[1]
|
McPhail, S., Johnson, S., Greenberg, D., Peake, M. and Rous, B. (2015) Stage at Diagnosis and Early Mortality from Cancer in England. British Journal of Cancer, 112, S108-S115. https://doi.org/10.1038/bjc.2015.49
|
[2]
|
Blandin Knight, S., Crosbie, P.A., Balata, H., Chudziak, J., Hussell, T. and Dive, C. (2017) Progress and Prospects of Early Detection in Lung Cancer. Open Biology, 7, Article ID: 170070. https://doi.org/10.1098/rsob.170070
|
[3]
|
National Cancer Registration and Analysis Service: Staging Data in England.
|
[4]
|
Sasieni, P. (2003) Evaluation of the UK Breast Screening Programmes. Annals of Oncology, 14, 1206-1208. https://doi.org/10.1093/annonc/mdg325
|
[5]
|
Maroni, R., Massat, N.J., Parmar, D., Dibden, A., Cuzick, J., Sasieni, P.D., et al. (2020) A Case-Control Study to Evaluate the Impact of the Breast Screening Programme on Mortality in England. British Journal of Cancer, 124, 736-743. https://doi.org/10.1038/s41416-020-01163-2
|
[6]
|
Esserman, L.J., Anton-Culver, H., Borowsky, A., Brain, S., Cink, T., Crawford, B., et al. (2017) The WISDOM Study: Breaking the Deadlock in the Breast Cancer Screening Debate. npj Breast Cancer, 3, Article No. 34. https://doi.org/10.1038/s41523-017-0035-5
|
[7]
|
McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., et al. (2020) International Evaluation of an AI System for Breast Cancer Screening. Nature, 577, 89-94. https://doi.org/10.1038/s41586-019-1799-6
|
[8]
|
Kim, H., Kim, H.H., Han, B., Kim, K.H., Han, K., Nam, H., et al. (2020) Changes in Cancer Detection and False-Positive Recall in Mammography Using Artificial Intelligence: A Retrospective, Multireader Study. The Lancet Digital Health, 2, e138-e148. https://doi.org/10.1016/s2589-7500(20)30003-0
|
[9]
|
Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., et al. (2019) Stand-alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison with 101 Radiologists. JNCI: Journal of the National Cancer Institute, 111, 916-922. https://doi.org/10.1093/jnci/djy222
|
[10]
|
Schaffter, T., Buist, D.S.M., Lee, C.I., Nikulin, Y., Ribli, D., Guan, Y., et al. (2020) Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3, e200265. https://doi.org/10.1001/jamanetworkopen.2020.0265
|
[11]
|
Bahl, M., Barzilay, R., Yedidia, A.B., Locascio, N.J., Yu, L. and Lehman, C.D. (2018) High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision. Radiology, 286, 810-818. https://doi.org/10.1148/radiol.2017170549
|
[12]
|
Dembrower, K., Wåhlin, E., Liu, Y., Salim, M., Smith, K., Lindholm, P., et al. (2020) Effect of Artificial Intelligence-Based Triaging of Breast Cancer Screening Mammograms on Cancer Detection and Radiologist Workload: A Retrospective Simulation Study. The Lancet Digital Health, 2, e468-e474. https://doi.org/10.1016/s2589-7500(20)30185-0
|
[13]
|
National Health Service (NHS): NHS Long Term Plan: Cancer. https://www.longtermplan.nhs.uk/areas-of-work/cancer/
|
[14]
|
Ardila, D., Kiraly, A.P., Bharadwaj, S., Choi, B., Reicher, J.J., Peng, L., et al. (2019) End-to-End Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nature Medicine, 25, 954-961. https://doi.org/10.1038/s41591-019-0447-x
|
[15]
|
Baldwin, D.R., Gustafson, J., Pickup, L., Arteta, C., Novotny, P., Declerck, J., et al. (2020) External Validation of a Convolutional Neural Network Artificial Intelligence Tool to Predict Malignancy in Pulmonary Nodules. Thorax, 75, 306-312. https://doi.org/10.1136/thoraxjnl-2019-214104
|
[16]
|
Christe, A., Peters, A., Drakopoulos, D., Heverhagen, J.T., Geiger, A., Bartholet, C., Woller, S., Kraemer, A. and Poellinger, A. (2020) Computer-Aided Diagnosis of Pulmonary Nodules in Chest CT: Effect of Nodule Characteristics on Detection Performance. European Radiology, 30, 369-383.
