[1]
|
Fleischmann, M. and Pons, S. (1989) Electrochemically Induced Nuclear Fusion of Deuterium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 261, 301-308. https://doi.org/10.1016/0022-0728(89)80006-3
|
[2]
|
Gilat, A. and Vol, A. (2005) Primordial Hydrogen-Helium Degassing, an Over-Looked Major Energy Source for Internal Terrestrial Processes. HAIT Journal of Science and Engineering B, 2, 125-167.
|
[3]
|
Gilat, A.L. and Vol, A. (2012) Degassing of Primordial Hydrogen and Helium as the Major Energy Source for Internal Terrestrial Processes. Geoscience Frontiers, 3, 911-921. https://doi.org/10.1016/j.gsf.2012.03.009
|
[4]
|
Tazieff, H. (1977) An Exceptional Eruption: Mt. Niragongo, Jan. 10th, 1977. Bulletin Volcanologique, 40, 189-200. https://doi.org/10.1007/bf02596999
|
[5]
|
Tazieff, H. (1984) Mt. Niragongo: Renewed Activity of the Lava Lake. Journal of Volcanology and Geothermal Research, 20, 267-280. https://doi.org/10.1016/0377-0273(84)90043-x
|
[6]
|
Gutenberg, B. (1956) The Energy of Earthquakes. Quarterly Journal of the Geological Society of London, 112, 1-14. https://doi.org/10.1144/gsl.jgs.1956.112.01-04.02
|
[7]
|
Gando, A., et al. (2011) Partial Radiogenic Heat Model for Earth Revealed by Geoneutrino Measurements. Nature Geoscience, 4, 647-651. https://doi.org/10.1038/ngeo1205
|
[8]
|
Abe, S., Asami, S., Eizuka, M., Futagi, S., Gando, A., Gando, Y., et al. (2022) Abundances of Uranium and Thorium Elements in Earth Estimated by Geoneutrino Spectroscopy. Geophysical Research Letters, 49, e2022GL099566. https://doi.org/10.1029/2022gl099566
|
[9]
|
Poland, M.P., Sutton, A.J. and Gerlach, T.M. (2009) Magma Degassing Triggered by Static Decompression at Kīlauea Volcano, Hawai’i. Geophysical Research Letters, 36, L16306. https://doi.org/10.1029/2009gl039214
|
[10]
|
Thiéry, R. and Mercury, L. (2009) Explosive Properties of Water in Volcanic and Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 114, B05205. https://doi.org/10.1029/2008jb005742
|
[11]
|
Peacock, J.R., Mangan, M.T., Walters, M., Hartline, C., Glen, J., Earney, T. and Schermerhorn, W. (2019) Geophysical Characterization of the Heat Source in the Northwest Geysers, California. Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford, 11-13 February 2019, SGP-TR-214.
|
[12]
|
Pappaterra, S., Inguaggiato, C., Rouwet, D., Mora-Amador, R., Ramírez-Umaña, C., González, G., et al. (2022) Rare Earth Elements Variations in a Hyperacid Crater Lake and Their Relations with Changes in Phreatic Activity, Physico-Chemical Parameters, and Chemical Composition: The Case of Poás Volcano (Costa Rica). Frontiers in Earth Science, 9, Article ID: 716970. https://doi.org/10.3389/feart.2021.716970
|
[13]
|
Busetti, M., Geletti, R., Civile, D., Sauli, C., Brancatelli, G., Forlin, E., et al. (2024) Geophysical Evidence of a Large Occurrence of Mud Volcanoes Associated with Gas Plumbing System in the Ross Sea (Antarctica). Geoscience Frontiers, 15, Article ID: 101727. https://doi.org/10.1016/j.gsf.2023.101727
|
[14]
|
Theofanous, T.G., Yuen, W.W., Freeman, K. and Chen, X. (1996) Propagation of Steam Explosions: ESPROSE.m Verification Studies, DOE/lD-10503. University of California.
|
[15]
|
Gilat, A.L., Mavrodiev, S.C. and Vol, A. (2019) Hypothetical Physics and Chemistry of Volcanic Eruptions: The Doorway to Their Prediction. International Journal of Geosciences, 10, 377-404. https://doi.org/10.4236/ijg.2019.104022
|
[16]
|
Ramírez, C.V., Romero, Y.V. and Romero, M.V. (2023) Theory of Volcanic Energy (Expanded English Edition). Modern Sciences Journal, 12, 76-86.
|
[17]
|
Vol, A. (2014) Thermo-Electrochemical Processes of the Earth’s Degassing Creating Geomagnetic Field and Changing Its Value and Direction (Thermodynamic Approach). International Journal of Geosciences, 5, 1219-1230. https://doi.org/10.4236/ijg.2014.510101
|
[18]
|
Hassan, J., Khan, F., Amyotte, P. and Ferdous, R. (2014) A Model to Assess Dust Explosion Occurrence Probability. Journal of Hazardous Materials, 268, 140-149. https://doi.org/10.1016/j.jhazmat.2014.01.017
|
[19]
|
Klebanoff, L.E., Pratt, J.W. and LaFleur, C.B. (2016) Comparison of the Safety-Related Physical and Combustion Properties of Liquid Hydrogen and Liquid Natural Gas in the Context of the SF-Breeze High-Speed Fuel-Cell Ferry. Sandia National Laboratories.
