[1]
|
Son, M.K., Lim, N., Kim, H.W. and Park, H. (2017) Risk of Ischemic Stroke after Atrial Fibrillation Diagnosis: A National Sample Cohort. PLOS ONE, 12, e0179687. https://doi.org/10.1371/journal.pone.0179687
|
[2]
|
Michaud, G. and Kumar, S. (2016) Pulmonary Vein Isolation in the Treatment of Atrial Fibrillation. Research Reports in Clinical Cardiology, 2016, 47-60. https://doi.org/10.2147/rrcc.s56549
|
[3]
|
Crystal, E. (2004) Role of Oral Anticoagulation in Management of Atrial Fibrillation. Heart, 90, 813-817. https://doi.org/10.1136/hrt.2003.021642
|
[4]
|
Grisanti, L.A. (2018) Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Frontiers in Physiology, 9, Article 1669. https://doi.org/10.3389/fphys.2018.01669
|
[5]
|
Ninkovic, V.M., Ninkovic, S.M., Miloradovic, V., Stanojevic, D., Babic, M., Giga, V., et al. (2016) Prevalence and Risk Factors for Prolonged QT Interval and QT Dispersion in Patients with Type 2 Diabetes. Acta Diabetologica, 53, 737-744. https://doi.org/10.1007/s00592-016-0864-y
|
[6]
|
Alfazema, N., Barrier, M., de Procé, S.M., Menzies, R.I., Carter, R., Stewart, K., et al. (2019) Camk2n1 Is a Negative Regulator of Blood Pressure, Left Ventricular Mass, Insulin Sensitivity, and Promotes Adiposity. Hypertension, 74, 687-696. https://doi.org/10.1161/hypertensionaha.118.12409
|
[7]
|
Grimm, M. and Brown, J.H. (2010) Β-adrenergic Receptor Signaling in the Heart: Role of CaMKII. Journal of Molecular and Cellular Cardiology, 48, 322-330. https://doi.org/10.1016/j.yjmcc.2009.10.016
|
[8]
|
Anderson, M.E., Brown, J.H. and Bers, D.M. (2011) CaMKII in Myocardial Hypertrophy and Heart Failure. Journal of Molecular and Cellular Cardiology, 51, 468-473. https://doi.org/10.1016/j.yjmcc.2011.01.012
|
[9]
|
Backs, J., Backs, T., Neef, S., Kreusser, M.M., Lehmann, L.H., Patrick, D.M., et al. (2009) The Δ Isoform of Cam Kinase II Is Required for Pathological Cardiac Hypertrophy and Remodeling after Pressure Overload. Proceedings of the National Academy of Sciences, 106, 2342-2347. https://doi.org/10.1073/pnas.0813013106
|
[10]
|
Bossuyt, J., Helmstadter, K., Wu, X., Clements-Jewery, H., Haworth, R.S., Avkiran, M., et al. (2008) Ca2+/Calmodulin-Dependent Protein Kinase Iiδ and Protein Kinase D Overexpression Reinforce the Histone Deacetylase 5 Redistribution in Heart Failure. Circulation Research, 102, 695-702. https://doi.org/10.1161/circresaha.107.169755
|
[11]
|
Chelu, M.G., Sarma, S., Sood, S., Wang, S., van Oort, R.J., Skapura, D.G., et al. (2009) Calmodulin Kinase II–Mediated Sarcoplasmic Reticulum Ca2+ Leak Promotes Atrial Fibrillation in Mice. Journal of Clinical Investigation, 119, 1940-1951. https://doi.org/10.1172/jci37059
|
[12]
|
Voigt, N., Li, N., Wang, Q., Wang, W., Trafford, A.W., Abu-Taha, I., et al. (2012) Enhanced Sarcoplasmic Reticulum Ca2+ Leak and Increased Na+-Ca2+ Exchanger Function Underlie Delayed Afterdepolarizations in Patients with Chronic Atrial Fibrillation. Circulation, 125, 2059-2070. https://doi.org/10.1161/circulationaha.111.067306
|
[13]
|
van Oort, R.J., McCauley, M.D., Dixit, S.S., Pereira, L., Yang, Y., Respress, J.L., et al. (2010) Ryanodine Receptor Phosphorylation by Calcium/calmodulin-Dependent Protein Kinase II Promotes Life-Threatening Ventricular Arrhythmias in Mice with Heart Failure. Circulation, 122, 2669-2679. https://doi.org/10.1161/circulationaha.110.982298
|
[14]
|
Zalcman, G., Federman, N. and Romano, A. (2018) CaMKII Isoforms in Learning and Memory: Localization and Function. Frontiers in Molecular Neuroscience, 11, Article 445. https://doi.org/10.3389/fnmol.2018.00445
|
[15]
|
Kreusser, M.M., Lehmann, L.H., Keranov, S., Hoting, M., Oehl, U., Kohlhaas, M., et al. (2014) Cardiac Cam Kinase II Genes Δ and Γ Contribute to Adverse Remodeling but Redundantly Inhibit Calcineurin-Induced Myocardial Hypertrophy. Circulation, 130, 1262-1273. https://doi.org/10.1161/circulationaha.114.006185
|
[16]
|
Song, Q., Saucerman, J.J., Bossuyt, J. and Bers, D.M. (2008) Differential Integration of Ca2+-Calmodulin Signal in Intact Ventricular Myocytes at Low and High Affinity Ca2+-Calmodulin Targets. Journal of Biological Chemistry, 283, 31531-31540. https://doi.org/10.1074/jbc.m804902200
|
[17]
|
Lai, Y., Nairn, A.C., Gorelick, F. and Greengard, P. (1987) Ca2+/Calmodulin-Dependent Protein Kinase II: Identification of Autophosphorylation Sites Responsible for Generation of Ca2+/Calmodulin-Independence. Proceedings of the National Academy of Sciences, 84, 5710-5714. https://doi.org/10.1073/pnas.84.16.5710
|
[18]
|
Meyer, T., Hanson, P.I., Stryer, L. and Schulman, H. (1992) Calmodulin Trapping by Calcium-Calmodulin-Dependent Protein Kinase. Science, 256, 1199-1202. https://doi.org/10.1126/science.256.5060.1199
|
[19]
|
Bhattacharyya, M., Lee, Y.K., Muratcioglu, S., Qiu, B., Nyayapati, P., Schulman, H., Groves, J.T. and Kuriyan, J. (2020) Flexible Linkers in CaMKII Control the Balance between Activating and Inhibitory Autophosphorylation. E Life, 9, e53670.
