[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Wang, Y., Yan, Q., Fan, C., Mo, Y., Wang, Y., Li, X., et al. (2023) Overview and Countermeasures of Cancer Burden in China. Science China Life Sciences, 66, 2515-2526. https://doi.org/10.1007/s11427-022-2240-6
|
[3]
|
Chen, Y., Chan, A.T.C., Le, Q., Blanchard, P., Sun, Y. and Ma, J. (2019) Nasopharyngeal Carcinoma. The Lancet, 394, 64-80. https://doi.org/10.1016/s0140-6736(19)30956-0
|
[4]
|
Juarez-Vignon Whaley, J.J., Afkhami, M., Onyshchenko, M., Massarelli, E., Sampath, S., Amini, A., et al. (2023) Recurrent/Metastatic Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Heading? Current Treatment Options in Oncology, 24, 1138-1166. https://doi.org/10.1007/s11864-023-01101-3
|
[5]
|
Chak, P., Kam, N., Choi, T., Dai, W. and Kwong, D.L. (2024) Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers, 16, Article No. 919. https://doi.org/10.3390/cancers16050919
|
[6]
|
Tenchov, R., Sasso, J.M., Wang, X., Liaw, W., Chen, C. and Zhou, Q.A. (2022) Exosomes-Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano, 16, 17802-17846. https://doi.org/10.1021/acsnano.2c08774
|
[7]
|
Kimiz-Gebologlu, I. and Oncel, S.S. (2022) Exosomes: Large-Scale Production, Isolation, Drug Loading Efficiency, and Biodistribution and Uptake. Journal of Controlled Release, 347, 533-543. https://doi.org/10.1016/j.jconrel.2022.05.027
|
[8]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[9]
|
Lai, J.J., Chau, Z.L., Chen, S., Hill, J.J., Korpany, K.V., Liang, N., et al. (2022) Exosome Processing and Characterization Approaches for Research and Technology Development. Advanced Science, 9, e2103222. https://doi.org/10.1002/advs.202103222
|
[10]
|
Witwer, K.W., Buzás, E.I., Bemis, L.T., Bora, A., Lässer, C., Lötvall, J., et al. (2013) Standardization of Sample Collection, Isolation and Analysis Methods in Extracellular Vesicle Research. Journal of Extracellular Vesicles, 2, Article No. 20360. https://doi.org/10.3402/jev.v2i0.20360
|
[11]
|
Li, J., Wang, J. and Chen, Z. (2025) Emerging Role of Exosomes in Cancer Therapy: Progress and Challenges. Molecular Cancer, 24, Article No. 13. https://doi.org/10.1186/s12943-024-02215-4
|
[12]
|
Peng, Y., Yang, Y., Li, Y., Shi, T., Luan, Y. and Yin, C. (2023) Exosome and Virus Infection. Frontiers in Immunology, 14, Article 1154217. https://doi.org/10.3389/fimmu.2023.1154217
|
[13]
|
Trams, E.G., Lauter, C.J., Norman Salem, J. and Heine, U. (1981) Exfoliation of Membrane ECTO-Enzymes in the Form of Micro-Vesicles. Biochimica et Biophysica Acta (BBA)—Biomembranes, 645, 63-70. https://doi.org/10.1016/0005-2736(81)90512-5
|
[14]
|
Harding, C., Heuser, J. and Stahl, P. (1983) Receptor-Mediated Endocytosis of Transferrin and Recycling of the Transferrin Receptor in Rat Reticulocytes. The Journal of cell biology, 97, 329-339. https://doi.org/10.1083/jcb.97.2.329
|
[15]
|
Shen, M., Shen, Y., Fan, X., Men, R., Ye, T. and Yang, L. (2020) Roles of Macrophages and Exosomes in Liver Diseases. Frontiers in Medicine, 7, Article 583691. https://doi.org/10.3389/fmed.2020.583691
|
[16]
|
Yoshizaki, T., Kondo, S., Wakisaka, N., Murono, S., Endo, K., Sugimoto, H., et al. (2013) Pathogenic Role of Epstein-Barr Virus Latent Membrane Protein-1 in the Development of Nasopharyngeal Carcinoma. Cancer Letters, 337, 1-7. https://doi.org/10.1016/j.canlet.2013.05.018
|
[17]
|
Wu, X., Zhou, Z., Xu, S., Liao, C., Chen, X., Li, B., et al. (2020) Extracellular Vesicle Packaged LMP1-Activated Fibroblasts Promote Tumor Progression via Autophagy and Stroma-Tumor Metabolism Coupling. Cancer Letters, 478, 93-106. https://doi.org/10.1016/j.canlet.2020.03.004
|
[18]
|
Liao, C., Zhou, Q., Zhang, Z., Wu, X., Zhou, Z., Li, B., et al. (2020) Epstein-Barr Virus‐encoded Latent Membrane Protein 1 Promotes Extracellular Vesicle Secretion through Syndecan-2 and Synaptotagmin-Like-4 in Nasopharyngeal Carcinoma Cells. Cancer Science, 111, 857-868. https://doi.org/10.1111/cas.14305
|
[19]
|
Hurwitz, S.N., Nkosi, D., Conlon, M.M., York, S.B., Liu, X., Tremblay, D.C., et al. (2017) CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. Journal of Virology, 91, e02251-16. https://doi.org/10.1128/jvi.02251-16
|
[20]
|
