mRNA Turnover in Malignancies. Ghent University Press.
|
[50]
|
Buchachenko, A.L. (2009) Magnetic Isotope Effect in Chemistry and Biochemistry. Nova Science Publishers.
|
[51]
|
Buchachenko, A. (2015) Magneto-Biology and Medicine. Nova Biomedical.
|
[52]
|
Wilson, S.H., Beard, W.A., Shock, D.D., Batra, V.K., Cavanaugh, N.A., Prasad, R., et al. (2010) Base Excision Repair and Design of Small Molecule Inhibitors of Human DNA Polymerase β. Cellular and Molecular Life Sciences, 67, 3633-3647. https://doi.org/10.1007/s00018-010-0489-1
|
[53]
|
Patra, A., Pan, P. and Bhattacharyya, N. (2024) Error-Prone DNA Synthesis and Accumulation of Single Nucleotide Gaps by DNA Polymerase β Leads to Cancer: A Bibliometric Analysis. African Journal of Biological Sciences, 6, 2995-3011.
|
[54]
|
Ermakov, K.V., Bukhvostov, A.A., Fursov, V.V. and Kuznetsov, D.A. (2023) Short Aptamer Ligands for β-Like DNApol-Targets. The Docking Efficiency in Silico Model. 4th Pan-Asian Conference on Pharmacology and Toxicology, Dubai, 15-16 March 2023, Abstracts, R108.
|
[55]
|
Sieliwanowicz, B., Bielka, S.J. and Anders, A. (2024) Malignant Tracks in DNA Repair. MUV Verlag, GmbH.
|
[56]
|
Yuhas, S.C., Laverty, D.J., Lee, H., Majumdar, A. and Greenberg, M.M. (2021) Selective Inhibition of DNA Polymerase β by a Covalent Inhibitor. Journal of the American Chemical Society, 143, 8099-8107. https://doi.org/10.1021/jacs.1c02453
|
[57]
|
Barakat, K.H., Gajewski, M.M. and Tuszynski, J.A. (2012) DNA Polymerase Beta (Pol β) Inhibitors: A Comprehensive Overview. Drug Discovery Today, 17, 913-920. https://doi.org/10.1016/j.drudis.2012.04.008
|
[58]
|
Barakat, K., Gajewski, M. and A. Tuszynski, J. (2012) DNA Repair Inhibitors: The Next Major Step to Improve Cancer Therapy. Current Topics in Medicinal Chemistry, 12, 1376-1390. https://doi.org/10.2174/156802612801319070
|
[59]
|
Arian, D., Hedayati, M., Zhou, H., Bilis, Z., Chen, K., DeWeese, T.L., et al. (2014) Irreversible Inhibition of DNA Polymerase β by Small-Molecule Mimics of a DNA Lesion. Journal of the American Chemical Society, 136, 3176-3183. https://doi.org/10.1021/ja411733s
|
[60]
|
Paul, R., Banerjee, S. and Greenberg, M.M. (2017) Synergistic Effects of an Irreversible DNA Polymerase Inhibitor and DNA Damaging Agents on Hela Cells. ACS Chemical Biology, 12, 1576-1583. https://doi.org/10.1021/acschembio.7b00259
|
[61]
|
Gujarathi, S., Zafar, M.K., Liu, X., Eoff, R.L. and Zheng, G. (2020) A Facile Semisynthesis and Evaluation of Garcinoic Acid and Its Analogs for the Inhibition of Human DNA Polymerase Β. Molecules, 25, 5847. https://doi.org/10.3390/molecules25245847
|
[62]
|
Stovbun, S.V., Ermakov, K.V., Bukhvostov, A.A., Vedenkin, A.S. and Kuznetsov, D.A. (2019) ssDna Derivatives: A Promising Pharmacophore Family to Upgrade. Drug Discovery, 13, 95-106.