|
[20]
|
Erickson, J.R. (2014) Mechanisms of CaMKII Activation in the Heart. Frontiers in Pharmacology, 5, Article 59. https://doi.org/10.3389/fphar.2014.00059
|
[21]
|
Hunter, T. and Schulman, H. (2005) CaMKII Structure—An Elegant Design. Cell, 123, 765-767. https://doi.org/10.1016/j.cell.2005.11.017
|
[22]
|
Myers, J.B., Zaegel, V., Coultrap, S.J., Miller, A.P., Bayer, K.U. and Reichow, S.L. (2017) The CaMKII Holoenzyme Structure in Activation-Competent Conformations. Nature Communications, 8, Article No. 15742. https://doi.org/10.1038/ncomms15742
|
[23]
|
He, B.J., Joiner, M.A., Singh, M.V., Luczak, E.D., Swaminathan, P.D., Koval, O.M., et al. (2011) Oxidation of CaMKII Determines the Cardiotoxic Effects of Aldosterone. Nature Medicine, 17, 1610-1618. https://doi.org/10.1038/nm.2506
|
[24]
|
Erickson, J.R., Joiner, M.A., Guan, X., Kutschke, W., Yang, J., Oddis, C.V., et al. (2008) A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation. Cell, 133, 462-474. https://doi.org/10.1016/j.cell.2008.02.048
|
[25]
|
Daniels, L.J., Wallace, R.S., Nicholson, O.M., Wilson, G.A., McDonald, F.J., Jones, P.P., et al. (2018) Inhibition of Calcium/Calmodulin-Dependent Kinase II Restores Contraction and Relaxation in Isolated Cardiac Muscle from Type 2 Diabetic Rats. Cardiovascular Diabetology, 17, Article No. 89. https://doi.org/10.1186/s12933-018-0732-x
|
[26]
|
Coultrap, S.J., Zaegel, V. and Bayer, K.U. (2014) CaMKII Isoforms Differ in Their Specific Requirements for Regulation by Nitric Oxide. FEBS Letters, 588, 4672-4676. https://doi.org/10.1016/j.febslet.2014.10.039
|
[27]
|
Luo, M., Guan, X., Luczak, E.D., Lang, D., Kutschke, W., Gao, Z., et al. (2013) Diabetes Increases Mortality after Myocardial Infarction by Oxidizing CaMKII. Journal of Clinical Investigation, 123, 1262-1274. https://doi.org/10.1172/jci65268
|
[28]
|
Erickson, J.R., Pereira, L., Wang, L., Han, G., Ferguson, A., Dao, K., et al. (2013) Diabetic Hyperglycaemia Activates CaMKII and Arrhythmias by O-Linked Glycosylation. Nature, 502, 372-376. https://doi.org/10.1038/nature12537
|
[29]
|
Purohit, A., Rokita, A.G., Guan, X., Chen, B., Koval, O.M., Voigt, N., et al. (2013) Oxidized Ca2+/Calmodulin-Dependent Protein Kinase II Triggers Atrial Fibrillation. Circulation, 128, 1748-1757. https://doi.org/10.1161/circulationaha.113.003313
|
[30]
|
Yuchi, Z., Lau, K. and Van Petegem, F. (2012) Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain. Structure, 20, 1201-1211. https://doi.org/10.1016/j.str.2012.04.015
|
[31]
|
Eisner, D.A., Caldwell, J.L., Kistamás, K. and Trafford, A.W. (2017) Calcium and Excitation-Contraction Coupling in the Heart. Circulation Research, 121, 181-195. https://doi.org/10.1161/circresaha.117.310230
|
[32]
|
Song, Y., Shryock, J.C. and Belardinelli, L. (2008) An Increase of Late Sodium Current Induces Delayed Afterdepolarizations and Sustained Triggered Activity in Atrial Myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 294, H2031-H2039. https://doi.org/10.1152/ajpheart.01357.2007
|
[33]
|
Hasenfuss, G., Schillinger, W., Lehnart, S.E., Preuss, M., Pieske, B., Maier, L.S., et al. (1999) Relationship between Na+-Ca2+–Exchanger Protein Levels and Diastolic Function of Failing Human Myocardium. Circulation, 99, 641-648. https://doi.org/10.1161/01.cir.99.5.641
|
[34]
|
Pieske, B., Maier, L.S. and Schmidt-Schweda, S. (2002) Sarcoplasmic Reticulum Ca2+ Load in Human Heart Failure. Basic Research in Cardiology, 97, Article No. 1. https://doi.org/10.1007/s003950200032
|
[35]
|