|
[20]
|
Schmelz, J.T., Reames, D.V., von Steiger, R. and Basu, S. (2012) Composition of the Solar Corona, Solar Wind, and Solar Energetic Particles. The Astrophysical Journal, 755, Article No. 33. https://doi.org/10.1088/0004-637x/755/1/33
|
[21]
|
Olson, P. and Sharp, Z.D. (2018) Hydrogen and Helium Ingassing during Terrestrial Planet Accretion. Earth and Planetary Science Letters, 498, 418-426. https://doi.org/10.1016/j.epsl.2018.07.006
|
[22]
|
Olson, P.L. and Sharp, Z.D. (2022) Primordial Helium‐3 Exchange between Earth’s Core and Mantle. Geochemistry, Geophysics, Geosystems, 23, e2021GC009985. https://doi.org/10.1029/2021gc009985
|
[23]
|
Güsten, R., Wiesemeyer, H., Neufeld, D., Menten, K.M., Graf, U.U., Jacobs, K., et al. (2019) Astrophysical Detection of the Helium Hydride Ion HeH+. Nature, 568, 357-359. https://doi.org/10.1038/s41586-019-1090-x
|
[24]
|
Fortenberry, R.C. and Wiesenfeld, L. (2020) A Molecular Candle Where Few Molecules Shine: HeHHe+. Molecules, 25, Article No. 2183. https://doi.org/10.3390/molecules25092183
|
[25]
|
Kędziera, D., Rauhut, G. and Császár, A.G. (2022) Structure, Energetics, and Spectroscopy of the Chromophores of HHe+ n, H2He+ n, and He+ n Clusters and Their Deuterated Isotopologues. Physical Chemistry Chemical Physics, 24, 12176-12195. https://doi.org/10.1039/d1cp05535f
|
[26]
|
Tagawa, S., Sakamoto, N., Hirose, K., Yokoo, S., Hernlund, J., Ohishi, Y., et al. (2021) Experimental Evidence for Hydrogen Incorporation into Earth’s Core. Nature Communications, 12, Article No. 2588. https://doi.org/10.1038/s41467-021-22035-0
|
[27]
|
Rumyantsev, V.N. (2016) Hydrogen in the Earth’s Outer Core, and Its Role in the Deep Earth Geodynamics. Geodynamics & Tectonophysics, 7, 119-135. https://doi.org/10.5800/gt-2016-7-1-0200
|
[28]
|
Serovaiskii, A. and Kutcherov, V. (2020) Formation of Complex Hydrocarbon Systems from Methane at the Upper Mantle Thermobaric Conditions. Scientific Reports, 10, Article No. 4559. https://doi.org/10.1038/s41598-020-61644-5
|
[29]
|
Hirschmann, M.M. (2023) The Deep Earth Oxygen Cycle: Mass Balance Considerations on the Origin and Evolution of Mantle and Surface Oxidative Reservoirs. Earth and Planetary Science Letters, 619, Article ID: 118311. https://doi.org/10.1016/j.epsl.2023.118311
|
[30]
|
Lin, Y. and van Westrenen, W. (2021) Oxygen as a Catalyst in the Earth’s Interior? National Science Review, 8, nwab009. https://doi.org/10.1093/nsr/nwab009
|
[31]
|
Shinohara, H., Yokoo, A. and Kazahaya, R. (2018) Variation of Volcanic Gas Composition during the Eruptive Period in 2014-2015 at Nakadake Crater, Aso Volcano, Japan. Earth, Planets and Space, 70, Article No. 151. https://doi.org/10.1186/s40623-018-0919-0
|
[32]
|
Subramanian, R. (2020) DGMS Technical Circular No. 04 of 2020, Dhanbad 24 February, Government of India, Ministry of Labor and Employment, Directorate General JF Mines Safety.