Zhang, Z., Yu, X., Zhou, Z., Li, B., Peng, J., Wu, X., et al. (2019) LMP1-Positive Extracellular Vesicles Promote Radioresistance in Nasopharyngeal Carcinoma Cells through P38 MAPK Signaling. Cancer Medicine, 8, 6082-6094. https://doi.org/10.1002/cam4.2506
|
[21]
|
Chen, X., Xie, D., Zhao, Q. and You, Z. (2017) MicroRNAs and Complex Diseases: From Experimental Results to Computational Models. Briefings in Bioinformatics, 20, 515-539. https://doi.org/10.1093/bib/bbx130
|
[22]
|
Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article No. 7167. https://doi.org/10.3390/ijms23137167
|
[23]
|
Zhou, X., Xu, H., Huang, G. and Lin, B. (2024) Nasopharyngeal Carcinoma Derived Exosomes Regulate the Proliferation and Migration of Nasopharyngeal Carcinoma Cells by Mediating the miR-99a-5p BAZ2A Axis. Brazilian Journal of Otorhinolaryngology, 90, Article ID: 101343. https://doi.org/10.1016/j.bjorl.2023.101343
|
[24]
|
Shan, Y., Fan, H., Chai, L., Kong, X., Xiao, H., You, M., et al. (2024) Tumor-Derived Exosomal miR-103a-3p Promotes Vascular Permeability and Proliferation by Targeting ZO-1 and ACOX-1 in Nasopharyngeal Carcinoma. Translational Cancer Research, 13, 4896-4912. https://doi.org/10.21037/tcr-23-2359
|
[25]
|
Cheng, Q., Li, Q., Xu, L. and Jiang, H. (2021) Exosomal microRNA-301a-3p Promotes the Proliferation and Invasion of Nasopharyngeal Carcinoma Cells by Targeting BTG1 mRNA. Molecular Medicine Reports, 23, Article No. 328. https://doi.org/10.3892/mmr.2021.11967
|
[26]
|
Yin, H., Qiu, X., Shan, Y., You, B., Xie, L., Zhang, P., et al. (2021) HIF‐1α Downregulation of miR-433-3p in Adipocyte‐Derived Exosomes Contributes to NPC Progression via Targeting SCD1. Cancer Science, 112, 1457-1470. https://doi.org/10.1111/cas.14829
|
[27]
|
Ye, S., Li, Z., Luo, D., Huang, B., Chen, Y., Zhang, X., et al. (2014) Tumor-Derived Exosomes Promote Tumor Progression and T-Cell Dysfunction through the Regulation of Enriched Exosomal microRNAs in Human Nasopharyngeal Carcinoma. Oncotarget, 5, 5439-5452. https://doi.org/10.18632/oncotarget.2118
|
[28]
|
Han, C., Zhang, C., Wang, H. and Zhao, L. (2021) Exosome-Mediated Communication between Tumor Cells and Tumor-Associated Macrophages: Implications for Tumor Microenvironment. OncoImmunology, 10, Article ID: 1887552. https://doi.org/10.1080/2162402x.2021.1887552
|
[29]
|
Chen, W., Bao, L., Ren, Q., Zhang, Z., Yi, L., Lei, W., et al. (2023) SCARB1 in Extracellular Vesicles Promotes NPC Metastasis by Co-Regulating M1 and M2 Macrophage Function. Cell Death Discovery, 9, Article No. 323. https://doi.org/10.1038/s41420-023-01621-9
|
[30]
|
Yao, H., Tian, L., Yan, B., Yang, L. and Li, Y. (2022) LncRNA TP73‐AS1 Promotes Nasopharyngeal Carcinoma Progression through Targeting miR-342-3p and M2 Polarization via Exosomes. Cancer Cell International, 22, Article No. 16. https://doi.org/10.1186/s12935-021-02418-5
|
[31]
|
Xu, H., Russell, S.N., Steiner, K., O’Neill, E. and Jones, K.I. (2024) Targeting PI3K-Gamma in Myeloid Driven Tumour Immune Suppression: A Systematic Review and Meta-Analysis of the Preclinical Literature. Cancer Immunology, Immunotherapy, 73, Article No. 204. https://doi.org/10.1007/s00262-024-03779-2
|
[32]
|
Chen, W., Zuo, F., Zhang, K., Xia, T., Lei, W., Zhang, Z., et al. (2021) Exosomal MIF Derived from Nasopharyngeal Carcinoma Promotes Metastasis by Repressing Ferroptosis of Macrophages. Frontiers in Cell and Developmental Biology, 9, Article 791187. https://doi.org/10.3389/fcell.2021.791187
|
[33]
|
Shan, Y., You, B., Shi, S., Shi, W., Zhang, Z., Zhang, Q., et al. (2018) Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death & Disease, 9, Article No. 382. https://doi.org/10.1038/s41419-018-0425-0
|
[34]
|
Aga, M., Bentz, G.L., Raffa, S., Torrisi, M.R., Kondo, S., Wakisaka, N., et al. (2014) Exosomal HIF1α Supports Invasive Potential of Nasopharyngeal Carcinoma-Associated LMP1-Positive Exosomes. Oncogene, 33, 4613-4622. https://doi.org/10.1038/onc.2014.66
|
[35]
|
Zhuang, T., Wang, S., Yu, X., He, X., Guo, H. and Ou, C. (2024) Current Status and Future Perspectives of Platelet-Derived Extracellular Vesicles in Cancer Diagnosis and Treatment. Biomarker Research, 12, Article No. 88. https://doi.org/10.1186/s40364-024-00639-0