Pereira, L., Bare, D.J., Galice, S., Shannon, T.R. and Bers, D.M. (2017) Β-Adrenergic Induced SR Ca2+ Leak Is Mediated by an Epac-NOS Pathway. Journal of Molecular and Cellular Cardiology, 108, 8-16. https://doi.org/10.1016/j.yjmcc.2017.04.005
|
[36]
|
Respress, J.L., van Oort, R.J., Li, N., Rolim, N., Dixit, S.S., deAlmeida, A., et al. (2012) Role of Ryr2 Phosphorylation at S2814 during Heart Failure Progression. Circulation Research, 110, 1474-1483. https://doi.org/10.1161/circresaha.112.268094
|
[37]
|
Colinas, O., Gallego, M., Setién, R., López-López, J.R., Pérez-García, M.T. and Casis, O. (2006) Differential Modulation of Kv4.2 and Kv4.3 Channels by Calmodulin-Dependent Protein Kinase II in Rat Cardiac Myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 291, H1978-H1987. https://doi.org/10.1152/ajpheart.01373.2005
|
[38]
|
Sergeant, G.P., Ohya, S., Reihill, J.A., Perrino, B.A., Amberg, G.C., Imaizumi, Y., et al. (2005) Regulation of Kv4.3 Currents by Ca2+/Calmodulin-Dependent Protein Kinase II. American Journal of Physiology-Cell Physiology, 288, C304-C313. https://doi.org/10.1152/ajpcell.00293.2004
|
[39]
|
Liu, J., Kim, K., Morales, M.J., Heximer, S.P., Hui, C. and Backx, P.H. (2015) Kv4.3-Encoded Fast Transient Outward Current Is Presented in Kv4.2 Knockout Mouse Cardiomyocytes. PLOS ONE, 10, e0133274. https://doi.org/10.1371/journal.pone.0133274
|
[40]
|
Wickenden, A.D., Jegla, T.J., Kaprielian, R. and Backx, P.H. (1999) Regional Contributions of Kv1.4, Kv4.2, and Kv4.3 to Transient Outward K+ Current in Rat Ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 276, H1599-H1607. https://doi.org/10.1152/ajpheart.1999.276.5.h1599
|
[41]
|
Wagner, S., Hacker, E., Grandi, E., Weber, S.L., Dybkova, N., Sossalla, S., et al. (2009) Ca/Calmodulin Kinase II Differentially Modulates Potassium Currents. Circulation: Arrhythmia and Electrophysiology, 2, 285-294. https://doi.org/10.1161/circep.108.842799
|
[42]
|
Hagiwara, K., Nunoki, K., Ishii, K., Abe, T. and Yanagisawa, T. (2003) Differential Inhibition of hjkhj Transient Outward Currents of Kv1.4 and Kv4.3 by Endothelin. Biochemical and Biophysical Research Communications, 310, 634-640. https://doi.org/10.1016/j.bbrc.2003.09.062
|
[43]
|
Nagy, N., Acsai, K., Kormos, A., Sebők, Z., Farkas, A.S., Jost, N., et al. (2013) Ca2+-I-induced Augmentation of the Inward Rectifier Potassium Current (IK1) in Canine and Human Ventricular Myocardium. European Journal of Physiology, 465, 1621-1635. https://doi.org/10.1007/s00424-013-1309-x
|
[44]
|
Li, J., Marionneau, C., Zhang, R., Shah, V., Hell, J.W., Nerbonne, J.M., et al. (2006) Calmodulin Kinase II Inhibition Shortens Action Potential Duration by Upregulation of K+ Currents. Circulation Research, 99, 1092-1099. https://doi.org/10.1161/01.res.0000249369.71709.5c
|
[45]
|
Zhang, D., Chai, Y., Erickson, J.R., Brown, J.H., Bers, D.M. and Lin, Y. (2014) Intracellular Signalling Mechanism Responsible for Modulation of Sarcolemmal ATP-Sensitive Potassium Channels by Nitric Oxide in Ventricular Cardiomyocytes. The Journal of Physiology, 592, 971-990. https://doi.org/10.1113/jphysiol.2013.264697
|
[46]
|
Gao, Z., Sierra, A., Zhu, Z., Koganti, S.R.K., Subbotina, E., Maheshwari, A., et al. (2016) Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury. PLOS ONE, 11, e0151337. https://doi.org/10.1371/journal.pone.0151337
|
[47]
|
Sierra, A., Zhu, Z., Sapay, N., Sharotri, V., Kline, C.F., Luczak, E.D., et al. (2013) Regulation of Cardiac ATP-Sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Biological Chemistry, 288, 1568-1581. https://doi.org/10.1074/jbc.m112.429548
|
[48]
|