|
[33]
|
Thomas, G. (2012) Some Observations on the Initiation and Onset of Detonation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370, 715-739. https://doi.org/10.1098/rsta.2011.0368
|
[34]
|
Sun, X., Yan, C., Yan, Y., Mi, X., Lee, J.H.S. and Dick Ng, H. (2022) Critical Tube Diameter for Quasi-Detonations. Combustion and Flame, 244, Article ID: 112280. https://doi.org/10.1016/j.combustflame.2022.112280
|
[35]
|
Zhang, B., Ng, H.D. and Lee, J.H.S. (2012) The Critical Tube Diameter and Critical Energy for Direct Initiation of Detonation in C2H2/N2O/Ar Mixtures. Combustion and Flame, 159, 2944-2953. https://doi.org/10.1016/j.combustflame.2012.06.010
|
[36]
|
Schroeder, V. and Holtappels, K. (2005) Explosion Characteristics Hydrogen-Air and Hydrogen-Oxygen Mixtures at Elevated Pressures, (Conference Article). https://conference.ing.unipi.it/ichs2005/Papers/120001.pdf
|
[37]
|
Peng, Y. and Deng, J. (2024) Hydrogen Diffusion in the Lower Mantle Revealed by Machine Learning Potentials. Journal of Geophysical Research: Solid Earth, 129, e2023JB028333. https://doi.org/10.1029/2023jb028333
|
[38]
|
Mazzola, G., Helled, R. and Sorella, S. (2018) Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations. Physical Review Letters, 120, Article ID: 025701. https://doi.org/10.1103/physrevlett.120.025701
|
[39]
|
Péron, S., Moreira, M. and Agranier, A. (2018) Origin of Light Noble Gases (He, Ne, and Ar) on Earth: A Review. Geochemistry, Geophysics, Geosystems, 19, 979-996. https://doi.org/10.1002/2017gc007388
|
[40]
|
Mukhopadhyay, S. and Parai, R. (2019) Noble Gases: A Record of Earth’s Evolution and Mantle Dynamics. Annual Review of Earth and Planetary Sciences, 47, 389-419. https://doi.org/10.1146/annurev-earth-053018-060238
|
[41]
|
Sanloup, C. (2020) Noble Gas Reactivity in Planetary Interiors. Frontiers in Physics, 8, Article No. 157. https://doi.org/10.3389/fphy.2020.00157
|
[42]
|
Spandler, C., Slezak, P. and Nazari-Dehkordi, T. (2020) Tectonic Significance of Australian Rare Earth Element Deposits. Earth-Science Reviews, 207, Article ID: 103219. https://doi.org/10.1016/j.earscirev.2020.103219
|
[43]
|
Stevenson, D.J. and Salpeter, E.E. (1977) The Phase Diagram and Transport Properties for Hydrogen-Helium Fluid Planets. The Astrophysical Journal Supplement Series, 35, 221-237. https://doi.org/10.1086/190478
|
[44]
|
Karato, S. (1990) The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature, 347, 272-273. https://doi.org/10.1038/347272a0
|
[45]
|
Karato, S. (2006) Remote Sensing of Hydrogen in Earth’s Mantle. Reviews in Mineralogy and Geochemistry, 62, 343-375. https://doi.org/10.2138/rmg.2006.62.15
|
[46]
|
Karato, S. and Wang, D. (2013) Chapter 5. Electrical Conductivity of Minerals and Rocks. In: Karato, S., Ed., Physics and Chemistry of the Deep Earth, John Wiley & Sons.
|
[47]
|
Gufeld, I.L. and Matveeva, M.I. (2011) Barrier Effect of Degassing and Destruction of the Earth’s Crust. Doklady Earth Sciences, 438, 677-680. https://doi.org/10.1134/s1028334x11050199
|
[48]
|
Gufeld, I.L. (2012) Geological Consequences of Amorphization of the Lithosphere and Upper Mantle Structures Caused by Hydrogen Degassing. Geodynamics & Tectonophysics, 3, 417-435. https://doi.org/10.5800/gt-2012-3-4-0083
|
[49]
|
Fomin, I. and Schiffer, C. (2019) Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone. Geosciences, 9, Article No. 505. https://doi.org/10.3390/geosciences9120505
|
[50]
|
Mishin, Y., Sofronis, P. and Bassani, J.L. (2002) Thermodynamic and Kinetic Aspects of Interfacial Decohesion. Acta Materialia, 50, 3609-3622. https://doi.org/10.1016/s1359-6454(02)00165-9
|
[51]
|
Song, J. and Curtin, W.A. (2012) Atomic Mechanism and Prediction of Hydrogen Embrittlement in Iron. Nature Materials, 12, 145-151. https://doi.org/10.1038/nmat3479
|
[52]
|
Lan, H., Martin, C.D. and Hu, B. (2010) Effect of Heterogeneity of Brittle Rock on Micromechanical Extensile Behavior during Compression Loading. Journal of Geophysical Research: Solid Earth, 115, B01202. https://doi.org/10.1029/2009jb006496
|
[53]
|
Li, C., Pan, L., Zhang, L., Chris A., M. and Galang, A.G. (2023) Deformation Localization and Crack Propagation of Sandstone Containing Different Flaw Inclination Angles under Different Loading Rates. Frontiers in Earth Science, 11, Article ID: 1322992. https://doi.org/10.3389/feart.2023.1322992
|
[54]
|
Salas-Reyes, A.E., Qaban, A. and Mintz, B. (2024) Comments on the Intermediate-Temperature Embrittlement of Metals and Alloys: The Conditions for Transgranular and Intergranular Failure. Metals, 14, Article No. 270. https://doi.org/10.3390/met14030270
|
[55]
|
Güldemeister, N., Wünnemann, K., Durr, N. and Hiermaier, S. (2012) Propagation of Impact‐Induced Shock Waves in Porous Sandstone Using Mesoscale Modeling. Meteoritics & Planetary Science, 48, 115-133. https://doi.org/10.1111/j.1945-5100.2012.01430.x
|
[56]
|