|
[17]
|
Farjah, F., Halgrim, S., Buist, D.S.M., Gould, M.K., Zeliadt, S.B., Loggers, E.T., et al. (2016) An Automated Method for Identifying Individuals with a Lung Nodule Can Be Feasibly Implemented across Health Systems. eGEMs (Generating Evidence & Methods to Improve Patient Outcomes), 4, 15. https://doi.org/10.13063/2327-9214.1254
|
[18]
|
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. https://doi.org/10.1038/nature21056
|
[19]
|
Nam, J.G., Park, S., Hwang, E.J., Lee, J.H., Jin, K.N., Lim, K.Y., Vu, T.H., Sohn, J.H., Hwang, S., Goo, J.M., et al. (2019) Development and Validation of a Deep Learning Model for Screening Pneumonia on Chest Radiograph. Radiology, 292, 211-220.
|
[20]
|
Baldwin, D.R., Breathnach, O., Clifton, J., Chavaditiklu, M., Gleeson, F. and Jenkins, D. (2021) The Impact of Artificial Intelligence on Improving the Evidence-Based Use of Imaging: An Expert Opinion. British Journal of Radiology, 94, Article ID: 20210536.
|
[21]
|
Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., et al. (2020) Sex and Gender Differences and Biases in Artificial Intelligence for Biomedicine and Healthcare. npj Digital Medicine, 3, Article No. 81. https://doi.org/10.1038/s41746-020-0288-5
|
[22]
|
Morley, J., Machado, C.C.V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., et al. (2020) The Ethics of AI in Health Care: A Mapping Review. Social Science & Medicine, 260, Article ID: 113172. https://doi.org/10.1016/j.socscimed.2020.113172
|
[23]
|
Hindocha, S. and Badea, C. (2021) Moral Exemplars for the Virtuous Machine: The Clinician’s Role in Ethical Artificial Intelligence for Healthcare. AI and Ethics, 2, 167-175. https://doi.org/10.1007/s43681-021-00089-6
|
[24]
|
Anderson, M., O’Neill, C., Macleod Clark, J., Street, A., Woods, M., Johnston-Webber, C., et al. (2021) Securing a Sustainable and Fit-for-Purpose UK Health and Care Workforce. The Lancet, 397, 1992-2011. https://doi.org/10.1016/s0140-6736(21)00231-2
|
[25]
|
National Health Service (NHS): Digital Transformation of Screening-NHSX. https://www.nhsx.nhs.uk/key-tools-and-info/digital-transformation-of-screening/
|
[26]
|
Shaheen, N.J., Falk, G.W., Iyer, P.G. and Gerson, L.B. (2016) ACG Clinical Guideline: Diagnosis and Management of Barrett’s Esophagus. American Journal of Gastroenterology, 111, 30-50. https://doi.org/10.1038/ajg.2015.322
|
[27]
|
World Health Organization (WHO) (2021) Ethics and Governance of Artificial Intelligence for Health: WHO Guidance. 1-148.
|
[28]
|
Moore, C.R., Farrag, A. and Ashkin, E. (2017) Using Natural Language Processing to Extract Abnormal Results from Cancer Screening Reports. Journal of Patient Safety, 13, 138-143. https://doi.org/10.1097/pts.0000000000000127
|
[29]
|
Nayor, J., Borges, L.F., Goryachev, S., Gainer, V.S. and Saltzman, J.R. (2018) Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates. Digestive Diseases and Sciences, 63, 1794-1800. https://doi.org/10.1007/s10620-018-5078-4
|
[30]
|
Glaser, A.P., Jordan, B.J., Cohen, J., Desai, A., Silberman, P. and Meeks, J.J. (2018) Automated Extraction of Grade, Stage, and Quality Information from Transurethral Resection of Bladder Tumor Pathology Reports Using Natural Language Processing. JCO Clinical Cancer Informatics, 2, 1-8. https://doi.org/10.1200/cci.17.00128
|