[1]
|
Fagiolini, A., Forgione, R., Maccari, M., Cuomo, A., Morana, B., Dell’Osso, M.C., et al. (2013) Prevalence, Chronicity, Burden and Borders of Bipolar Disorder. Journal of Affective Disorders, 148, 161-169. https://doi.org/10.1016/j.jad.2013.02.001
|
[2]
|
Palmisano, A., Pandit, S., Smeralda, C.L., Demchenko, I., Rossi, S., Battelli, L., et al. (2024) The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life, 14, Article 578. https://doi.org/10.3390/life14050578
|
[3]
|
Naharcı, M.İ., Çelik, C., Helvalı, E.E., Bodur, Ş., Akçaer, E.T., Can, S.S., et al. (2018) Case Reports Presentations: 10th International Congress on Psychopharmacology & 6th International Symposium on Child and Adolescent Psychopharmacology. Psychiatry and Clinical Psychopharmacology, 28, 114-270. https://doi.org/10.1080/24750573.2018.1467600
|
[4]
|
Pedley, R., Bee, P., Wearden, A. and Berry, K. (2019) Illness Perceptions in People with Obsessive-Compulsive Disorder; a Qualitative Study. PLOS ONE, 14, e0213495. https://doi.org/10.1371/journal.pone.0213495
|
[5]
|
Fineberg, N.A., Dell’Osso, B., Albert, U., Maina, G., Geller, D., Carmi, L., et al. (2019) Early Intervention for Obsessive Compulsive Disorder: An Expert Consensus Statement. European Neuropsychopharmacology, 29, 549-565. https://doi.org/10.1016/j.euroneuro.2019.02.002
|
[6]
|
Markarian, Y., Larson, M.J., Aldea, M.A., Baldwin, S.A., Good, D., Berkeljon, A., et al. (2010) Multiple Pathways to Functional Impairment in Obsessive-Compulsive Disorder. Clinical Psychology Review, 30, 78-88. https://doi.org/10.1016/j.cpr.2009.09.005
|
[7]
|
Katz, T.C., Bui, T.H., Worhach, J., Bogut, G. and Tomczak, K.K. (2022) Tourettic OCD: Current Understanding and Treatment Challenges of a Unique Endophenotype. Frontiers in Psychiatry, 13, Article 929526. https://doi.org/10.3389/fpsyt.2022.929526
|
[8]
|
Pompili, M., Serafini, G., Del Casale, A., Rigucci, S., Innamorati, M., Girardi, P., et al. (2009) Improving Adherence in Mood Disorders: The Struggle against Relapse, Recurrence and Suicide Risk. Expert Review of Neurotherapeutics, 9, 985-1004. https://doi.org/10.1586/ern.09.62
|
[9]
|
Roy-Byrne, P. (2015) Treatment-Refractory Anxiety; Definition, Risk Factors, and Treatment Challenges. Dialogues in Clinical Neuroscience, 17, 191-206. https://doi.org/10.31887/dcns.2015.17.2/proybyrne
|
[10]
|
Thase, M.E. (1996) The Role of Axis II Comorbidity in the Management of Patients with Treatment-Resistant Depression. Psychiatric Clinics of North America, 19, 287-309. https://doi.org/10.1016/s0193-953x(05)70289-6
|
[11]
|
Jann, M.W. (2014) Diagnosis and Treatment of Bipolar Disorders in Adults: A Review of the Evidence on Pharmacologic Treatments. American Health & Drug Benefits, 7, 489-499.
|
[12]
|
Baldessarini, R.J., Tondo, L. and Vázquez, G.H. (2018) Pharmacological Treatment of Adult Bipolar Disorder. Molecular Psychiatry, 24, 198-217. https://doi.org/10.1038/s41380-018-0044-2
|
[13]
|
Altamura, A.C., Lietti, L., Dobrea, C., Benatti, B., Arici, C. and Dell’Osso, B. (2011) Mood Stabilizers for Patients with Bipolar Disorder: The State of the Art. Expert Review of Neurotherapeutics, 11, 85-99. https://doi.org/10.1586/ern.10.181
|
[14]
|
Keeley, M.L., Storch, E.A., Merlo, L.J. and Geffken, G.R. (2008) Clinical Predictors of Response to Cognitive-Behavioral Therapy for Obsessive–Compulsive Disorder. Clinical Psychology Review, 28, 118-130. https://doi.org/10.1016/j.cpr.2007.04.003
|
[15]
|
Subramaniam, M., Soh, P., Vaingankar, J.A., Picco, L. and Chong, S.A. (2013) Quality of Life in Obsessive-Compulsive Disorder: Impact of the Disorder and of Treatment. CNS Drugs, 27, 367-383. https://doi.org/10.1007/s40263-013-0056-z
|
[16]
|
Rasool, S., Husnain, A., Saeed, A., Gill, A.Y. and Hussain, H.K. (2023) Harnessing Predictive Power: Exploring the Crucial Role of Machine Learning in Early Disease Detection. Jurihum: Jurnal Inovasi dan Humaniora, 1, 302-315.