Scholz, C.H., Tan, Y.J. and Albino, F. (2019) The Mechanism of Tidal Triggering of Earthquakes at Mid-Ocean Ridges. Nature Communications, 10, Article No. 2526. https://doi.org/10.1038/s41467-019-10605-2
|
[57]
|
Zaccagnino, D. and Doglioni, C. (2022) Earth’s Gradients as the Engine of Plate Tectonics and Earthquakes. La Rivista del Nuovo Cimento, 45, 801-881. https://doi.org/10.1007/s40766-022-00038-x
|
[58]
|
Liu, L. and Zhang, J.S. (2015) Differential Contraction of Subducted Lithosphere Layers Generates Deep Earthquakes. Earth and Planetary Science Letters, 421, 98-106. https://doi.org/10.1016/j.epsl.2015.03.053
|
[59]
|
Kulinich, Y., Novosyadlyj, B., Shulga, V. and Han, W. (2020) Thermal and Resonant Emission of Dark Age Halos in the Rotational Lines of HeH+. Physical Review D, 101, Article ID: 083519. https://doi.org/10.1103/physrevd.101.083519
|
[60]
|
Novosyadlyj, B., Kulinich, Y., Melekh, B. and Shulga, V. (2022) The First Molecules in the Intergalactic Medium and Halos of the Dark Ages and Cosmic Dawn. Astronomy & Astrophysics, 663, A120. https://doi.org/10.1051/0004-6361/202243238
|
[61]
|
Zhou, W., Hao, M., Zhang, J.S., Chen, B., Wang, R. and Schmandt, B. (2022) Constraining Composition and Temperature Variations in the Mantle Transition Zone. Nature Communications, 13, Article No. 1094. https://doi.org/10.1038/s41467-022-28709-7
|
[62]
|
Shackelford, J.F. (2014) Gas Solubility and Diffusion in Oxide Glasses—Implications for Nuclear Wasteforms. Procedia Materials Science, 7, 278-285. https://doi.org/10.1016/j.mspro.2014.10.036
|
[63]
|
Amalberti, J., Burnard, P., Laporte, D., Tissandier, L. and Neuville, D.R. (2016) Multidiffusion Mechanisms for Noble Gases (He, Ne, Ar) in Silicate Glasses and Melts in the Transition Temperature Domain: Implications for Glass Polymerization. Geochimica et Cosmochimica Acta, 172, 107-126. https://doi.org/10.1016/j.gca.2015.09.027
|
[64]
|
Vlasov, K., Audétat, A. and Keppler, H. (2023) H2-H2O Immiscibility in Earth’s Upper Mantle. Contributions to Mineralogy and Petrology, 178, Article No. 36. https://doi.org/10.1007/s00410-023-02019-7
|
[65]
|
Hudák, I., Skryja, P., Bojanovský, J., Jegla, Z. and Krňávek, M. (2021) The Effect of Inert Fuel Compounds on Flame Characteristics. Energies, 15, Article No. 262. https://doi.org/10.3390/en15010262
|
[66]
|
Chen, J. (2024) Effect of Noble Gases on the Transport and Thermodynamic Characteristics of Microchannel Reforming Reactors for Hydrogen Production. International Journal of Hydrogen Energy, 50, 654-671. https://doi.org/10.1016/j.ijhydene.2023.08.365
|
[67]
|
Druzhbin, D., Fei, H. and Katsura, T. (2021) Independent Hydrogen Incorporation in Wadsleyite from Oxygen Fugacity and Non-Dissociation of H2O in the Reducing Mantle Transition Zone. Earth and Planetary Science Letters, 557, Article ID: 116755. https://doi.org/10.1016/j.epsl.2021.116755
|
[68]
|
Ohtani, E. (2019) The Role of Water in Earth’s Mantle. National Science Review, 7, 224-232. https://doi.org/10.1093/nsr/nwz071
|
[69]
|
Williams, Q. and Hemley, R.J. (2001) Hydrogen in the Deep Earth. Annual Review of Earth and Planetary Sciences, 29, 365-418. https://doi.org/10.1146/annurev.earth.29.1.365
|
[70]
|
Hu, Q., Kim, D.Y., Yang, W., Yang, L., Meng, Y., Zhang, L., et al. (2016) FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth’s Oxygen-Hydrogen Cycles. Nature, 534, 241-244. https://doi.org/10.1038/nature18018
|
[71]
|
Postnikov, A.V., Uvarov, I.V., Prokaznikov, A.V. and Svetovoy, V.B. (2016) Observation of Spontaneous Combustion of Hydrogen and Oxygen in Microbubbles. Applied Physics Letters, 108, Article ID: 121604. https://doi.org/10.1063/1.4944780
|
[72]
|
Svetovoy, V.B., Prokaznikov, A.V., Postnikov, A.V., Uvarov, I.V. and Palasantzas, G. (2019) Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. Energies, 13, Article No. 20. https://doi.org/10.3390/en13010020
|
[73]
|
Wada, I., Behn, M.D. and He, J. (2011) Grain-Size Distribution in the Mantle Wedge of Subduction Zones. Journal of Geophysical Research, 116, B10203. https://doi.org/10.1029/2011jb008294
|
[74]
|
Cerpa, N.G., Wada, I. and Wilson, C.R. (2017) Fluid Migration in the Mantle Wedge: Influence of Mineral Grain Size and Mantle Compaction. Journal of Geophysical Research: Solid Earth, 122, 6247-6268. https://doi.org/10.1002/2017jb014046
|
[75]
|
He, Y., Kim, D.Y., Struzhkin, V.V., Geballe, Z.M., Prakapenka, V. and Mao, H. (2023) The Stability of Feh and Hydrogen Transport at Earth’s Core Mantle Boundary. Science Bulletin, 68, 1567-1573. https://doi.org/10.1016/j.scib.2023.06.012
|
[76]
|
Zhang, L., Zhang, L., Tang, M., Wang, X., Tao, R., Xu, C., et al. (2022) Massive Abiotic Methane Production in Eclogite during Cold Subduction. National Science Review, 10, nwac207. https://doi.org/10.1093/nsr/nwac207
|
[77]
|
Anderson, D.L. (2009) Energetics of the Earth and the Missing Heat Source Mystery. Tech. Report, Seismological Laboratory, California Institute of Technology.
