[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Office of the National Health Commission (2022) Guidelines for the Diagnosis and Treatment of Pancreatic Cancer (2022 Edition). Journal of Clinical Hepatobiliary Diseases, 38, 1006-1030.
|
[3]
|
Azizian, A., Rühlmann, F., Krause, T., Bernhardt, M., Jo, P., König, A., et al. (2020) CA19-9 for Detecting Recurrence of Pancreatic Cancer. Scientific Reports, 10, Article No. 1332. https://doi.org/10.1038/s41598-020-57930-x
|
[4]
|
Stefanoudakis, D., Frountzas, M., Schizas, D., Michalopoulos, N.V., Drakaki, A. and Toutouzas, K.G. (2024) Significance of TP53, CDKN2A, SMAD4 and KRAS in Pancreatic Cancer. Current Issues in Molecular Biology, 46, 2827-2844. https://doi.org/10.3390/cimb46040177
|
[5]
|
Emran, T.B., Shahriar, A., Mahmud, A.R., Rahman, T., Abir, M.H., Siddiquee, M.F.R., et al. (2022) Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Frontiers in Oncology, 12, Article 891652. https://doi.org/10.3389/fonc.2022.891652
|
[6]
|
Narayanan, S., Vicent, S. and Ponz-Sarvisé, M. (2021) PDAC as an Immune Evasive Disease: Can 3D Model Systems Aid to Tackle This Clinical Problem? Frontiers in Cell and Developmental Biology, 9, Article 787249. https://doi.org/10.3389/fcell.2021.787249
|
[7]
|
Xing, H., Wang, J., Wang, Y., Tong, M., Hu, H., Huang, C., et al. (2018) Diagnostic Value of CA 19-9 and Carcinoembryonic Antigen for Pancreatic Cancer: A Meta-Analysis. Gastroenterology Research and Practice, 2018, Article ID: 8704751. https://doi.org/10.1155/2018/8704751
|
[8]
|
Kim, S., Park, B.K., Seo, J.H., Choi, J., Choi, J.W., Lee, C.K., et al. (2020) Carbohydrate Antigen 19-9 Elevation without Evidence of Malignant or Pancreatobiliary Diseases. Scientific Reports, 10, Article No. 8820. https://doi.org/10.1038/s41598-020-65720-8
|
[9]
|
Meng, Q., Shi, S., Liang, C., Xiang, J., Liang, D., Zhang, B., et al. (2017) Diagnostic Accuracy of a CA125-Based Biomarker Panel in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Journal of Cancer, 8, 3615-3622. https://doi.org/10.7150/jca.18901
|
[10]
|
Luo, X., Lin, X., Lin, R., Yang, Y., Wang, C., Fang, H., et al. (2023) The CA125 Level Postoperative Change Rule and Its Prognostic Significance in Patients with Resectable Pancreatic Cancer. BMC Cancer, 23, Article No. 832. https://doi.org/10.1186/s12885-023-11346-8
|
[11]
|
Napoli, N., Kauffmann, E.F., Ginesini, M., Lami, L., Lombardo, C., Vistoli, F., et al. (2023) Ca 125 Is an Independent Prognostic Marker in Resected Pancreatic Cancer of the Head of the Pancreas. Updates in Surgery, 75, 1481-1496. https://doi.org/10.1007/s13304-023-01587-4
|
[12]
|
Striefler, J.K., Riess, H., Lohneis, P., Bischoff, S., Kurreck, A., Modest, D.P., et al. (2021) Mucin-1 Protein Is a Prognostic Marker for Pancreatic Ductal Adenocarcinoma: Results from the CONKO-001 Study. Frontiers in Oncology, 11, Article 670396. https://doi.org/10.3389/fonc.2021.670396
|
[13]
|
Nath, S., Daneshvar, K., Roy, L.D., Grover, P., Kidiyoor, A., Mosley, L., et al. (2013) MUC1 Induces Drug Resistance in Pancreatic Cancer Cells via Upregulation of Multidrug Resistance Genes. Oncogenesis, 2, e51. https://doi.org/10.1038/oncsis.2013.16
|
[14]
|
Wu, G., Li, L., Liu, M., Chen, C., Wang, G., Jiang, Z., et al. (2022) Therapeutic Effect of a MUC1-Specific Monoclonal Antibody-Drug Conjugates against Pancreatic Cancer Model. Cancer Cell International, 22, Article No. 417. https://doi.org/10.1186/s12935-022-02839-w
|
[15]
|