|
[63]
|
Kuznetsov, D.A. and Buchachenko, A.L. (2018) Nuclear Magnetic Ions of Magnesium, Calcium, and Zinc as a Powerful and Universal Means for Killing Cancer Cells. Russian Journal of Physical Chemistry B, 12, 690-694. https://doi.org/10.1134/s1990793118040267
|
[64]
|
Shatalov, O.A., Grigoryev, M.E., Bukhvostov, A.A. and Kuznetsov, D.A. (2008) A Nuclear Spin Selective Control over the DNA Repair Key Enzyme Might Renovate the Cancer-Fight Paradigm. DNA Polymerase Beta to Engage with a Magnetic Isotope Effect. Journal of Advances in Chemistry, 4, 554-562. https://doi.org/10.24297/jac.v4i3.953
|
[65]
|
Sabo, J., Mirossay, L., Horovcak, L., Sarissky, M., Mirossay, A. and Mojzis, J. (2002) Effects of Static Magnetic Field on Human Leukemic Cell Line HL-60. Bioelectrochemistry, 56, 227-231. https://doi.org/10.1016/s1567-5394(02)00027-0
|
[66]
|
Bukhvostov, A.A., Dvornikov, A.S., Ermakov, K.V., Kurapov, P.B. and Kuznetsov, D.A. (2017) Retinoblastoma: Magnetic Isotope Effects Might Make a Difference in the Current Anti-Cancer Research Strategy. Acta Medica (Hradec Kralove, Czech Republic), 60, 93-96. https://doi.org/10.14712/18059694.2017.101
|
[67]
|
Bukhvostov, A.A., Dvornikov, A.S., Ermakov, K.V. and Kuznetsov, D.A. (2017) Retinoblastoma Case: Shall We Get a Paramagnetic Trend in Chemotherapy? Archives in Cancer Research, 05, 158-162. https://doi.org/10.21767/2254-6081.100158
|
[68]
|
Svistunov, A.A., Napolov, Y.K., Bukhvostov, A.A., Shatalov, O.A., Alyautdin, R.N. and Kuznetsov, D.A. (2013) The Mitochondria Free Iron Content to Limit an Isotope Effect of 25Mg2+ in ATP Synthesis: A Caution. Cell Biochemistry and Biophysics, 66, 417-418. https://doi.org/10.1007/s12013-012-9486-3
|
[69]
|
Stovbun, S.V., Zlenko, D.V., Bukhvostov, A.A., Vedenkin, A.S., Skoblin, A.A., Kuznetsov, D.A., et al. (2023) Magnetic Field and Nuclear Spin Influence on the DNA Synthesis Rate. Scientific Reports, 13, Article No. 465. https://doi.org/10.1038/s41598-022-26744-4
|
[70]
|
Ermakov, K.V., Bukhvostov, A., Vedenkin, A.S., Stovbun, S.V., Dvornikov, A.S., Semenova, A.V. and Kuznetsov, D.A. (2019) The Unique Single-Stranded cfDNA Species in Retnoblastoma Patents Blood Plasma: Beyond New HPLC Technology. Journal of Biomarkers, 5, 1-8.
|
[71]
|
Stovbun, S.V., Vedenkin, A.S., Bukhvostov, A.A., Koroleva, L.S., Silnikov, V.N. and Kuznetsov, D.A. (2020) L, D-Polydeoxyribonucleotides to Provide an Essential Inhibitory Effect on DNA Polymerase Β of Human Myeloid Leukemia HL60 Cells. Biochemistry and Biophysics Reports, 24, Article 100835. https://doi.org/10.1016/j.bbrep.2020.100835
|
[72]
|
Johansen, R.J., Bukhvostov, A.A., Ermakov, K.V. and Kuznetsov, D.A. (2018) Towards a Computational Prediction for the Tumor Selective Accumulation of Paramagnetic Nanoparticles in Retinoblastoma Cells. Bulletin of Russian State Medical University, 6, 68-73. https://doi.org/10.24075/brsmu.2018.078
|
[73]
|
Orlova, M.A., Nikolaev, A.L., Trofimova, T.P., Orlov, A.P., Severin, A.V. and Kalmykov, S.N. (2018) Hydroxyapatite and Porphyrin-Fullerene Nanoparticles for Diagnostic and Therapeutic Delivery of Paramagnetic Ions and Radionuclides. Bulletin of Russian State Medical University, 6, 86-93.