|
[36]
|
Li, F., Xu, T., Chen, P., Sun, R., Li, C., Zhao, X., et al. (2022) Platelet-Derived Extracellular Vesicles Inhibit Ferroptosis and Promote Distant Metastasis of Nasopharyngeal Carcinoma by Upregulating ITGB3. International Journal of Biological Sciences, 18, 5858-5872. https://doi.org/10.7150/ijbs.76162
|
[37]
|
Żmigrodzka, M., Witkowska-Piłaszewicz, O. and Winnicka, A. (2020) Platelets Extracellular Vesicles as Regulators of Cancer Progression—An Updated Perspective. International Journal of Molecular Sciences, 21, Article No. 5195. https://doi.org/10.3390/ijms21155195
|
[38]
|
Xie, H., Jiang, M., Jiang, K., Tang, L., Chen, Q., Yang, A., et al. (2024) Communication between Cancer Cell Subtypes by Exosomes Contributes to Nasopharyngeal Carcinoma Metastasis and Poor Prognosis. Precision Clinical Medicine, 7, pbae018. https://doi.org/10.1093/pcmedi/pbae018
|
[39]
|
Li, F., Zhao, X., Sun, R., Ou, J., Huang, J., Yang, N., et al. (2020) EGFR‐Rich Extracellular Vesicles Derived from Highly Metastatic Nasopharyngeal Carcinoma Cells Accelerate Tumour Metastasis through PI3K/AKT Pathway‐Suppressed ROS. Journal of Extracellular Vesicles, 10, e12003. https://doi.org/10.1002/jev2.12003
|
[40]
|
Deng, Y., Liu, X., Huang, Y., Ye, J., He, Q., Luo, Y., et al. (2023) STIM1-Regulated Exosomal EBV-LMP1 Empowers Endothelial Cells with an Aggressive Phenotype by Activating the Akt/ERK Pathway in Nasopharyngeal Carcinoma. Cellular Oncology, 46, 987-1000. https://doi.org/10.1007/s13402-023-00790-0
|
[41]
|
Wei, J., Ye, J., Luo, Y., Weng, J., He, Q., Liu, F., et al. (2020) EB Virus Promotes Metastatic Potential by Boosting STIM1-Dependent Ca2+ Signaling in Nasopharyngeal Carcinoma Cells. Cancer Letters, 478, 122-132. https://doi.org/10.1016/j.canlet.2020.03.005
|
[42]
|
You, B., Pan, S., Gu, M., Zhang, K., Xia, T., Zhang, S., et al. (2022) Extracellular Vesicles Rich in HAX1 Promote Angiogenesis by Modulating ITGB6 Translation. Journal of Extracellular Vesicles, 11, e12221. https://doi.org/10.1002/jev2.12221
|
[43]
|
You, B., Cao, X., Shao, X., Ni, H., Shi, S., Shan, Y., et al. (2016) Clinical and Biological Significance of HAX-1 Overexpression in Nasopharyngeal Carcinoma. Oncotarget, 7, 12505-12524. https://doi.org/10.18632/oncotarget.7274
|
[44]
|
Yu, C., Xue, B., Li, J. and Zhang, Q. (2022) Tumor Cell-Derived Exosome RNF126 Affects the Immune Microenvironment and Promotes Nasopharyngeal Carcinoma Progression by Regulating PTEN Ubiquitination. Apoptosis, 27, 590-605. https://doi.org/10.1007/s10495-022-01738-9
|
[45]
|
You, Y., Shan, Y., Chen, J., Yue, H., You, B., Shi, S., et al. (2015) Matrix Metalloproteinase 13-Containing Exosomes Promote Nasopharyngeal Carcinoma Metastasis. Cancer Science, 106, 1669-1677. https://doi.org/10.1111/cas.12818
|
[46]
|
Jasim, S.A., Al-Hawary, S.I.S., Kaur, I., Ahmad, I., Hjazi, A., Petkov, I., et al. (2024) Critical Role of Exosome, Exosomal Non-Coding RNAs and Non-Coding RNAs in Head and Neck Cancer Angiogenesis. Pathology—Research and Practice, 256, Article ID: 155238. https://doi.org/10.1016/j.prp.2024.155238
|
[47]
|
Paskeh, M.D.A., Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M.J., et al. (2022) Emerging Role of Exosomes in Cancer Progression and Tumor Microenvironment Remodeling. Journal of Hematology & Oncology, 15, Article No. 83. https://doi.org/10.1186/s13045-022-01305-4
|
[48]
|
Gu, M., Li, L., Zhang, Z., Chen, J., Zhang, W., Zhang, J., et al. (2017) PFKFB3 Promotes Proliferation, Migration and Angiogenesis in Nasopharyngeal Carcinoma. Journal of Cancer, 8, 3887-3896. https://doi.org/10.7150/jca.19112
|
[49]
|
Chan, Y., Zhang, H., Liu, P., Tsao, S., Lung, M.L., Mak, N., et al. (2015) Proteomic Analysis of Exosomes from Nasopharyngeal Carcinoma Cell Identifies Intercellular Transfer of Angiogenic Proteins. International Journal of Cancer, 137, 1830-1841. https://doi.org/10.1002/ijc.29562
|
[50]
|
Fang, J., Ge, X., Xu, W., Xie, J., Qin, Z., Shi, L., et al. (2019) Bioinformatics Analysis of the Prognosis and Biological Significance of HMGB1, HMGB2, and HMGB3 in Gastric Cancer. Journal of Cellular Physiology, 235, 3438-3446. https://doi.org/10.1002/jcp.29233
|
[51]
|