|
[17]
|
Filippis, R.D. and Foysal, A.A. (2024) Integrating Explainable Artificial Intelligence (XAI) in Forensic Psychiatry: Opportunities and Challenges. Open Access Library, 11, 1-20. https://doi.org/10.4236/oalib.1112518
|
[18]
|
de Filippis, R. and Al Foysal, A. (2024) The Fusion of Minds: Navigating the Confluence of AI, ML, and Psychology in the Digital Era. Journal of Mathematical Techniques and Computational Mathematics, 3, 1-9.
|
[19]
|
Kalusivalingam, A.K., Sharma, A., Patel, N. and Singh, V. (2022) Leveraging Random Forests and Gradient Boosting for Enhanced Predictive Analytics in Operational Efficiency. International Journal of AI and ML, 3.
|
[20]
|
Bakro, M., Kumar, R.R., Husain, M., Ashraf, Z., Ali, A., Yaqoob, S.I., et al. (2024) Building a Cloud-IDS by Hybrid Bio-Inspired Feature Selection Algorithms along with Random Forest Model. IEEE Access, 12, 8846-8874. https://doi.org/10.1109/access.2024.3353055
|
[21]
|
Farooq, F., Ahmed, W., Akbar, A., Aslam, F. and Alyousef, R. (2021) Predictive Modeling for Sustainable High-Performance Concrete from Industrial Wastes: A Comparison and Optimization of Models Using Ensemble Learners. Journal of Cleaner Production, 292, Article ID: 126032. https://doi.org/10.1016/j.jclepro.2021.126032
|
[22]
|
Filippis, R.D. and Foysal, A.A. (2024) Comparative Analysis of Gabaergics vs. Opioids in Chronic Pain Management. Open Access Library, 11, 1-25. https://doi.org/10.4236/oalib.1112388
|
[23]
|
Rodrigues, F. and Oliveira, T. (2021) A Data Mining Framework for Response Modelling in Direct Marketing. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A. and Madureira, A., Eds., Intelligent Systems Design and Applications, Springer, 357-366. https://doi.org/10.1007/978-3-030-71187-0_33
|
[24]
|
Zhang, L. and Suganthan, P.N. (2014) Random Forests with Ensemble of Feature Spaces. Pattern Recognition, 47, 3429-3437. https://doi.org/10.1016/j.patcog.2014.04.001
|
[25]
|
Nhu, V., Shirzadi, A., Shahabi, H., Chen, W., Clague, J.J., Geertsema, M., et al. (2020) Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests, 11, Article 421. https://doi.org/10.3390/f11040421
|
[26]
|
González, S., García, S., Del Ser, J., Rokach, L. and Herrera, F. (2020) A Practical Tutorial on Bagging and Boosting Based Ensembles for Machine Learning: Algorithms, Software Tools, Performance Study, Practical Perspectives and Opportunities. Information Fusion, 64, 205-237. https://doi.org/10.1016/j.inffus.2020.07.007
|
[27]
|
Bentéjac, C., Csörgő, A. and Martínez-Muñoz, G. (2020) A Comparative Analysis of Gradient Boosting Algorithms. Artificial Intelligence Review, 54, 1937-1967. https://doi.org/10.1007/s10462-020-09896-5
|
[28]
|
Naseriparsa, M., Al-Shammari, A., Sheng, M., Zhang, Y. and Zhou, R. (2020) RSMOTE: Improving Classification Performance over Imbalanced Medical Datasets. Health Information Science and Systems, 8, Article No. 22. https://doi.org/10.1007/s13755-020-00112-w
|
[29]
|
Rahman, M.M. and Davis, D.N. (2013) Addressing the Class Imbalance Problem in Medical Datasets. International Journal of Machine Learning and Computing, 3, 224-228. https://doi.org/10.7763/ijmlc.2013.v3.307
|
[30]
|
Soltanzadeh, P. and Hashemzadeh, M. (2021) RCSMOTE: Range-Controlled Synthetic Minority Over-Sampling Technique for Handling the Class Imbalance Problem. Information Sciences, 542, 92-111. https://doi.org/10.1016/j.ins.2020.07.014
|
[31]
|
Chekroud, A.M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., et al. (2021) The Promise of Machine Learning in Predicting Treatment Outcomes in Psychiatry. World Psychiatry, 20, 154-170. https://doi.org/10.1002/wps.20882
|
[32]
|
Wu, M., Mwangi, B., Bauer, I.E., Passos, I.C., Sanches, M., Zunta-Soares, G.B., et al. (2017) Identification and Individualized Prediction of Clinical Phenotypes in Bipolar Disorders Using Neurocognitive Data, Neuroimaging Scans and Machine Learning. NeuroImage, 145, 254-264. https://doi.org/10.1016/j.neuroimage.2016.02.016
|
[33]
|
Saputra, D.C.E., Ma’arif, A. and Sunat, K. (2024) Optimizing Predictive Performance: Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification. Journal of Robotics and Control (JRC), 4, 896-904. https://doi.org/10.18196/jrc.v4i6.20898
|
[34]
|
