[1]
|
Klebesadel, R.W., Strong, I.B. and Olson, R.A. (1973) Observations of Gamma-Ray Bursts of Cosmic Origin. The Astrophysical Journal, 182, L85-L88. https://doi.org/10.1086/181225
|
[2]
|
Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., et al. (1993) Identification of Two Classes of Gamma-Ray Bursts. The Astrophysical Journal, 413, L101. https://doi.org/10.1086/186969
|
[3]
|
Lloyd-Ronning, N.M., Johnson, J., Upton Sanderbeck, P., Silva, M. and Cheng, R.M. (2024) White Dwarf-Black Hole Binary Progenitors of Low-Redshift Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 535, 2800-2811. https://doi.org/10.1093/mnras/stae2502
|
[4]
|
Wu, T.Y. and Fishbach, M. (2024) Are Long Gamma-Ray Bursts Progenitors to Merging Binary Black Holes? The Astrophysical Journal, 977, Article No. 239. https://doi.org/10.3847/1538-4357/ad98ed
|
[5]
|
Hasan, A.M. and Azzam, W.J. (2024) Does the Redshift Distribution of Swift Long GRBs Trace the Star-Formation Rate? International Journal of Astronomy and Astrophysics, 14, 20-44. https://doi.org/10.4236/ijaa.2024.141002
|
[6]
|
Petrosian, V. and Dainotti, M.G. (2024) Progenitors of Low-Redshift Gamma-Ray Bursts. The Astrophysical Journal Letters, 963, L12. https://doi.org/10.3847/2041-8213/ad2763
|
[7]
|
Troja, E., Fryer, C.L., O’Connor, B., Ryan, G., Dichiara, S., Kumar, A., et al. (2022) A Nearby Long Gamma-Ray Burst from a Merger of Compact Objects. Nature, 612, 228-231. https://doi.org/10.1038/s41586-022-05327-3
|
[8]
|
Chen, J., Zhu, K., Peng, Z. and Zhang, L. (2023) Unsupervised Machine Learning Classification of fermi Gamma-Ray Bursts Using Spectral Parameters. Monthly Notices of the Royal Astronomical Society, 527, 4272-4284. https://doi.org/10.1093/mnras/stad3407
|
[9]
|
Zhu, S., Sun, W., Ma, D. and Zhang, F. (2024) Classification of Fermi Gamma-Ray Bursts Based on Machine Learning. Monthly Notices of the Royal Astronomical Society, 532, 1434-1443. https://doi.org/10.1093/mnras/stae1594
|
[10]
|
Rueda, J.A., Becerra, L., Bianco, C.L., Della Valle, M., Fryer, C.L., Guidorzi, C., et al. (2025) Long and Short GRB Connection. Physical Review D, 111, Article ID: 023010. https://doi.org/10.1103/physrevd.111.023010
|
[11]
|
Luo, J., Zhang, L., Zhang, L., Huang, Y., Lin, J., Lu, J., et al. (2024) The Classification and Formation Rate of Swift/BAT Gamma-Ray Bursts. The Astrophysical Journal Letters, 977, L52. https://doi.org/10.3847/2041-8213/ad9917
|
[12]
|
Zitouni, H., Guessoum, N., Azzam, W.J. and Mochkovitch, R. (2015) Statistical Study of Observed and Intrinsic Durations among BATSE and Swift/BAT GRBs. Astrophysics and Space Science, 357, Article No. 7. https://doi.org/10.1007/s10509-015-2311-x
|
[13]
|
Zitouni, H., Guessoum, N. and Azzam, W. (2022) Testing the Amati and Yonetoku Correlations for Short Gamma-Ray Bursts. Astrophysics and Space Science, 367, Article No. 74. https://doi.org/10.1007/s10509-022-04100-2
|
[14]
|
Zitouni, H., Guessoum, N. and Azzam, W.J. (2014) Revisiting the Amati and Yonetoku Correlations with Swift GRBs. Astrophysics and Space Science, 351, 267-279. https://doi.org/10.1007/s10509-014-1839-5
|
[15]
|
Amati, L., Guidorzi, C., Frontera, F., Della Valle, M., Finelli, F., Landi, R., et al. (2008) Measuring the Cosmological Parameters with the Ep,i-Eiso Correlation of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 391, 577-584. https://doi.org/10.1111/j.1365-2966.2008.13943.x
|
[16]
|
Amati, L. (2006) The Ep,i-Eiso Correlation in Gamma-Ray Bursts: Updated Observational Status, Re-Analysis and Main Implications. Monthly Notices of the Royal Astronomical Society, 372, 233-245. https://doi.org/10.1111/j.1365-2966.2006.10840.x
|
[17]
|
Amati, L., Frontera, F., Tavani, M., in 't Zand, J.J.M., Antonelli, A., Costa, E., et al. (2002) Intrinsic Spectra and Energetics of BeppoSAX Gamma-Ray Bursts with Known Redshifts. Astronomy & Astrophysics, 390, 81-89. https://doi.org/10.1051/0004-6361:20020722
|
[18]
|
Amati, L., Frontera, F. and Guidorzi, C. (2009) Extremely Energetic fermi Gamma-Ray Bursts Obey Spectral Energy Correlations. Astronomy & Astrophysics, 508, 173-180. https://doi.org/10.1051/0004-6361/200912788
|
[19]
|
Qin, Y. and Chen, Z. (2013) Statistical Classification of Gamma-Ray Bursts Based on the Amati Relation. Monthly Notices of the Royal Astronomical Society, 430, 163-173. https://doi.org/10.1093/mnras/sts547