Zhong, X., Zhang, S., Zhang, Y., Jiang, Z., Li, Y., Chang, J., et al. (2021) HMGB3 Is Associated with an Unfavorable Prognosis of Neuroblastoma and Promotes Tumor Progression by Mediating TPX2. Frontiers in Cell and Developmental Biology, 9, Article 769547. https://doi.org/10.3389/fcell.2021.769547
|
[52]
|
Zhang, K., Liu, D., Zhao, J., Shi, S., He, X., Da, P., et al. (2021) Nuclear Exosome HMGB3 Secreted by Nasopharyngeal Carcinoma Cells Promotes Tumour Metastasis by Inducing Angiogenesis. Cell Death & Disease, 12, Article No. 554. https://doi.org/10.1038/s41419-021-03845-y
|
[53]
|
Li, D., Chen, X., Wang, L., Wang, J., Li, J., Zhou, Z., et al. (2022) Exosomal HMGA2 Protein from EBV-Positive NPC Cells Destroys Vascular Endothelial Barriers and Induces Endothelial-to-Mesenchymal Transition to Promote Metastasis. Cancer Gene Therapy, 29, 1439-1451. https://doi.org/10.1038/s41417-022-00453-6
|
[54]
|
Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005) The Biology of Vascular Endothelial Growth Factors. Cardiovascular Research, 65, 550-563. https://doi.org/10.1016/j.cardiores.2004.12.002
|
[55]
|
Chen, X., Weng, Y., Li, Y., Fu, W., Huang, Z., Pan, Y., et al. (2022) Upregulation of PNCK Promotes Metastasis and Angiogenesis via Activating NF-κB/VEGF Pathway in Nasopharyngeal Carcinoma. Journal of Oncology, 2022, Article ID: 8541582. https://doi.org/10.1155/2022/8541582
|
[56]
|
Ferreira, I.G., Pucca, M.B., Oliveira, I.S.d., Cerni, F.A., Jacob, B.d.C.d.S. and Arantes, E.C. (2021) Snake Venom Vascular Endothelial Growth Factors (svVEGFs): Unravelling Their Molecular Structure, Functions, and Research Potential. Cytokine & Growth Factor Reviews, 60, 133-143. https://doi.org/10.1016/j.cytogfr.2021.05.003
|
[57]
|
Ahmad, A. and Nawaz, M.I. (2022) Molecular Mechanism of VEGF and Its Role in Pathological Angiogenesis. Journal of Cellular Biochemistry, 123, 1938-1965. https://doi.org/10.1002/jcb.30344
|
[58]
|
Al Kawas, H., Saaid, I., Jank, P., Westhoff, C.C., Denkert, C., Pross, T., et al. (2022) How VEGF-A and Its Splice Variants Affect Breast Cancer Development—Clinical Implications. Cellular Oncology, 45, 227-239. https://doi.org/10.1007/s13402-022-00665-w
|
[59]
|
Zhou, T., Zhao, S., Tang, S., Wang, Y., Wu, R., Zeng, X., et al. (2023) Guggulsterone Promotes Nasopharyngeal Carcinoma Cells Exosomal Circfip1L1 to Mediate miR-125a-5p/VEGFA Affecting Tumor Angiogenesis. Current Molecular Pharmacology, 16, 870-880. https://doi.org/10.2174/1874467216666230111112116
|
[60]
|
wu, A., Luo, N., Xu, y., Du, N., Li, L. and Liu, Q. (2022) Exosomal LBH Inhibits Epithelial-Mesenchymal Transition and Angiogenesis in Nasopharyngeal Carcinoma via Downregulating VEGFA Signaling. International Journal of Biological Sciences, 18, 242-260. https://doi.org/10.7150/ijbs.66506
|
[61]
|
Wang, J., Jiang, Q., Faleti, O.D., Tsang, C., Zhao, M., Wu, G., et al. (2020) Exosomal Delivery of Antagomirs Targeting Viral and Cellular MicroRNAs Synergistically Inhibits Cancer Angiogenesis. Molecular Therapy—Nucleic Acids, 22, 153-165. https://doi.org/10.1016/j.omtn.2020.08.017
|
[62]
|
Tian, X., Liu, Y., Wang, Z. and Wu, S. (2021) miR-144 Delivered by Nasopharyngeal Carcinoma-Derived Evs Stimulates Angiogenesis through the FBXW7/HIF-1α/VEGF-A Axis. Molecular Therapy—Nucleic Acids, 24, 1000-1011. https://doi.org/10.1016/j.omtn.2021.03.016
|
[63]
|
Duan, B., Shi, S., Yue, H., You, B., Shan, Y., Zhu, Z., et al. (2019) Exosomal miR-17-5p Promotes Angiogenesis in Nasopharyngeal Carcinoma via Targeting BAMBI. Journal of Cancer, 10, 6681-6692. https://doi.org/10.7150/jca.30757
|
[64]
|
Reda El Sayed, S., Cristante, J., Guyon, L., Denis, J., Chabre, O. and Cherradi, N. (2021) MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers, 13, Article No. 2680. https://doi.org/10.3390/cancers13112680
|
[65]
|
Zhang, C., Chen, W., Pan, S., Zhang, S., Xie, H., Zhang, Z., et al. (2023) SEVs-Mediated miR-6750 Transfer Inhibits Pre-Metastatic Niche Formation in Nasopharyngeal Carcinoma by Targeting M6PR. Cell Death Discovery, 9, Article No. 2. https://doi.org/10.1038/s41420-022-01262-4
|
[66]
|