Kline, C.F., Wright, P.J., Koval, O.M., Zmuda, E.J., Johnson, B.L., Anderson, M.E., et al. (2013) βiv-Spectrin and CaMKII Facilitate Kir6.2 Regulation in Pancreatic Beta Cells. Proceedings of the National Academy of Sciences, 110, 17576-17581. https://doi.org/10.1073/pnas.1314195110
|
[49]
|
Bers, D.M. and Morotti, S. (2014) Ca2+ Current Facilitation Is CaMKII-Dependent and Has Arrhythmogenic Consequences. Frontiers in Pharmacology, 5, Article 144. https://doi.org/10.3389/fphar.2014.00144
|
[50]
|
Anderson, M.E., Braun, A.P., Schulman, H. and Premack, B.A. (1994) Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase Mediates Ca2+-Induced Enhancement of the L-Type Ca2+ Current in Rabbit Ventricular Myocytes. Circulation Research, 75, 854-861. https://doi.org/10.1161/01.res.75.5.854
|
[51]
|
Yuan, W. and Bers, D.M. (1994) Ca-Dependent Facilitation of Cardiac Ca Current Is Due to Ca-Calmodulin-Dependent Protein Kinase. American Journal of Physiology-Heart and Circulatory Physiology, 267, H982-H993. https://doi.org/10.1152/ajpheart.1994.267.3.h982
|
[52]
|
McDonald, T.F., Pelzer, S., Trautwein, W. and Pelzer, D.J. (1994) Regulation and Modulation of Calcium Channels in Cardiac, Skeletal, and Smooth Muscle Cells. Physiological Reviews, 74, 365-507. https://doi.org/10.1152/physrev.1994.74.2.365
|
[53]
|
Hudmon, A., Schulman, H., Kim, J., Maltez, J.M., Tsien, R.W. and Pitt, G.S. (2005) CaMKII Tethers to L-Type Ca2+ Channels, Establishing a Local and Dedicated Integrator of Ca2+ Signals for Facilitation. The Journal of Cell Biology, 171, 537-547. https://doi.org/10.1083/jcb.200505155
|
[54]
|
Grueter, C.E., Abiria, S.A., Wu, Y., Anderson, M.E. and Colbran, R.J. (2008) Differential Regulated Interactions of Calcium/calmodulin-Dependent Protein Kinase II with Isoforms of Voltage-Gated Calcium Channel Β Subunits. Biochemistry, 47, 1760-1767. https://doi.org/10.1021/bi701755q
|
[55]
|
Xu, L., Lai, D., Cheng, J., Lim, H.J., Keskanokwong, T., Backs, J., et al. (2010) Alterations of L-Type Calcium Current and Cardiac Function in CaMKIIδ Knockout Mice. Circulation Research, 107, 398-407. https://doi.org/10.1161/circresaha.110.222562
|
[56]
|
Swaminathan, P.D., Purohit, A., Hund, T.J., & Anderson, M.E. (2012). Calmodulin-Dependent Protein Kinase II: Linking Heart Failure and Arrhythmias. Circulation Research, 110, 1661-1677.
|
[57]
|
Wu, Y., MacMillan, L.B., McNeill, R.B., Colbran, R.J. and Anderson, M.E. (1999) Cam Kinase Augments Cardiac L-Type Ca2+ Current: A Cellular Mechanism for Long Q-T Arrhythmias. American Journal of Physiology-Heart and Circulatory Physiology, 276, H2168-H2178. https://doi.org/10.1152/ajpheart.1999.276.6.h2168
|
[58]
|
Ai, X., Curran, J.W., Shannon, T.R., Bers, D.M. and Pogwizd, S.M. (2005) Ca2+/Calmodulin–Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphorylation and Sarcoplasmic Reticulum Ca2+ Leak in Heart Failure. Circulation Research, 97, 1314-1322. https://doi.org/10.1161/01.res.0000194329.41863.89
|
[59]
|
Wu, Y., Roden, D.M. and Anderson, M.E. (1999) Calmodulin Kinase Inhibition Prevents Development of the Arrhythmogenic Transient Inward Current. Circulation Research, 84, 906-912. https://doi.org/10.1161/01.res.84.8.906
|
[60]
|
Curran, J., Brown, K.H., Santiago, D.J., Pogwizd, S., Bers, D.M. and Shannon, T.R. (2010) Spontaneous Ca Waves in Ventricular Myocytes from Failing Hearts Depend on Ca2+-Calmodulin-Dependent Protein Kinase II. Journal of Molecular and Cellular Cardiology, 49, 25-32. https://doi.org/10.1016/j.yjmcc.2010.03.013
|
[61]
|