|
[20]
|
Chakraborty, A., Dainotti, M., Cantrell, O. and Lloyd-Ronning, N. (2023) Radio-bright versus Radio-Dark Gamma-Ray Bursts—More Evidence for Distinct Progenitors. Monthly Notices of the Royal Astronomical Society, 520, 5764-5782. https://doi.org/10.1093/mnras/stad438
|
[21]
|
Lloyd-Ronning, N.M., Aykutalp, A. and Johnson, J.L. (2019) On the Cosmological Evolution of Long Gamma-Ray Burst Properties. Monthly Notices of the Royal Astronomical Society, 488, 5823-5832. https://doi.org/10.1093/mnras/stz2155
|
[22]
|
Lloyd-Ronning, N.M., Gompertz, B., Pe’er, A., Dainotti, M. and Fruchter, A. (2019) A Comparison between Radio Loud and Quiet Gamma-Ray Bursts, and Evidence for a Potential Correlation between Intrinsic Duration and Redshift in the Radio Loud Population. The Astrophysical Journal, 871, Article No. 118. https://doi.org/10.3847/1538-4357/aaf6ac
|
[23]
|
Lloyd-Ronning, N., Johnson, J., Cheng, R.M., Luu, K., Sanderbeck, P.U., Kenoly, L., et al. (2023) On the Anticorrelation between Duration and Redshift in Gamma-Ray Bursts. The Astrophysical Journal, 947, Article No. 85. https://doi.org/10.3847/1538-4357/acc795
|
[24]
|
Krühler, T., Malesani, D., Fynbo, J.P.U., Hartoog, O.E., Hjorth, J., Jakobsson, P., et al. (2015) GRB Hosts through Cosmic Time. Astronomy & Astrophysics, 581, A125. https://doi.org/10.1051/0004-6361/201425561
|
[25]
|
Xiao, L. and Schaefer, B.E. (2011) Redshift Catalog for Swift Long Gamma-Ray Bursts. The Astrophysical Journal, 731, Article No. 103. https://doi.org/10.1088/0004-637x/731/2/103
|
[26]
|
Wang, F.Y. and Dai, Z.G. (2014) Long GRBs Are Metallicity-Biased Tracers of Star Formation: Evidence from Host Galaxies and Redshift Distribution. The Astrophysical Journal Supplement Series, 213, Article No. 15. https://doi.org/10.1088/0067-0049/213/1/15
|
[27]
|
Zhu, S., Liu, Z., Shi, Y., Ding, X., Sun, W. and Zhang, F. (2023) The Intrinsic Statistical Properties and Correlations of Short Gamma-Ray Bursts. The Astrophysical Journal, 950, Article No. 30. https://doi.org/10.3847/1538-4357/acc83b
|
[28]
|
Artale, M.C., Mapelli, M., Bouffanais, Y., Giacobbo, N., Pasquato, M. and Spera, M. (2019) Mass and Star Formation Rate of the Host Galaxies of Compact Binary Mergers across Cosmic Time. Monthly Notices of the Royal Astronomical Society, 491, 3419-3434. https://doi.org/10.1093/mnras/stz3190
|
[29]
|
Dvorkin, I., Vangioni, E., Silk, J., Uzan, J. and Olive, K.A. (2016) Metallicity-Constrained Merger Rates of Binary Black Holes and the Stochastic Gravitational Wave Background. Monthly Notices of the Royal Astronomical Society, 461, 3877-3885. https://doi.org/10.1093/mnras/stw1477
|
[30]
|
Mapelli, M., Giacobbo, N., Toffano, M., Ripamonti, E., Bressan, A., Spera, M., et al. (2018) The Host Galaxies of Double Compact Objects Merging in the Local Universe. Monthly Notices of the Royal Astronomical Society, 481, 5324-5330. https://doi.org/10.1093/mnras/sty2663
|
[31]
|
Nugent, A.E., Fong, W., Leja, J., Berger, E., Zevin, M., et al. (2022) Short GRB Host Galaxies. II. A Legacy Sample of Redshifts, Stellar Population Properties, and Implications for Their Neutron Star Merger Origins. The Astrophysical Journal, 940, Article No. 57. https://doi.org/10.3847/1538-4357/ac91d1
|
[32]
|
Santoliquido, F., Mapelli, M., Bouffanais, Y., Giacobbo, N., Di Carlo, U.N., Rastello, S., et al. (2020) The Cosmic Merger Rate Density Evolution of Compact Binaries Formed in Young Star Clusters and in Isolated Binaries. The Astrophysical Journal, 898, Article No. 152. https://doi.org/10.3847/1538-4357/ab9b78
|
[33]
|
Santoliquido, F., Mapelli, M., Giacobbo, N., Bouffanais, Y. and Artale, M.C. (2021) The Cosmic Merger Rate Density of Compact Objects: Impact of Star Formation, Metallicity, Initial Mass Function, and Binary Evolution. Monthly Notices of the Royal Astronomical Society, 502, 4877-4889. https://doi.org/10.1093/mnras/stab280
|
[34]
|
Santoliquido, F., Mapelli, M., Artale, M.C. and Boco, L. (2022) Modelling the Host Galaxies of Binary Compact Object Mergers with Observational Scaling Relations. Monthly Notices of the Royal Astronomical Society, 516, 3297-3317. https://doi.org/10.1093/mnras/stac2384
|
[35]
|
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., et al. (2017) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters, 848, L13. https://doi.org/10.3847/2041-8213/aa920c
|