Xie, L., Zhang, K., You, B., Yin, H., Zhang, P., Shan, Y., et al. (2023) Hypoxic Nasopharyngeal Carcinoma‐Derived Exosomal miR-455 Increases Vascular Permeability by Targeting ZO‐1 to Promote Metastasis. Molecular Carcinogenesis, 62, 803-819. https://doi.org/10.1002/mc.23525
|
[67]
|
Krotofil, M., Tota, M., Siednienko, J. and Donizy, P. (2024) Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers, 16, Article No. 3539. https://doi.org/10.3390/cancers16203539
|
[68]
|
Xu, S., Bai, J., Zhuan, Z., Li, B., Zhang, Z., Wu, X., et al. (2018) EBVLMP1 Is Involved in Vasculogenic Mimicry Formation via VEGFA/VEGFR1 Signaling in Nasopharyngeal Carcinoma. Oncology Reports, 40, 377-384. https://doi.org/10.3892/or.2018.6414
|
[69]
|
Wang, J., Liu, Y., Zhang, Y., Li, X., Fang, M. and Qian, D. (2023) Targeting Exosomes Enveloped EBV-miR-BART1-5p-antagomiRs for NPC Therapy through Both Anti-Vasculogenic Mimicry and Anti‐Angiogenesis. Cancer Medicine, 12, 12608-12621. https://doi.org/10.1002/cam4.5941
|
[70]
|
Zhong, Q., Nie, Q., Wu, R. and Huang, Y. (2023) Exosomal miR-18a-5p Promotes EMT and Metastasis of NPC Cells via Targeting BTG3 and Activating the Wnt/β-Catenin Signaling Pathway. Cell Cycle, 22, 1544-1562. https://doi.org/10.1080/15384101.2023.2216508
|
[71]
|
Li, J., Zhang, G., Liu, C., Xiang, X., Le, M.T.N., Sethi, G., et al. (2022) The Potential Role of Exosomal circRNAs in the Tumor Microenvironment: Insights into Cancer Diagnosis and Therapy. Theranostics, 12, 87-104. https://doi.org/10.7150/thno.64096
|
[72]
|
Zhang, S., Cai, J., Ji, Y., Zhou, S., Miao, M., Zhu, R., et al. (2022) Tumor-Derived Exosomal lincRNA ROR Promotes Angiogenesis in Nasopharyngeal Carcinoma. Molecular and Cellular Probes, 66, Article ID: 101868. https://doi.org/10.1016/j.mcp.2022.101868
|
[73]
|
Yang, W., Tan, S., Yang, L., Chen, X., Yang, R., Oyang, L., et al. (2022) Exosomal miR-205-5p Enhances Angiogenesis and Nasopharyngeal Carcinoma Metastasis by Targeting Desmocollin-2. Molecular Therapy—Oncolytics, 24, 612-623. https://doi.org/10.1016/j.omto.2022.02.008
|
[74]
|
Lu, J., Liu, Q., Wang, F., Tan, J., Deng, Y., Peng, X., et al. (2018) Exosomal miR-9 Inhibits Angiogenesis by Targeting MDK and Regulating PDK/AKT Pathway in Nasopharyngeal Carcinoma. Journal of Experimental & Clinical Cancer Research, 37, Article No. 147. https://doi.org/10.1186/s13046-018-0814-3
|
[75]
|
Zhou, S.K., Gao, F., Zhong, Z.S. and Yao, H. (2020) Long Non-Coding RNA Colon Cancer Associated Transcript-2 from Nasopharyngeal Carcinoma-Derived Exosomes Promotes Angiogenesis. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 55, 944-951. https://doi.org/10.3760/cma.j.cn115330-20200423-00322
|
[76]
|
Chen, X., Li, D., Huang, Z., Zhong, S. and Cai, L. (2020) Effect of Exosomes Derived from Human Epstein-Barr Virus-Positive Nasopharyngeal Carcinoma Cells on Lymphangiogenesis and Lymph Node Metastasis. Journal of Southern Medical University, 40, 1776-1783. https://doi.org/10.12122/j.issn.1673-4254.2020.12.12
|
[77]
|
Cheng, S., Li, Z., He, J., Fu, S., Duan, Y., Zhou, Q., et al. (2019) Epstein-Barr Virus Noncoding RNAs from the Extracellular Vesicles of Nasopharyngeal Carcinoma (NPC) Cells Promote Angiogenesis via TLR3/RIG-I-Mediated VCAM-1 Expression. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 1201-1213. https://doi.org/10.1016/j.bbadis.2019.01.015
|
[78]
|
Bao, L., You, B., Shi, S., Shan, Y., Zhang, Q., Yue, H., et al. (2018) Metastasis-Associated miR-23a from Nasopharyngeal Carcinoma-Derived Exosomes Mediates Angiogenesis by Repressing a Novel Target Gene TSGA10. Oncogene, 37, 2873-2889. https://doi.org/10.1038/s41388-018-0183-6
|
[79]
|
Liu, J., Liu, Y., Yang, C., Liu, J. and Hao, J. (2023) Comprehensive Analysis for the Immune Related Biomarkers of Platinum-Based Chemotherapy in Ovarian Cancer. Translational Oncology, 37, Article ID: 101762. https://doi.org/10.1016/j.tranon.2023.101762
|
[80]
|
Mondal, P. and Meeran, S.M. (2021) microRNAs in Cancer Chemoresistance: The Sword and the Shield. Non-Coding RNA Research, 6, 200-210. https://doi.org/10.1016/j.ncrna.2021.12.001
|
[81]
|
Zhao, S., Tang, Y., Wang, R. and Najafi, M. (2022) Mechanisms of Cancer Cell Death Induction by Paclitaxel: An Updated Review. Apoptosis, 27, 647-667. https://doi.org/10.1007/s10495-022-01750-z
|
[82]
|