Alseikhan, B.A., DeMaria, C.D., Colecraft, H.M. and Yue, D.T. (2002) Engineered Calmodulins Reveal the Unexpected Eminence of Ca2+ Channel Inactivation in Controlling Heart Excitation. Proceedings of the National Academy of Sciences, 99, 17185-17190. https://doi.org/10.1073/pnas.262372999
|
[62]
|
Hashambhoy, Y.L., Greenstein, J.L. and Winslow, R.L. (2010) Role of CaMKII in RyR Leak, EC Coupling and Action Potential Duration: A Computational Model. Journal of Molecular and Cellular Cardiology, 49, 617-624. https://doi.org/10.1016/j.yjmcc.2010.07.011
|
[63]
|
Bartel, S., Vetter, D., Schlegel, W., Wallukat, G., Krause, E. and Karczewski, P. (2000) Phosphorylation of Phospholamban at Threonine-17 in the Absence and Presence of Β—Adrenergic Stimulation in Neonatal Rat Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 32, 2173-2185. https://doi.org/10.1006/jmcc.2000.1243
|
[64]
|
Mattiazzi, A. and Kranias, E.G. (2014) The Role of CaMKII Regulation of Phospholamban Activity in Heart Disease. Frontiers in Pharmacology, 5, Article 5. https://doi.org/10.3389/fphar.2014.00005
|
[65]
|
Colson, B.A., Locher, M.R., Bekyarova, T., Patel, J.R., Fitzsimons, D.P., Irving, T.C., et al. (2010) Differential Roles of Regulatory Light Chain and Myosin Binding Protein-C Phosphorylations in the Modulation of Cardiac Force Development. The Journal of Physiology, 588, 981-993. https://doi.org/10.1113/jphysiol.2009.183897
|
[66]
|
Tong, C.W., Wu, X., Liu, Y., Rosas, P.C., Sadayappan, S., Hudmon, A., et al. (2015) Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C during Increased Pacing Frequency or Β 1—Adrenergic Stimulation. Circulation: Heart Failure, 8, 595-604. https://doi.org/10.1161/circheartfailure.114.001585
|
[67]
|
Eikemo, H., Moltzau, L.R., Hussain, R.I., Nguyen, C.H.T., Qvigstad, E., Levy, F.O., et al. (2016) CaMKII in Addition to MLCK Contributes to Phosphorylation of Regulatory Light Chain in Cardiomyocytes. Biochemical and Biophysical Research Communications, 471, 219-225. https://doi.org/10.1016/j.bbrc.2016.01.132
|
[68]
|
Hidalgo, C.G., Chung, C.S., Saripalli, C., Methawasin, M., Hutchinson, K.R., Tsaprailis, G., et al. (2013) The Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase II Delta (CaMKIIδ) Phosphorylates Cardiac Titin’s Spring Elements. Journal of Molecular and Cellular Cardiology, 54, 90-97. https://doi.org/10.1016/j.yjmcc.2012.11.012
|
[69]
|
Hamdani, N., Krysiak, J., Kreusser, M.M., Neef, S., dos Remedios, C.G., Maier, L.S., et al. (2013) Crucial Role for Ca2+/Calmodulin-Dependent Protein Kinase-II in Regulating Diastolic Stress of Normal and Failing Hearts via Titin Phosphorylation. Circulation Research, 112, 664-674. https://doi.org/10.1161/circresaha.111.300105
|
[70]
|
Lakatta, E.G., Maltsev, V.A. and Vinogradova, T.M. (2010) A Coupled SYSTEM of Intracellular Ca2+ Clocks and Surface Membrane Voltage Clocks Controls the Timekeeping Mechanism of the Heart’s Pacemaker. Circulation Research, 106, 659-673. https://doi.org/10.1161/circresaha.109.206078
|
[71]
|
Vinogradova, T.M., Zhou, Y., Bogdanov, K.Y., Yang, D., Kuschel, M., Cheng, H., et al. (2000) Sinoatrial Node Pacemaker Activity Requires Ca2+/Calmodulin-Dependent Protein Kinase II Activation. Circulation Research, 87, 760-767. https://doi.org/10.1161/01.res.87.9.760
|
[72]
|
Lin, D., Lee, W., Chien, Y., Chen, T. and Yang, K. (2021) The Link between Abnormalities of Calcium Handling Proteins and Catecholaminergic Polymorphic Ventricular Tachycardia. Tzu Chi Medical Journal, 33, 323-331. https://doi.org/10.4103/tcmj.tcmj_288_20
|
[73]
|
Swaminathan, P.D., Purohit, A., Hund, T.J. and Anderson, M.E. (2012) Calmodulin-dependent Protein Kinase II: Linking Heart Failure and Arrhythmias. Circulation Research, 110, 1661-1677. https://doi.org/10.1161/circresaha.111.243956