Murthy, D., Attri, K.S., Suresh, V., Rajacharya, G.H., Valenzuela, C.A., Thakur, R., et al. (2024) The MUC1-HIF-1α Signaling Axis Regulates Pancreatic Cancer Pathogenesis through Polyamine Metabolism Remodeling. Proceedings of the National Academy of Sciences of the United States of America, 121, e1979458175. https://doi.org/10.1073/pnas.2315509121
|
[16]
|
Luo, J. (2021) KRAS Mutation in Pancreatic Cancer. Seminars in Oncology, 48, 10-18. https://doi.org/10.1053/j.seminoncol.2021.02.003
|
[17]
|
Yousef, A., Yousef, M., Chowdhury, S., Abdilleh, K., Knafl, M., Edelkamp, P., et al. (2024) Impact of KRAS Mutations and Co-Mutations on Clinical Outcomes in Pancreatic Ductal Adenocarcinoma. npj Precision Oncology, 8, Article No. 27. https://doi.org/10.1038/s41698-024-00505-0
|
[18]
|
Waters, A.M. and Der, C.J. (2017) KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harbor Perspectives in Medicine, 8, a031435. https://doi.org/10.1101/cshperspect.a031435
|
[19]
|
Pan, M., Jiang, C., Zhang, Z., Achacoso, N., Alexeeff, S., Solorzano, A.V., et al. (2023) tp53 Gain-Of-Function and Non-Gain-Of-Function Mutations Are Associated with Differential Prognosis in Advanced Pancreatic Ductal Adenocarcinoma. JCO Precision Oncology, 7, e2200570. https://doi.org/10.1200/po.22.00570
|
[20]
|
Gu, Y., Ji, Y., Jiang, H. and Qiu, G. (2020) Clinical Effect of Driver Mutations of KRAS, CDKN2A/P16, Tp53, and SMAD4 in Pancreatic Cancer: A Meta-Analysis. Genetic Testing and Molecular Biomarkers, 24, 777-788. https://doi.org/10.1089/gtmb.2020.0078
|
[21]
|
Rosen, M.N., Goodwin, R.A. and Vickers, M.M. (2021) BRCA Mutated Pancreatic Cancer: A Change Is Coming. World Journal of Gastroenterology, 27, 1943-1958. https://doi.org/10.3748/wjg.v27.i17.1943
|
[22]
|
Limijadi, E.K.S., Muniroh, M., Prajoko, Y.W., Tjandra, K.C. and Respati, D.R.P. (2024) The Role of Germline BRCA1 & BRCA2 Mutations in Familial Pancreatic Cancer: A Systematic Review and Meta-Analysis. PLOS ONE, 19, e0299276. https://doi.org/10.1371/journal.pone.0299276
|
[23]
|
Lai, E., Ziranu, P., Spanu, D., Dubois, M., Pretta, A., Tolu, S., et al. (2021) BRCA-Mutant Pancreatic Ductal Adenocarcinoma. British Journal of Cancer, 125, 1321-1332. https://doi.org/10.1038/s41416-021-01469-9
|
[24]
|
Lomberk, G., Dusetti, N., Iovanna, J. and Urrutia, R. (2019) Emerging Epigenomic Landscapes of Pancreatic Cancer in the Era of Precision Medicine. Nature Communications, 10, Article No. 3875. https://doi.org/10.1038/s41467-019-11812-7
|
[25]
|
Rah, B., Banday, M.A., Bhat, G.R., Shah, O.J., Jeelani, H., Kawoosa, F., et al. (2021) Evaluation of Biomarkers, Genetic Mutations, and Epigenetic Modifications in Early Diagnosis of Pancreatic Cancer. World Journal of Gastroenterology, 27, 6093-6109. https://doi.org/10.3748/wjg.v27.i36.6093
|
[26]
|
Liu, X., Guo, C., Xi, Z., Xu, X., Zhao, Q., Li, L., et al. (2021) Histone Methylation in Pancreatic Cancer and Its Clinical Implications. World Journal of Gastroenterology, 27, 6004-6024. https://doi.org/10.3748/wjg.v27.i36.6004
|
[27]
|
Zhang, Z., Tang, Y., Wang, Y., Xu, J., Yang, X., Liu, M., et al. (2024) SIN3B Loss Heats up Cold Tumor Microenvironment to Boost Immunotherapy in Pancreatic Cancer. Advanced Science, 11, e2402244. https://doi.org/10.1002/advs.202402244
|
[28]
|
Rampioni Vinciguerra, G.L., Segatto, I., Carstens, J.L. and Lovisa, S. (2024) Editorial: Catch Me If You Can: Cellular Plasticity in Tumor Progression and Drug Resistance. Frontiers in Cell and Developmental Biology, 12, Article 1470518. https://doi.org/10.3389/fcell.2024.1470518