Mahabady, M.K., Mirzaei, S., Saebfar, H., Gholami, M.H., Zabolian, A., Hushmandi, K., et al. (2022) Noncoding RNAs and Their Therapeutics in Paclitaxel Chemotherapy: Mechanisms of Initiation, Progression, and Drug Sensitivity. Journal of Cellular Physiology, 237, 2309-2344. https://doi.org/10.1002/jcp.30751
|
[83]
|
Yan, J., Wu, L., Zheng, M. and Pan, F. (2024) Exosome-Mediated Transfer of ALDH2 in Nasopharyngeal Carcinoma Cells Confers Increased Resistance to Paclitaxel Treatment. Discovery Medicine, 36, 1210-1220. https://doi.org/10.24976/discov.med.202436185.111
|
[84]
|
Yuan, F. and Zhou, Z.F. (2021) Exosomes Derived from Taxol-Resistant Nasopharyngeal Carcinoma (NPC) Cells Transferred DDX53 to NPC Cells and Promoted Cancer Resistance to Taxol. European Review for Medical and Pharmacological Sciences, 25, 127-138. https://doi.org/10.26355/eurrev_202101_24375
|
[85]
|
Cui, X., Chen, Y., Zhao, L. and Ding, X. (2023) Extracellular Vesicles Derived from Paclitaxel-Sensitive Nasopharyngeal Carcinoma Cells Deliver miR-183-5p and Impart Paclitaxel Sensitivity through a Mechanism Involving P-gp. Cell Biology and Toxicology, 39, 2953-2970. https://doi.org/10.1007/s10565-023-09812-x
|
[86]
|
Mondal, P. and Meeran, S.M. (2023) Emerging Role of Non-Coding RNAs in Resistance to Platinum-Based Anti-Cancer Agents in Lung Cancer. Frontiers in Pharmacology, 14, Article 1105484. https://doi.org/10.3389/fphar.2023.1105484
|
[87]
|
Ai, J., Tan, G., Li, W., Liu, H., Li, T., Zhang, G., et al. (2022) Exosomes Loaded with circPARD3 Promotes EBV-miR-BART4-Induced Stemness and Cisplatin Resistance in Nasopharyngeal Carcinoma Side Population Cells through the miR-579-3p/SIRT1/SSRP1 Axis. Cell Biology and Toxicology, 39, 537-556. https://doi.org/10.1007/s10565-022-09738-w
|
[88]
|
Xia, T., Tian, H., Zhang, K., Zhang, S., Chen, W., Shi, S., et al. (2021) Exosomal ERp44 Derived from Er-Stressed Cells Strengthens Cisplatin Resistance of Nasopharyngeal Carcinoma. BMC Cancer, 21, Article No. 1003. https://doi.org/10.1186/s12885-021-08712-9
|
[89]
|
Li, J., Hu, C., Chao, H., Zhang, Y., Li, Y., Hou, J., et al. (2021) Exosomal Transfer of miR-106a-5p Contributes to Cisplatin Resistance and Tumorigenesis in Nasopharyngeal Carcinoma. Journal of Cellular and Molecular Medicine, 25, 9183-9198. https://doi.org/10.1111/jcmm.16801
|
[90]
|
Qin, X., Guo, H., Wang, X., Zhu, X., Yan, M., Wang, X., et al. (2019) Exosomal miR-196a Derived from Cancer-Associated Fibroblasts Confers Cisplatin Resistance in Head and Neck Cancer through Targeting CDKN1B and ING5. Genome Biology, 20, Article No. 12. https://doi.org/10.1186/s13059-018-1604-0
|
[91]
|
Krishnaraj, J., Yamamoto, T. and Ohki, R. (2023) P53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers, 15, Article No. 3399. https://doi.org/10.3390/cancers15133399
|
[92]
|
Li, W., Xing, X., Shen, C. and Hu, C. (2024) Tumor Cell-Derived Exosomal miR-193b-3p Promotes Tumor-Associated Macrophage Activation to Facilitate Nasopharyngeal Cancer Cell Invasion and Radioresistances. Heliyon, 10, e30808. https://doi.org/10.1016/j.heliyon.2024.e30808
|
[93]
|
Zhu, C., Jiang, X., Xiao, H. and Guan, J. (2022) Tumor-Derived Extracellular Vesicles Inhibit HGF/c-Met and EGF/EGFR Pathways to Accelerate the Radiosensitivity of Nasopharyngeal Carcinoma Cells via microRNA-142-5p Delivery. Cell Death Discovery, 8, Article No. 17. https://doi.org/10.1038/s41420-021-00794-5
|
[94]
|
Wang, X., Xiang, Z., Zhang, Y., Tu, C.R., Huang, C., Chung, Y., et al. (2025) CD25 Downregulation by Tumor Exosomal microRNA-15a Promotes Interleukin-17-Producing γδ-T-Cells-Mediated Radioresistance in Nasopharyngeal Carcinoma. MedComm, 6, e70078. https://doi.org/10.1002/mco2.70078
|
[95]
|
Luo, Y., Ma, J., Liu, F., Guo, J. and Gui, R. (2020) Diagnostic Value of Exosomal circMYC in Radioresistant Nasopharyngeal Carcinoma. Head & Neck, 42, 3702-3711. https://doi.org/10.1002/hed.26441
|
[96]
|
Wan, F., Chen, K., Sun, Y., Chen, X., Liang, R., Chen, L., et al. (2020) Exosomes Overexpressing miR-34c Inhibit Malignant Behavior and Reverse the Radioresistance of Nasopharyngeal Carcinoma. Journal of Translational Medicine, 18, Article No. 12. https://doi.org/10.1186/s12967-019-02203-z