|
[74]
|
Moussa, F. (2018) Fullerene and Derivatives for Biomedical Applications. In: biomaterials, N., Ed., Nanobiomaterials, Elsevier, 113-136.
|
[75]
|
Kuznetsov, D.A., Roumiantsev, S.A., Fallahi, M., Amirshahi, N., Makarov, A.V. and Kardashova, K.S. (2010) A Tumor Selective Chemotherapy. Can This Be Managed by Algorithm Based on the Non-Markovian Population Dynamics? Journal of Medicine and Medical Sciences, 1, 1-9.
|
[76]
|
Berthault, J.S., Lipsky, G.T. and Randall, S.L. (2022) The Rara Avis: Non-Abundant Enzymes in DNA Repair. In: Qassimi, M.S. and Niemer, J.A., Eds., Frontiers in DNA Research, Triangle Park Publ. Inc., 164-179.
|
[77]
|
Pitot, L., Zoller, K. and Charsky, D. (2022) Catalytic Properties of Chromatin Fractions. Purification, Enzyme Detection and Measurement. In: Schramm, K. and Boehm, A., Eds., Separation Techniques in Chromatin Studies CAMAQ Manuals, GmbH, 56-74.
|
[78]
|
Eberhart, M.E., Alexandrova, A.N., Ajmera, P., Bím, D., Chaturvedi, S.S., Vargas, S., et al. (2025) Methods for Theoretical Treatment of Local Fields in Proteins and Enzymes. Chemical Reviews, 125, 3772-3813. https://doi.org/10.1021/acs.chemrev.4c00471
|
[79]
|
Yage, L.G., Katz, T., Valed, S., Jablonski, A. and Menar, K. (2021) Spin-Positive Bivalent Metal Isotopes in Experimental Therapy of Solid Cancers. II. Targeting the DNA Repair Key Enzymes. Bulletin of the Bar Ilan University School of Medicine, 7, L561-L582.
|
[80]
|
Sarkar, S., Rezayat, M., Mazaffarian, R., Boushehri, H. and Amirshahi, N. (2017) The Tissue Specific Marks of Cyclohexyl(C60) Porphirine Related Pharmacokinetcs. A Caution. In: Beitollahi, R.C., et al., Eds., Proceedings of the 2nd Pan-Asian Congress on Pharmacology and Toxicology, Amir Kabir University Publ, 216-228.
|
[81]
|
Patra, A., Nag, A., Chakraborty, A. and Bhattacharyya, N. (2022) PA1 Cells Containing a Truncated DNA Polymerase β Protein Are More Sensitive to Gamma Radiation. Radiation Oncology Journal, 40, 66-78. https://doi.org/10.3857/roj.2021.00689
|
[82]
|
Lyu, J., Wang, S., Balius, T.E., Singh, I., Levit, A., Moroz, Y.S., et al. (2019) Ultra-Large Library Docking for Discovering New Chemotypes. Nature, 566, 224-229. https://doi.org/10.1038/s41586-019-0917-9
|
[83]
|
Mouliere, F., Chandrananda, D., Piskorz, A.M., Moore, E.K., Morris, J., Ahlborn, L.B., et al. (2018) Enhanced Detection of Circulating Tumor DNA by Fragment Size Analysis. Science Translational Medicine, 10, eaat4921. https://doi.org/10.1126/scitranslmed.aat4921
|
[84]
|
Squadrito, F., Bitto, A., Irrera, N., Pizzino, G., Pallio, G., Minutoli, L., et al. (2017) Pharmacological Activity and Clinical Use of PDRN. Frontiers in Pharmacology, 8, Article 224. https://doi.org/10.3389/fphar.2017.00224
|
[85]
|
Ansari, A.S., Santerre, P.J. and Uludağ, H. (2017) Biomaterials for Polynucleotide Delivery to Anchorage-Independent Cells. Journal of Materials Chemistry B, 5, 7238-7261. https://doi.org/10.1039/c7tb01833a
|