|
[29]
|
Xu, Z., Zhang, D., Zhang, Z., Luo, W., Shi, R., Yao, J., et al. (2021) Microrna-505, Suppressed by Oncogenic Long Non-Coding RNA LINC01448, Acts as a Novel Suppressor of Glycolysis and Tumor Progression through Inhibiting HK2 Expression in Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 8, Article 625056. https://doi.org/10.3389/fcell.2020.625056
|
[30]
|
Wang, L., Bi, R., Li, L., Zhou, K. and Yin, H. (2021) LncRNA ANRIL Aggravates the Chemoresistance of Pancreatic Cancer Cells to Gemcitabine by Targeting Inhibition of miR-181a and Targeting HMGB1-Induced Autophagy. Aging, 13, 19272-19281. https://doi.org/10.18632/aging.203251
|
[31]
|
Gong, Y., Gong, D., Liu, S., Gong, X., Xiong, J., Zhang, J., et al. (2024) Deciphering the Role of ncRNAs in Pancreatic Cancer Immune Evasion and Drug Resistance: A New Perspective for Targeted Therapy. Frontiers in Immunology, 15, Article 1480572. https://doi.org/10.3389/fimmu.2024.1480572
|
[32]
|
Balaraman, A.K., Moglad, E., Afzal, M., Babu, M.A., Goyal, K., Roopashree, R., et al. (2025) Liquid Biopsies and Exosomal ncRNA: Transforming Pancreatic Cancer Diagnostics and Therapeutics. Clinica Chimica Acta, 567, Article ID: 120105. https://doi.org/10.1016/j.cca.2024.120105
|
[33]
|
Bravo-Vázquez, L.A., Frías-Reid, N., Ramos-Delgado, A.G., Osorio-Pérez, S.M., Zlotnik-Chávez, H.R., Pathak, S., et al. (2023) MicroRNAs and Long Non-Coding RNAs in Pancreatic Cancer: From Epigenetics to Potential Clinical Applications. Translational Oncology, 27, Article ID: 101579. https://doi.org/10.1016/j.tranon.2022.101579
|
[34]
|
Mayerle, J., Kalthoff, H., Reszka, R., Kamlage, B., Peter, E., Schniewind, B., et al. (2017) Metabolic Biomarker Signature to Differentiate Pancreatic Ductal Adenocarcinoma from Chronic Pancreatitis. Gut, 67, 128-137. https://doi.org/10.1136/gutjnl-2016-312432
|
[35]
|
Cao, Y., Zhao, R., Guo, K., Ren, S., Zhang, Y., Lu, Z., et al. (2022) Potential Metabolite Biomarkers for Early Detection of Stage-I Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 11, Article 744667. https://doi.org/10.3389/fonc.2021.744667
|
[36]
|
Zhao, R., Ren, S., Li, C., Guo, K., Lu, Z., Tian, L., et al. (2022) Biomarkers for Pancreatic Cancer Based on Tissue and Serum Metabolomics Analysis in a Multicenter Study. Cancer Medicine, 12, 5158-5171. https://doi.org/10.1002/cam4.5296
|
[37]
|
Liu, Q., Lan, J., Martínez-Jarquín, S., Ge, W. and Zenobi, R. (2024) Screening Metabolic Biomarkers in KRAS Mutated Mouse Acinar and Human Pancreatic Cancer Cells via Single-Cell Mass Spectrometry. Analytical Chemistry, 96, 4918-4924. https://doi.org/10.1021/acs.analchem.3c05741
|
[38]
|
Klatte, D.C.F., Weston, A., Ma, Y., Sledge, H., Bali, A., Bolan, C., et al. (2024) Temporal Trends in Body Composition and Metabolic Markers Prior to Diagnosis of Pancreatic Ductal Adenocarcinoma. Clinical Gastroenterology and Hepatology, 22, 1830-1838.e9. https://doi.org/10.1016/j.cgh.2024.03.038
|
[39]
|
McGuigan, A.J., Coleman, H.G., McCain, R.S., Kelly, P.J., Johnston, D.I., Taylor, M.A., et al. (2021) Immune Cell Infiltrates as Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis. The Journal of Pathology: Clinical Research, 7, 99-112. https://doi.org/10.1002/cjp2.192
|
[40]
|
Digomann, D., Heiduk, M., Reiche, C., Glück, J., Kahlert, C., Mirtschink, P., et al. (2023) Serum Immune Checkpoint Profiling Identifies Soluble CD40 as a Biomarker for Pancreatic Cancer. npj Precision Oncology, 7, Article No. 104. https://doi.org/10.1038/s41698-023-00459-9