|
[97]
|
Huang, T., Yin, L., Wu, J., Gu, J., Wu, J., Chen, D., et al. (2016) MicroRNA-19b-3p Regulates Nasopharyngeal Carcinoma Radiosensitivity by Targeting TNFAIP3/NF-κB Axis. Journal of Experimental & Clinical Cancer Research, 35, Article No. 188. https://doi.org/10.1186/s13046-016-0465-1
|
[98]
|
Huang, S., Xu, M., Deng, X., Da, Q., Li, M., et al. (2024) Anti Irradiation Nanoparticles Shelter Immune Organ from Radio-Damage via Preventing the IKK/IκB/NF-κB Activation. Molecular Cancer, 23, Article No. 234. https://doi.org/10.1186/s12943-024-02142-4
|
[99]
|
Liu, Y., Wen, J. and Huang, W. (2021) Exosomes in Nasopharyngeal Carcinoma. Clinica Chimica Acta, 523, 355-364. https://doi.org/10.1016/j.cca.2021.10.013
|
[100]
|
Yang, J., Chen, J., Liang, H. and Yu, Y. (2022) Nasopharyngeal Cancer Cell-Derived Exosomal PD-L1 Inhibits CD8+ T-Cell Activity and Promotes Immune Escape. Cancer Science, 113, 3044-3054. https://doi.org/10.1111/cas.15433
|
[101]
|
Wang, X., Zhang, Y., Mu, X., Tu, C.R., Chung, Y., Tsao, S.W., et al. (2022) Exosomes Derived from γδ-T Cells Synergize with Radiotherapy and Preserve Antitumor Activities against Nasopharyngeal Carcinoma in Immunosuppressive Microenvironment. Journal for ImmunoTherapy of Cancer, 10, e003832. https://doi.org/10.1136/jitc-2021-003832
|
[102]
|
Ye, S., Zhang, H., Cai, T., Liu, Y., Ni, J., He, J., et al. (2016) Exosomal miR-24-3p Impedes T-Cell Function by Targeting fgf11 and Serves as a Potential Prognostic Biomarker for Nasopharyngeal Carcinoma. The Journal of Pathology, 240, 329-340. https://doi.org/10.1002/path.4781
|
[103]
|
Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A., Mustapha, R., Niki, T., et al. (2014) Effect of Nasopharyngeal Carcinoma-Derived Exosomes on Human Regulatory T Cells. JNCI: Journal of the National Cancer Institute, 107, Article No. 363. https://doi.org/10.1093/jnci/dju363
|
[104]
|
Klibi, J., Niki, T., Riedel, A., Pioche-Durieu, C., Souquere, S., Rubinstein, E., et al. (2009) Blood Diffusion and Th1-Suppressive Effects of Galectin-9-Containing Exosomes Released by Epstein-Barr Virus-Infected Nasopharyngeal Carcinoma Cells. Blood, 113, 1957-1966. https://doi.org/10.1182/blood-2008-02-142596
|
[105]
|
Lee, P., Sui, Y., Liu, T., Tsang, N., Huang, C., Lin, T., et al. (2022) Epstein-Barr Viral Product-Containing Exosomes Promote Fibrosis and Nasopharyngeal Carcinoma Progression through Activation of YAP1/FAPα Signaling in Fibroblasts. Journal of Experimental & Clinical Cancer Research, 41, Article No. 254. https://doi.org/10.1186/s13046-022-02456-5
|
[106]
|
Gurtsevitch, V.E., Senyuta, N.B., Ignatova, A.V., Lomaya, M.V., Kondratova, V.N., Pavlovskaya, A.I., et al. (2017) Epstein-Barr Virus Biomarkers for Nasopharyngeal Carcinoma in Non-Endemic Regions. Journal of General Virology, 98, 2118-2127. https://doi.org/10.1099/jgv.0.000889
|
[107]
|
Zheng, W., Ye, W., Wu, Z., Huang, X., Xu, Y., Chen, Q., et al. (2021) Identification of Potential Plasma Biomarkers in Early-Stage Nasopharyngeal Carcinoma-Derived Exosomes Based on RNA Sequencing. Cancer Cell International, 21, Article No. 185. https://doi.org/10.1186/s12935-021-01881-4
|
[108]
|
Zhang, H., Zou, X., Wu, L., Zhang, S., Wang, T., Liu, P., et al. (2019) Identification of a 7-microRNA Signature in Plasma as Promising Biomarker for Nasopharyngeal Carcinoma Detection. Cancer Medicine, 9, 1230-1241. https://doi.org/10.1002/cam4.2676
|
[109]
|
Jiang, L., Zhang, Y., Li, B., Kang, M., Yang, Z., Lin, C., et al. (2021) miRNAs Derived from Circulating Small Extracellular Vesicles as Diagnostic Biomarkers for Nasopharyngeal Carcinoma. Cancer Science, 112, 2393-2404. https://doi.org/10.1111/cas.14883
|
[110]
|
Zou, X., Zhu, D., Zhang, H., Zhang, S., Zhou, X., He, X., et al. (2020) MicroRNA Expression Profiling Analysis in Serum for Nasopharyngeal Carcinoma Diagnosis. Gene, 727, Article ID: 144243. https://doi.org/10.1016/j.gene.2019.144243
|
[111]
|
Hu, Y., Tian, Y., Di, H., Xue, C., Zheng, Y., Hu, B., et al. (2022) Noninvasive Diagnosis of Nasopharyngeal Carcinoma Based on Phenotypic Profiling of Viral and Tumor Markers on Plasma Extracellular Vesicles. Analytical Chemistry, 94, 9740-9749. https://doi.org/10.1021/acs.analchem.2c01311