|
[78]
|
Terez, E.I. and Terez, I.E. (2013) Thermonuclear Reaction as the Main Source of the Earth’s Energy. International Journal of Astronomy and Astrophysics, 3, 362-365. https://doi.org/10.4236/ijaa.2013.33040
|
[79]
|
Terez, E.I. and Terez, I.E. (2015) Fusion Reactions as the Main Source of the Earth’s Internal Energy. Herald of the Russian Academy of Sciences, 85, 163-169. https://doi.org/10.1134/s1019331615020070
|
[80]
|
Dye, S.T. (2012) Geoneutrinos and the Radioactive Power of the Earth. Reviews of Geophysics, 50, RG3007. https://doi.org/10.1029/2012rg000400
|
[81]
|
Fukuhara, M. (2016) Possible Generation of Heat from Nuclear Fusion in Earth’s Inner Core. Scientific Reports, 6, Article No. 37740. https://doi.org/10.1038/srep37740
|
[82]
|
Fukuhara, M. (2020) Possible Nuclear Fusion of Deuteron in the Cores of Earth, Jupiter, Saturn, and Brown Dwarfs. AIP Advances, 10, Article ID: 035126. https://doi.org/10.1063/1.5108922
|
[83]
|
Bychkov, S. (2020) Magma as a Generator of Plasma and Thermonuclear Fusion in the Bowels of the Earth. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3738328
|
[84]
|
Zelensky, V.F., Rybalko, V.F., Tolstolutskaya, G.D., Pistryak, S.V., Kopanets, I.E. and Morozov, A.N. (1994) Initiation of Nuclear Fusion Reactions in Metal-Deuterium and Metal-Deuterium + Tritium Systems by Bombardment with Noble Gas Ions. Fusion Technology, 25, 95-102. https://doi.org/10.13182/fst94-a30238
|
[85]
|
Sada, H. (1997) Theory of Nuclear Reactions in Solids. Fusion Technology, 32, 107-125. https://doi.org/10.13182/fst97-a19883
|
[86]
|
Pines, V., Pines, M., Chait, A., Steinetz, B.M., Forsley, L.P., Hendricks, R.C., et al. (2020) Nuclear Fusion Reactions in Deuterated Metals. Physical Review C, 101, Article ID: 044609. https://doi.org/10.1103/physrevc.101.044609
|
[87]
|
Steinetz, B.M., Benyo, T.L., Chait, A., Hendricks, R.C., Forsley, L.P., Baramsai, B., et al. (2020) Novel Nuclear Reactions Observed in Bremsstrahlung-Irradiated Deuterated Metals. Physical Review C, 101, Article ID: 044619. https://doi.org/10.1103/physrevc.101.044610
|
[88]
|
Dornheim, T., Groth, S. and Bonitz, M. (2018) The Uniform Electron Gas at Warm Dense Matter Conditions. Physics Reports, 744, 1-86. https://doi.org/10.1016/j.physrep.2018.04.001
|
[89]
|
Gardner, J.E., Wadsworth, F.B., Carley, T.L., Llewellin, E.W., Kusumaatmaja, H. and Sahagian, D. (2023) Bubble Formation in Magma. Annual Review of Earth and Planetary Sciences, 51, 131-154. https://doi.org/10.1146/annurev-earth-031621-080308
|
[90]
|
Davydov, M.N., Kedrinskii, V.K., Chernov, A.A. and Takayama, K. (2005) Generation and Evolution of Cavitation in Magma under Dynamic Unloading. Journal of Applied Mechanics and Technical Physics, 46, 208-215. https://doi.org/10.1007/s10808-005-0036-2
|
[91]
|
Graziani, F., Moldabekov, Z., Olson, B. and Bonitz, M. (2022) Shock Physics in Warm Dense Matter: A Quantum Hydrodynamics Perspective. Contributions to Plasma Physics, 62, e202100170. https://doi.org/10.1002/ctpp.202100170
|
[92]
|
White, T.G., Dai, J. and Riley, D. (2023) Dynamic and Transient Processes in Warm Dense Matter. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381, Article ID: 20220223. https://doi.org/10.1098/rsta.2022.0223
|
[93]
|
Armour, E.A.G. (2007) Muon Catalyzed Fusion, NASA GSFC Science Symposium on Atomic and Molecular Physics.