Grattan, N., Alencar da Costa, D. and Stanger, N. (2024) The Need for More Informative Defect Prediction: A Systematic Literature Review. Information and Software Technology, 171, Article ID: 107456. https://doi.org/10.1016/j.infsof.2024.107456
|
[35]
|
Antonelli, M., Conti, G., Esquinas, A., Montini, L., Maggiore, S.M., Bello, G., et al. (2007) A Multiple-Center Survey on the Use in Clinical Practice of Noninvasive Ventilation as a First-Line Intervention for Acute Respiratory Distress Syndrome. Critical Care Medicine, 35, 18-25. https://doi.org/10.1097/01.ccm.0000251821.44259.f3
|
[36]
|
Deitch, E.A. (1992) Multiple Organ Failure Pathophysiology and Potential Future Therapy. Annals of Surgery, 216, 117-134. https://doi.org/10.1097/00000658-199208000-00002
|
[37]
|
Zhang, Y., Liu, J. and Shen, W. (2022) A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12, Article 8654. https://doi.org/10.3390/app12178654
|
[38]
|
Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M. and Suganthan, P.N. (2022) Ensemble Deep Learning: A Review. Engineering Applications of Artificial Intelligence, 115, Article ID: 105151. https://doi.org/10.1016/j.engappai.2022.105151
|
[39]
|
Ribeiro, M.H.D.M. and dos Santos Coelho, L. (2020) Ensemble Approach Based on Bagging, Boosting and Stacking for Short-Term Prediction in Agribusiness Time Series. Applied Soft Computing, 86, Article ID: 105837. https://doi.org/10.1016/j.asoc.2019.105837
|
[40]
|
Rane, N., Choudhary, S.P. and Rane, J. (2024) Ensemble Deep Learning and Machine Learning: Applications, Opportunities, Challenges, and Future Directions. Studies in Medical and Health Sciences, 1, 18-41. https://doi.org/10.48185/smhs.v1i2.1225
|
[41]
|
Jayatilake, S.M.D.A.C. and Ganegoda, G.U. (2021) Involvement of Machine Learning Tools in Healthcare Decision Making. Journal of Healthcare Engineering, 2021, Article ID: 6679512. https://doi.org/10.1155/2021/6679512
|
[42]
|
Marques, L., Costa, B., Pereira, M., Silva, A., Santos, J., Saldanha, L., et al. (2024) Advancing Precision Medicine: A Review of Innovative in Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics, 16, Article 332. https://doi.org/10.3390/pharmaceutics16030332
|
[43]
|
Tantray, J., Patel, A., Wani, S.N., Kosey, S. and Prajapati, B.G. (2024) Prescription Precision: A Comprehensive Review of Intelligent Prescription Systems. Current Pharmaceutical Design, 30, 2671-2684. https://doi.org/10.2174/0113816128321623240719104337
|
[44]
|
Vallée, A. (2024) Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins. Journal of Medical Internet Research, 26, e50204. https://doi.org/10.2196/50204
|
[45]
|
Kalusivalingam, A.K., Sharma, A., Patel, N. and Singh, V. (2012) Enhancing Hospital Readmission Rate Predictions Using Random Forest and Gradient Boosting Algorithms. International Journal of AI and ML, 1.
|
[46]
|
Chauhan, N.K. and Singh, K. (2018) A Review on Conventional Machine Learning vs Deep Learning. 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, 28-29 September 2018, 347-352. https://doi.org/10.1109/gucon.2018.8675097
|
[47]
|
Okpete, U.E. and Byeon, H. (2024) Challenges and Prospects in Bridging Precision Medicine and Artificial Intelligence in Genomic Psychiatric Treatment. World Journal of Psychiatry, 14, 1148-1164. https://doi.org/10.5498/wjp.v14.i8.1148
|
[48]
|
Emad-Eldeen, A., Azim, M.A., Abdelsattar, M. and AbdelMoety, A. (2024) Utilizing Machine Learning and Deep Learning for Enhanced Supercapacitor Performance Prediction. Journal of Energy Storage, 100, Article ID: 113556. https://doi.org/10.1016/j.est.2024.113556
|
[49]
|
Cao, K., Zhang, T. and Huang, J. (2024) Advanced Hybrid LSTM-Transformer Architecture for Real-Time Multi-Task Prediction in Engineering Systems. Scientific Reports, 14, Article No. 4890. https://doi.org/10.1038/s41598-024-55483-x
|
[50]
|
Ahmed, S.F., Alam, M.S.B., Hassan, M., Rozbu, M.R., Ishtiak, T., Rafa, N., et al. (2023) Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artificial Intelligence Review, 56, 13521-13617. https://doi.org/10.1007/s10462-023-10466-8
|
[51]
|
Abd Elaziz, M., Dahou, A., Abualigah, L., Yu, L., Alshinwan, M., Khasawneh, A.M., et al. (2021) Advanced Metaheuristic Optimization Techniques in Applications of Deep Neural Networks: A Review. Neural Computing and Applications, 33, 14079-14099. https://doi.org/10.1007/s00521-021-05960-5
|