|
[112]
|
Cui, Z., Lin, Y., Hu, D., Wu, J., Peng, W. and Chen, Y. (2021) Diagnostic and Prognostic Potential of Circulating and Tissue BATF2 in Nasopharyngeal Carcinoma. Frontiers in Molecular Biosciences, 8, Article 724373. https://doi.org/10.3389/fmolb.2021.724373
|
[113]
|
Ramayanti, O., Verkuijlen, S.A.W.M., Novianti, P., Scheepbouwer, C., Misovic, B., Koppers‐Lalic, D., et al. (2018) Vesicle-Bound EBV-BART13-3p miRNA in Circulation Distinguishes Nasopharyngeal from Other Head and Neck Cancer and Asymptomatic EBV‐Infections. International Journal of Cancer, 144, 2555-2566. https://doi.org/10.1002/ijc.31967
|
[114]
|
Liu, W., Li, J., Wu, Y., Xing, S., Lai, Y. and Zhang, G. (2018) Target-Induced Proximity Ligation Triggers Recombinase Polymerase Amplification and Transcription-Mediated Amplification to Detect Tumor-Derived Exosomes in Nasopharyngeal Carcinoma with High Sensitivity. Biosensors and Bioelectronics, 102, 204-210. https://doi.org/10.1016/j.bios.2017.11.033
|
[115]
|
Zhou, S., da Silva, S.D., Siegel, P.M. and Philip, A. (2019) CD109 Acts as a Gatekeeper of the Epithelial Trait by Suppressing Epithelial to Mesenchymal Transition in Squamous Cell Carcinoma Cells in Vitro. Scientific Reports, 9, Article No. 16317. https://doi.org/10.1038/s41598-019-50694-z
|
[116]
|
Xie, C., Ji, N., Tang, Z., Li, J. and Chen, Q. (2019) The Role of Extracellular Vesicles from Different Origin in the Microenvironment of Head and Neck Cancers. Molecular Cancer, 18, Article No. 83. https://doi.org/10.1186/s12943-019-0985-3
|
[117]
|
Li, H., Xu, W., Li, F., Zeng, R., Zhang, X., Wang, X., et al. (2022) Amplification of Anticancer Efficacy by Co-Delivery of Doxorubicin and Lonidamine with Extracellular Vesicles. Drug Delivery, 29, 192-202. https://doi.org/10.1080/10717544.2021.2023697
|
[118]
|
Liu, J., Zhu, M. and Tang, Q. (2021) Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomal microRNA-181a Retards Nasopharyngeal Carcinoma Development by Mediating KDM5C. Journal of Cancer Research and Clinical Oncology, 147, 2867-2877. https://doi.org/10.1007/s00432-021-03684-6
|
[119]
|
Shi, S., Zhang, Q., Xia, Y., You, B., Shan, Y., Bao, L., et al. (2016) Mesenchymal Stem Cell-Derived Exosomes Facilitate Nasopharyngeal Carcinoma Progression. American Journal of Cancer Research, 6, 459-472.
|
[120]
|
Guo, Z., Su, W., Zhou, R., Zhang, G., Yang, S., Wu, X., et al. (2021) Exosomal MATN3 of Urine‐Derived Stem Cells Ameliorates Intervertebral Disc Degeneration by Antisenescence Effects and Promotes NPC Proliferation and ECM Synthesis by Activating TGF-β. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5542241. https://doi.org/10.1155/2021/5542241
|
[121]
|
Wan, F., Zhang, H., Hu, J., Chen, L., Geng, S., Kong, L., et al. (2022) Mesenchymal Stem Cells Inhibits Migration and Vasculogenic Mimicry in Nasopharyngeal Carcinoma via Exosomal MiR-125a. Frontiers in Oncology, 12, Article 781979. https://doi.org/10.3389/fonc.2022.781979
|
[122]
|
Dochi, H., Kondo, S., Komura, S., Moriyama‐Kita, M., Komori, T., Nanbo, A., et al. (2023) Peritumoral SPARC Expression Induced by Exosomes from Nasopharyngeal Carcinoma Infected Epstein‐Barr Virus: A Poor Prognostic Marker. International Journal of Cancer, 154, 895-911. https://doi.org/10.1002/ijc.34777
|
[123]
|
Chiang, C.L., Lam, T.C., Li, J.C.B., Chan, K.S.K., El Helali, A., Lee, Y.Y.P., et al. (2023) Efficacy, Safety, and Correlative Biomarkers of Bintrafusp Alfa in Recurrent or Metastatic Nasopharyngeal Cancer Patients: A Phase II Clinical Trial. The Lancet Regional Health—Western Pacific, 40, Article ID: 100898. https://doi.org/10.1016/j.lanwpc.2023.100898
|
[124]
|
Liu, L., Zuo, L., Yang, J., Xin, S., Zhang, J., Zhou, J., et al. (2019) Exosomal Cyclophilin a as a Novel Noninvasive Biomarker for Epstein-Barr Virus Associated Nasopharyngeal Carcinoma. Cancer Medicine, 8, 3142-3151. https://doi.org/10.1002/cam4.2185
|
[125]
|
Zuo, L., Xie, Y., Tang, J., Xin, S., Liu, L., Zhang, S., et al. (2019) Targeting Exosomal EBV-LMP1 Transfer and Mir-203 Expression via the NF-κB Pathway: The Therapeutic Role of Aspirin in NPC. Molecular Therapy—Nucleic Acids, 17, 175-184. https://doi.org/10.1016/j.omtn.2019.05.023
|