|
[94]
|
Kozima, H. and Kaki, K. (2000) Anomalous Nuclear Reactions in Solids Revealed by CF Experiments. Report of the Faculty of Science Shizuoka University, Vol. 34, 1-35.
|
[95]
|
Kozima, H. (2003) CF-Matter and the Cold Fusion Phenomenon. 10th International Conference on Cold Fusion.
|
[96]
|
Kasagi, J. (2004) Low-Energy Nuclear Reactions in Metals. Progress of Theoretical Physics Supplement, 154, 365-372. https://doi.org/10.1143/ptps.154.365
|
[97]
|
Kasagi, J. and Honda, Y. (2016) Screening Energy of the D + D Reaction in an Electron Plasma Deduced from Cooperative Colliding Reaction. Journal of Condensed Matter Nuclear Science, 19, 127-134. https://doi.org/10.70923/001c.72381
|
[98]
|
Kasagi, J., Honda, Y. and Fang, K. (2020) Screening Energy for Low Energy Nuclear Reactions in Condensed Matter. In: Biberian, J.-P., Ed., Cold Fusion, Elsevier, 167-187. https://doi.org/10.1016/b978-0-12-815944-6.00010-5
|
[99]
|
Jaitner, L. (2015-2019 )The Physics of Condensed Plasmoids and Low-Energy Nuclear Reactions (LENR). https://condensed-plasmoids.com/condensed_plasmoids_lenr.pdf
|
[100]
|
Metzler, F., Hunt, C. and Galvanetto, N. (2022) Known Mechanisms That Increase Nuclear Fusion Rates in the Solid State.
|
[101]
|
Parkhomov, A.G. and Belousova, E.O. (2022) Huge Variety of Nuclides That Arise in the LENR Processes: Attempt at Explanation. Journal of Modern Physics, 13, 274-284. https://doi.org/10.4236/jmp.2022.133019
|
[102]
|
Bartalucci, S., Vysotskii, V.I. and Vysotskyy, M.V. (2019) Correlated States and Nuclear Reactions: An Experimental Test with Low Energy Beams. Physical Review Accelerators and Beams, 22, Article ID: 054503. https://doi.org/10.1103/physrevaccelbeams.22.054503
|
[103]
|
Wei, Y. (2017) Collective Low Energy Nuclear Reaction May Cause Overunity in Graneau’s Water Explosion.
|
[104]
|
Lee, I. and Diaz-Torres, A. (2022) Coherence Dynamics in Low-Energy Nuclear Fusion. Physics Letters B, 827, Article ID: 136970. https://doi.org/10.1016/j.physletb.2022.136970
|
[105]
|
Oganessian, Y. (2006) Synthesis and Decay Properties of Superheavy Elements. Pure and Applied Chemistry, 78, 889-904. https://doi.org/10.1351/pac200678050889
|
[106]
|
Reed, G.W., Kigoshi, K. and Turkevich, A. (1960) Determinations of Concentrations of Heavy Elements in Meteorites by Activation Analysis. Geochimica et Cosmochimica Acta, 20, 122-140. https://doi.org/10.1016/0016-7037(60)90055-7
|
[107]
|
Suttle, M.D., Folco, L., Dionnet, Z., Van Ginneken, M., Di Rocco, T., Pack, A., et al. (2022) Isotopically Heavy Micrometeorites—Fragments of CY Chondrite or a New Hydrous Parent Body? Journal of Geophysical Research: Planets, 127, e2021JE007154. https://doi.org/10.1029/2021je007154
|
[108]
|
van Ginneken, M., Wozniakiewicz, P.J., Brownlee, D.E., Debaille, V., Della Corte, V., Delauche, L., et al. (2024) Micrometeorite Collections: A Review and Their Current Status. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382, Article ID: 20230195. https://doi.org/10.1098/rsta.2023.0195
|
[109]
|
Arculus, R. (2016) The Cosmic Origins of Uranium. World Nuclear Association. http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/uranium-resources/the-cosmic-origins-of-uranium.aspx
|
[110]
|
Parrish, R. (2014) Uranium-lead Dating. In: Rink, W. and Thompson, J., Eds., Encyclopedia of Scientific Dating Methods, Springer, 1-16. https://doi.org/10.1007/978-94-007-6326-5_193-1
|
[111]
|
USGS Publications Warehouse (2001, June 13) Radiometric Time Scale. https://pubs.usgs.gov/gip/geotime/radiometric.html
|
[112]
|
Clark, R.S., Rowe, M.W., Ganapathy, R. and Kuroda, P.K. (1967) Iodine, Uranium and Tellurium Contents in Meteorites. Geochimica et Cosmochimica Acta, 31, 1605-1613. https://doi.org/10.1016/0016-7037(67)90109-3
|
[113]
|
Morgan, J.W. and Lovering, J.F. (1968) Uranium and Thorium Abundances in Chondritic Meteorites. Talanta, 15, 1079-1095. https://doi.org/10.1016/0039-9140(68)80031-1
|
[114]
|