|
[41]
|
Su, Y., Wang, F., Lei, Z., Li, J., Ma, M., Yan, Y., et al. (2023) An Integrated Multi-Omics Analysis Identifying Immune Subtypes of Pancreatic Cancer. International Journal of Molecular Sciences, 25, Article 142. https://doi.org/10.3390/ijms25010142
|
[42]
|
Bestari, M.B., Joewono, I.R. and Syam, A.F. (2024) A Quest for Survival: A Review of the Early Biomarkers of Pancreatic Cancer and the Most Effective Approaches at Present. Biomolecules, 14, Article 364. https://doi.org/10.3390/biom14030364
|
[43]
|
Nené, N.R., Ney, A., Nazarenko, T., Blyuss, O., Johnston, H.E., Whitwell, H.J., et al. (2023) Serum Biomarker-Based Early Detection of Pancreatic Ductal Adenocarcinomas with Ensemble Learning. Communications Medicine, 3, Article No. 10. https://doi.org/10.1038/s43856-023-00237-5
|
[44]
|
Amaral, M.J., Oliveira, R.C., Donato, P. and Tralhão, J.G. (2023) Pancreatic Cancer Biomarkers: Oncogenic Mutations, Tissue and Liquid Biopsies, and Radiomics—A Review. Digestive Diseases and Sciences, 68, 2811-2823. https://doi.org/10.1007/s10620-023-07904-6
|
[45]
|
Wu, H., Ou, S., Zhang, H., Huang, R., Yu, S., Zhao, M., et al. (2022) Advances in Biomarkers and Techniques for Pancreatic Cancer Diagnosis. Cancer Cell International, 22, Article No. 220. https://doi.org/10.1186/s12935-022-02640-9
|
[46]
|
Yang, H., Li, W., Ren, L., Yang, Y., Zhang, Y., Ge, B., et al. (2023) Progress on Diagnostic and Prognostic Markers of Pancreatic Cancer. Oncology Research, 31, 83-99. https://doi.org/10.32604/or.2023.028905
|
[47]
|
Yang, Z., Li, H., Hao, J., Mei, H., Qiu, M., Wang, H., et al. (2024) EPYC Functions as a Novel Prognostic Biomarker for Pancreatic Cancer. Scientific Reports, 14, Article No. 719. https://doi.org/10.1038/s41598-024-51478-w
|
[48]
|
Li, W., Li, T., Sun, C., Du, Y., Chen, L., Du, C., et al. (2022) Identification and Prognostic Analysis of Biomarkers to Predict the Progression of Pancreatic Cancer Patients. Molecular Medicine, 28, Article No. 43. https://doi.org/10.1186/s10020-022-00467-8
|
[49]
|
Khomiak, A., Brunner, M., Kordes, M., Lindblad, S., Miksch, R.C., Öhlund, D., et al. (2020) Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers, 12, Article 3234. https://doi.org/10.3390/cancers12113234
|
[50]
|
Brozos-Vázquez, E., Toledano-Fonseca, M., Costa-Fraga, N., García-Ortiz, M.V., Díaz-Lagares, Á., Rodríguez-Ariza, A., et al. (2024) Pancreatic Cancer Biomarkers: A Pathway to Advance in Personalized Treatment Selection. Cancer Treatment Reviews, 125, Article ID: 102719. https://doi.org/10.1016/j.ctrv.2024.102719
|
[51]
|
Merz, V., Mangiameli, D., Zecchetto, C., Quinzii, A., Pietrobono, S., Messina, C., et al. (2022) Predictive Biomarkers for a Personalized Approach in Resectable Pancreatic Cancer. Frontiers in Surgery, 9, Article 866173. https://doi.org/10.3389/fsurg.2022.866173
|
[52]
|
Huang, X., Zhang, G., Tang, T., Gao, X. and Liang, T. (2022) Personalized Pancreatic Cancer Therapy: From the Perspective of mRNA Vaccine. Military Medical Research, 9, Article No. 53. https://doi.org/10.1186/s40779-022-00416-w
|
[53]
|
Shaya, J., Kato, S., Adashek, J.J., Patel, H., Fanta, P.T., Botta, G.P., et al. (2023) Personalized Matched Targeted Therapy in Advanced Pancreatic Cancer: A Pilot Cohort Analysis. npj Genomic Medicine, 8, Article No. 1. https://doi.org/10.1038/s41525-022-00346-5
|