|
[74]
|
Wu, Y. and Anderson, M.E. (2014) CaMKII in Sinoatrial Node Physiology and Dysfunction. Frontiers in Pharmacology, 5, Article 48. https://doi.org/10.3389/fphar.2014.00048
|
[75]
|
Zhu, W., Wang, S., Chakir, K., Yang, D., Zhang, T., Brown, J.H., et al. (2003) Linkage of Β1-Adrenergic Stimulation to Apoptotic Heart Cell Death through Protein Kinase A–Independent Activation of Ca2+/Calmodulin Kinase II. Journal of Clinical Investigation, 111, 617-625. https://doi.org/10.1172/jci200316326
|
[76]
|
Wright, S.C., Schellenberger, U., Ji, L., Wang, g. and Larrick, J.W. (1997) Calmodulin-Dependent Protein Kinase II Mediates Signal Transduction in Apoptosis. The FASEB Journal, 11, 843-849. https://doi.org/10.1096/fasebj.11.11.9285482
|
[77]
|
Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., et al. (2003) The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the WNT-5a/Ca2+ Pathway to Antagonize WNT/β-Catenin Signaling. Molecular and Cellular Biology, 23, 131-139. https://doi.org/10.1128/mcb.23.1.131-139.2003
|
[78]
|
Takeda, K., Matsuzawa, A., Nishitoh, H., Tobiume, K., Kishida, S., Ninomiya-Tsuji, J., et al. (2004) Involvement of ASK1 in Ca2+-Induced P38 MAP Kinase Activation. EMBO Reports, 5, 161-166. https://doi.org/10.1038/sj.embor.7400072
|
[79]
|
Chen, X., Zhang, X., Kubo, H., Harris, D.M., Mills, G.D., Moyer, J., et al. (2005) Ca2+ Influx–Induced Sarcoplasmic Reticulum Ca2+ Overload Causes Mitochondrial-Dependent Apoptosis in Ventricular Myocytes. Circulation Research, 97, 1009-1017. https://doi.org/10.1161/01.res.0000189270.72915.d1
|
[80]
|
Zhu, W., Woo, A.Y., Yang, D., Cheng, H., Crow, M.T. and Xiao, R. (2007) Activation of CaMKIIδc Is a Common Intermediate of Diverse Death Stimuli-Induced Heart Muscle Cell Apoptosis. Journal of Biological Chemistry, 282, 10833-10839. https://doi.org/10.1074/jbc.m611507200
|
[81]
|
Timmins, J.M., Ozcan, L., Seimon, T.A., Li, G., Malagelada, C., Backs, J., et al. (2009) Calcium/Calmodulin-Dependent Protein Kinase II Links ER Stress with FAS and Mitochondrial Apoptosis Pathways. Journal of Clinical Investigation, 119, 2925-2941. https://doi.org/10.1172/jci38857
|
[82]
|
Sun, Y., Hao, M., Wu, H., Zhang, C., Wei, D., Li, S., et al. (2024) Unveiling the Role of CaMKII in Retinal Degeneration: From Biological Mechanism to Therapeutic Strategies. Cell & Bioscience, 14, Article No. 59. https://doi.org/10.1186/s13578-024-01236-2
|
[83]
|
Benchoula, K., Mediani, A. and Hwa, W.E. (2022) The Functions of Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in Diabetes Progression. Journal of Cell Communication and Signaling, 17, 25-34. https://doi.org/10.1007/s12079-022-00680-4
|
[84]
|
Zhao, S., Feng, H., Jiang, D., Yang, K., Wang, S., Zhang, Y., et al. (2023) ER Ca2+ Overload Activates the Ire1α Signaling and Promotes Cell Survival. Cell & Bioscience, 13, Article No. 123. https://doi.org/10.1186/s13578-023-01062-y
|
[85]
|
Roe, N.D. and Ren, J. (2013) Oxidative Activation of Ca2+/Calmodulin-Activated Kinase II Mediates ER Stress-Induced Cardiac Dysfunction and Apoptosis. American Journal of Physiology-Heart and Circulatory Physiology, 304, H828-H839. https://doi.org/10.1152/ajpheart.00752.2012
|
[86]
|
Chao, L.H., Stratton, M.M., Lee, I., Rosenberg, O.S., Levitz, J., Mandell, D.J., et al. (2011) A Mechanism for Tunable Autoinhibition in the Structure of a Human Ca2+/Calmodulin Dependent Kinase II Holoenzyme. Cell, 146, 732-745. https://doi.org/10.1016/j.cell.2011.07.038
|
[87]
|