Tatsumoto, M., Knight, R.J. and Allegre, C.J. (1973) Time Differences in the Formation of Meteorites as Determined from the Ratio of Lead-207 to Lead-206. Science, 180, 1279-1283. https://doi.org/10.1126/science.180.4092.1279
|
[115]
|
Brennecka, G.A. and Wadhwa, M. (2012) Uranium Isotope Compositions of the Basaltic Angrite Meteorites and the Chronological Implications for the Early Solar System. Proceedings of the National Academy of Sciences, 109, 9299-9303. https://doi.org/10.1073/pnas.1114043109
|
[116]
|
Moromoto, N., Kawai, Y., Terada, K., Miyahara, M., Takahata, N., Sano, Y., et al. (2023) Uranium-Lead Systematics of Lunar Basaltic Meteorite Northwest Africa 2977. Mass Spectrometry, 12, A0115. https://doi.org/10.5702/massspectrometry.a0115
|
[117]
|
Murthy, V.R. and Patterson, C.C. (1962) Primary Isochron of Zero Age for Meteorites and the Earth. Journal of Geophysical Research, 67, 1161-1167. https://doi.org/10.1029/jz067i003p01161
|
[118]
|
Lyons, J.B., Aleinikoff, J.N. and Zartman, R.E. (1986) Uranium-Thorium-Lead Ages of the Highlandcroft Plutonic Suite, Northern New England. American Journal of Science, 286, 489-509. https://doi.org/10.2475/ajs.286.6.489
|
[119]
|
Scott, E. (2020) Iron Meteorites: Composition, Age, and Origin. In: Read, P., et al., Eds., Oxford Research Encyclopedia of Planetary Science, Oxford University Press, Article No. 206.
|
[120]
|
Schiller, M., Paton, C. and Bizzarro, M. (2015) Evidence for Nucleosynthetic Enrichment of the Protosolar Molecular Cloud Core by Multiple Supernova Events. Geochimica et Cosmochimica Acta, 149, 88-102. https://doi.org/10.1016/j.gca.2014.11.005
|
[121]
|
Hilton, C.D., Bermingham, K.R., Walker, R.J. and McCoy, T.J. (2019) Genetics, Crystallization Sequence, and Age of the South Byron Trio Iron Meteorites: New Insights to Carbonaceous Chondrite (CC) Type Parent Bodies. Geochimica et Cosmochimica Acta, 251, 217-228. https://doi.org/10.1016/j.gca.2019.02.035
|
[122]
|
Nie, N.X., Wang, D., Torrano, Z.A., Carlson, R.W., O’D. Alexander, C.M. and Shahar, A. (2023) Meteorites Have Inherited Nucleosynthetic Anomalies of Potassium-40 Produced in Supernovae. Science, 379, 372-376. https://doi.org/10.1126/science.abn1783
|
[123]
|
Martins, R., Kuthning, S., Coles, B.J., Kreissig, K. and Rehkämper, M. (2023) Nucleosynthetic Isotope Anomalies of Zinc in Meteorites Constrain the Origin of Earth’s Volatiles. Science, 379, 369-372. https://doi.org/10.1126/science.abn1021
|
[124]
|
Lugaro, M., Ott, U. and Kereszturi, Á. (2018) Radioactive Nuclei from Cosmochronology to Habitability. Progress in Particle and Nuclear Physics, 102, 1-47. https://doi.org/10.1016/j.ppnp.2018.05.002
|
[125]
|
Skyttä, P., Määttä, M., Piippo, S., Kara, J., Käpyaho, A., Heilimo, E., et al. (2020) Constraints over the Age of Magmatism and Subsequent Deformation for the Neoarchean Kukkola Gneiss Complex, Northern Fennoscandia. Bulletin of the Geological Society of Finland, 92, 19-38. https://doi.org/10.17741/bgsf/92.1.002
|
[126]
|
Goldich, S.S., Hedge, C.E. and Stern, T.W. (1970) Age of the Morton and Montevideo Gneisses and Related Rocks, Southwestern Minnesota. Geological Society of America Bulletin, 81, 3671-3696. https://doi.org/10.1130/0016-7606(1970)81[3671:aotmam]2.0.co;2
|
[127]
|
Timmerman, S., Stachel, T., Koornneef, J.M., Smit, K.V., Harlou, R., Nowell, G.M., et al. (2023) Sublithospheric Diamond Ages and the Supercontinent Cycle. Nature, 623, 752-756. https://doi.org/10.1038/s41586-023-06662-9
|
[128]
|
Brusnitsyn, A.I. and Zhukov, I.G. (2005) The South Faizuly Manganese Deposit in the Southern Urals: Geology, Petrography, and Formation Conditions. Lithology and Mineral Resources, 40, 30-47. https://doi.org/10.1007/s10987-005-0004-1
|
[129]
|
Frolov, A.A. (1994) Ore-Bearing Volcanogenic Structures. “Nedra”, 285 p. (In Russian)
|
[130]
|
Sillitoe, R.H. and Bonham, H.F. (1984) Volcanic Landforms and Ore Deposits. Economic Geology, 79, 1286-1298. https://doi.org/10.2113/gsecongeo.79.6.1286
|
[131]
|
Sillitoe, R.H. (2000) Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery. SEG Reviews, 13, 315-345.