Koval, O.M., Guan, X., Wu, Y., Joiner, M., Gao, Z., Chen, B., et al. (2010) Ca v 1.2 Β-Subunit Coordinates CaMKII-Triggered Cardiomyocyte Death and Afterdepolarizations. Proceedings of the National Academy of Sciences, 107, 4996-5000. https://doi.org/10.1073/pnas.0913760107
|
[88]
|
Sag, C.M., Wadsack, D.P., Khabbazzadeh, S., Abesser, M., Grefe, C., Neumann, K., et al. (2009) Calcium/Calmodulin-dependent Protein Kinase II Contributes to Cardiac Arrhythmogenesis in Heart Failure. Circulation: Heart Failure, 2, 664-675. https://doi.org/10.1161/circheartfailure.109.865279
|
[89]
|
Kaneko, H., Anzai, T., Naito, K., Kohno, T., Maekawa, Y., Takahashi, T., et al. (2009) Role of Ischemic Preconditioning and Inflammatory Response in the Development of Malignant Ventricular Arrhythmias after Reperfused St-Elevation Myocardial Infarction. Journal of Cardiac Failure, 15, 775-781. https://doi.org/10.1016/j.cardfail.2009.05.001
|
[90]
|
Elmas, E., Popp, T., Lang, S., Dempfle, C.E., Kälsch, T. and Borggrefe, M. (2010) Sudden Death: Do Cytokines and Prothrombotic Peptides Contribute to the Occurrence of Ventricular Fibrillation during Acute Myocardial Infarction? International Journal of Cardiology, 145, 118-119. https://doi.org/10.1016/j.ijcard.2009.06.014
|
[91]
|
Bui, J.D., Calbo, S., Hayden-Martinez, K., Kane, L.P., Gardner, P. and Hedrick, S.M. (2000) A Role for CaMKII in T Cell Memory. Cell, 100, 457-467. https://doi.org/10.1016/s0092-8674(00)80681-9
|
[92]
|
Hughes, K., Edin, S., Antonsson, Å. and Grundström, T. (2001) Calmodulin-dependent Kinase II Mediates T Cell Receptor/CD3- and Phorbol Ester-Induced Activation of Iκb Kinase. Journal of Biological Chemistry, 276, 36008-36013. https://doi.org/10.1074/jbc.m106125200
|
[93]
|
Boubali, S., Liopeta, K., Virgilio, L., Thyphronitis, G., Mavrothalassitis, G., Dimitracopoulos, G., et al. (2012) Calcium/Calmodulin-Dependent Protein Kinase II Regulates IL-10 Production by Human T Lymphocytes: A Distinct Target in the Calcium Dependent Pathway. Molecular Immunology, 52, 51-60. https://doi.org/10.1016/j.molimm.2012.04.008
|
[94]
|
Matsui, M., Kajikuri, J., Kito, H., Endo, K., Hasegawa, Y., Murate, S., et al. (2019) Inhibition of Interleukin 10 Transcription through the SMAD2/3 Signaling Pathway by Ca2+-Activated K+ Channel Kca3.1 Activation in Human T-Cell Lymphoma Hut-78 Cells. Molecular Pharmacology, 95, 294-302. https://doi.org/10.1124/mol.118.114405
|
[95]
|
Junho, C.V.C., Caio-Silva, W., Trentin-Sonoda, M. and Carneiro-Ramos, M.S. (2020) An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Frontiers in Physiology, 11, Article 735. https://doi.org/10.3389/fphys.2020.00735
|
[96]
|
Liu, X., Yao, M., Li, N., Wang, C., Zheng, Y. and Cao, X. (2008) CaMKII Promotes Tlr-Triggered Proinflammatory Cytokine and Type I Interferon Production by Directly Binding and Activating TAK1 and IRF3 in Macrophages. Blood, 112, 4961-4970. https://doi.org/10.1182/blood-2008-03-144022
|
[97]
|
Mehmeti, M., Bergenfelz, C., Källberg, E., Millrud, C.R., Björk, P., Ivars, F., et al. (2019) Wnt5a Is a Tlr2/4-Ligand That Induces Tolerance in Human Myeloid Cells. Communications Biology, 2, Article No. 176. https://doi.org/10.1038/s42003-019-0432-4
|
[98]
|
Pereira, C., Schaer, D.J., Bachli, E.B., Kurrer, M.O. and Schoedon, G. (2008) WNT5a/CaMKII Signaling Contributes to the Inflammatory Response of Macrophages and Is a Target for the Antiinflammatory Action of Activated Protein C and Interleukin-10. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 504-510. https://doi.org/10.1161/atvbaha.107.157438
|
[99]
|
Skandalis, S.S. (2023). CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers, 15, 5041.