|
[132]
|
Al-Ani, T., Molnár, F., Lintinen, P. and Leinonen, S. (2018) Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland. Minerals, 8, Article No. 356. https://doi.org/10.3390/min8080356
|
[133]
|
Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., Taran, Y.A. and Steinberg, G.S. (1994) Discovery of a Pure Rhenium Mineral at Kudriavy Volcano. Nature, 369, 51-52. https://doi.org/10.1038/369051a0
|
[134]
|
World Distribution of Uranium Deposits (UDEPO) (2018). https://www.iaea.org/publications/12345/world-distribution-of-uranium-deposits-udepo
|
[135]
|
García, A.C., Latifi, M., Amini, A. and Chaouki, J. (2020) Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals. Metals, 10, Article No. 1524. https://doi.org/10.3390/met10111524
|
[136]
|
Balaram, V. (2022) Rare Earth Element Deposits: Sources, and Exploration Strategies. Journal of the Geological Society of India, 98, 1210-1216. https://doi.org/10.1007/s12594-022-2154-3
|
[137]
|
Patel, K.S., Sharma, S., Maity, J.P., Martín-Ramos, P., Fiket, Ž., Bhattacharya, P., et al. (2023) Occurrence of Uranium, Thorium and Rare Earth Elements in the Environment: A Review. Frontiers in Environmental Science, 10, Article ID: 1058053. https://doi.org/10.3389/fenvs.2022.1058053
|
[138]
|
Strachimir Chterev, M. and Alexander, V. (2019) Improved Numerical Generalization of the Bethe-Weizsäcker Mass Formula for Prediction the Isotope Nuclear Mass, the Mass Excess Including of Artificial Elements 119 and 120. Nuclear Science, 4, 11-22. https://doi.org/10.11648/j.ns.20190402.11
|
[139]
|
Goff, F. and McMurtry, G.M. (2000) Tritium and Stable Isotopes of Magmatic Waters. Journal of Volcanology and Geothermal Research, 97, 347-396. https://doi.org/10.1016/s0377-0273(99)00177-8
|
[140]
|
Jiang, S., He, M., Yue, W. and Liu, J. (2008) Tritium Released from Mantle Source: Implications for Natural Nuclear Fusion in the Earth’s Interior. Journal of Fusion Energy, 27, 346-354. https://doi.org/10.1007/s10894-008-9149-y
|
[141]
|
Alonso, M., Pérez, N.M., Hernández, P.A., Padrón, E., Melián, G., Rodríguez, F., et al. (2022) Thermal Energy and Diffuse 4he and 3he Degassing Released in Volcanic-Geothermal Systems. Renewable Energy, 182, 17-31. https://doi.org/10.1016/j.renene.2021.10.016
|
[142]
|
McMurtry, G.M., Dasilveira, L.A., Horn, E.L., DeLuze, J.R. and Blessing, J.E. (2019) High 3He/4He Ratios in Lower East Rift Zone Steaming Vents Precede a New Phase of Kilauea 2018 Eruption by 8 Months. Scientific Reports, 9, Article No. 11860. https://doi.org/10.1038/s41598-019-48268-0
|
[143]
|
Pourcelot, L., León Vintró, L., Mitchell, P.I., Burkitbayev, M., Uralbekov, B., Bolatov, A., et al. (2013) Hydrological Behaviour of Tritium on the Former Semipalatinsk Nuclear Test Site (Kazakhstan) Determined Using Stable Isotope Measurements. Eurasian Chemico-Technological Journal, 15, 293-299. https://doi.org/10.18321/ectj234
|
[144]
|
Jackson, T.R. (2021) Permeable Groundwater Pathways and Tritium Migration Patterns from the HANDLEY Underground Nuclear Test, Pahute Mesa, Nevada. Scientific Investigations Report 2021-5032. https://doi.org/10.3133/sir20215032
|
[145]
|
Timonova, L., Larionova, N., Aidarkhanova, A., Lyakhova, O., Aktayev, M., Serzhanova, Z., et al. (2024) Tritium Distribution in the “Water-Soil-Air” System in the Semipalatinsk Test Site. PLOS ONE, 19, e0297017. https://doi.org/10.1371/journal.pone.0297017
|
[146]
|
Aktayev, M., Subbotin, S., Aidarkhanov, A., Aidarkhanova, A., Timonova, L. and Larionova, N. (2024) Characterization of Geological and Lithological Features in the Area Proximal to Tritium-Contaminated Groundwater at the Semipalatinsk Test Site. PLOS ONE, 19, e0300971. https://doi.org/10.1371/journal.pone.0300971
|