|
[100]
|
Luczak, E.D. and Anderson, M.E. (2014) CaMKII Oxidative Activation and the Pathogenesis of Cardiac Disease. Journal of Molecular and Cellular Cardiology, 73, 112-116. https://doi.org/10.1016/j.yjmcc.2014.02.004
|
[101]
|
Singh, M.V., Kapoun, A., Higgins, L., Kutschke, W., Thurman, J.M., Zhang, R., et al. (2009) Ca2+/Calmodulin-Dependent Kinase II Triggers Cell Membrane Injury by Inducing Complement Factor B Gene Expression in the Mouse Heart. Journal of Clinical Investigation, 119, 986-996. https://doi.org/10.1172/jci35814
|
[102]
|
Weinreuter, M., Kreusser, M.M., Beckendorf, J., Schreiter, F.C., Leuschner, F., Lehmann, L.H., et al. (2014) Cam Kinase II Mediates Maladaptive Post-Infarct Remodeling and Pro-Inflammatory Chemoattractant Signaling but Not Acute Myocardial Ischemia/Reperfusion Injury. EMBO Molecular Medicine, 6, 1231-1245. https://doi.org/10.15252/emmm.201403848
|
[103]
|
Ling, H., Gray, C.B.B., Zambon, A.C., Grimm, M., Gu, Y., Dalton, N., et al. (2013) Ca2+/Calmodulin-Dependent Protein Kinase II Δ Mediates Myocardial Ischemia/Reperfusion Injury through Nuclear Factor-κB. Circulation Research, 112, 935-944. https://doi.org/10.1161/circresaha.112.276915
|
[104]
|
Willeford, A., Suetomi, T., Nickle, A., Hoffman, H.M., Miyamoto, S. and Heller Brown, J. (2018) CaMKIIδ-mediated Inflammatory Gene Expression and Inflammasome Activation in Cardiomyocytes Initiate Inflammation and Induce Fibrosis. JCI Insight, 3, e97054. https://doi.org/10.1172/jci.insight.97054
|
[105]
|
Wen, H. (2012) Oxidative Stress-Mediated Effects of Angiotensin II in the Cardiovascular System. World Journal of Hypertension, 2, Article 34. https://doi.org/10.5494/wjh.v2.i4.34
|
[106]
|
Toischer, K., Rokita, A.G., Unsöld, B., Zhu, W., Kararigas, G., Sossalla, S., et al. (2010) Differential Cardiac Remodeling in Preload versus Afterload. Circulation, 122, 993-1003. https://doi.org/10.1161/circulationaha.110.943431
|
[107]
|
Suetomi, T., Willeford, A., Brand, C.S., Cho, Y., Ross, R.S., Miyamoto, S., et al. (2018) Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca2+/Calmodulin-Dependent Protein Kinase II Δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation, 138, 2530-2544. https://doi.org/10.1161/circulationaha.118.034621
|
[108]
|
Nordin, C., Gilat, E. and Aronson, R.S. (1985) Delayed Afterdepolarizations and Triggered Activity in Ventricular Muscle from Rats with Streptozotocin-Induced Diabetes. Circulation Research, 57, 28-34. https://doi.org/10.1161/01.res.57.1.28
|
[109]
|
Sorrentino, A., Borghetti, G., Zhou, Y., Cannata, A., Meo, M., Signore, S., et al. (2017) Hyperglycemia Induces Defective Ca2+ Homeostasis in Cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 312, H150-H161. https://doi.org/10.1152/ajpheart.00737.2016
|
[110]
|
Nygren, A., Olson, M.L., Chen, K.Y., Emmett, T., Kargacin, G. and Shimoni, Y. (2007) Propagation of the Cardiac Impulse in the Diabetic Rat Heart: Reduced Conduction Reserve. The Journal of Physiology, 580, 543-560. https://doi.org/10.1113/jphysiol.2006.123729
|
[111]
|
Axelsen, L.N., Calloe, K., Braunstein, T.H., Riemann, M., Hofgaard, J.P., Liang, B., et al. (2015) Diet-Induced Pre-Diabetes Slows Cardiac Conductance and Promotes Arrhythmogenesis. Cardiovascular Diabetology, 14, Article No. 87. https://doi.org/10.1186/s12933-015-0246-8
|
[112]
|
Zhong, P., Quan, D., Peng, J., Xiong, X., Liu, Y., Kong, B., et al. (2017) Role of CaMKII in Free Fatty Acid/Hyperlipidemia-Induced Cardiac Remodeling Both in Vitro and in Vivo. Journal of Molecular and Cellular Cardiology, 109, 1-16. https://doi.org/10.1016/j.yjmcc.2017.06.010
|
[113]
|
Yang, Y., Zhu, W., Joiner, M., Zhang, R., Oddis, C.V., Hou, Y., et al. (2006) Calmodulin Kinase II Inhibition Protects against Myocardial Cell Apoptosis in Vivo. American Journal of Physiology-Heart and Circulatory Physiology, 291, H3065-H3075. https://doi.org/10.1152/ajpheart.00353.2006
|
[114]
|
Toko, H., Takahashi, H., Kayama, Y., Oka, T., Minamino, T., Okada, S., et al. (2010) Ca2+/Calmodulin-Dependent Kinase IIδ Causes Heart Failure by Accumulation of P53 in Dilated Cardiomyopathy. Circulation, 122, 891-899. https://doi.org/10.1161/circulationaha.109.935296
|
[115]
|
Zhang, T., Guo, T., Mishra, S., Dalton, N.D., Kranias, E.G., Peterson, K.L., et al. (2010) Phospholamban Ablation Rescues Sarcoplasmic Reticulum Ca2+ Handling but Exacerbates Cardiac Dysfunction in CaMKIIδ c Transgenic Mice. Circulation Research, 106, 354-362. https://doi.org/10.1161/circresaha.109.207423
|
[116]
|
Bo, T., Yamamori, T., Suzuki, M., Sakai, Y., Yamamoto, K. and Inanami, O. (2018) Calmodulin-Dependent Protein Kinase II (CaMKII) Mediates Radiation-Induced Mitochondrial Fission by Regulating the Phosphorylation of Dynamin-Related Protein 1 (Drp1) at Serine 616. Biochemical and Biophysical Research Communications, 495, 1601-1607. https://doi.org/10.1016/j.bbrc.2017.12.012
|
[117]
|
Xu, S., Wang, P., Zhang, H., Gong, G., Gutierrez Cortes, N., Zhu, W., et al. (2016) CaMKII Induces Permeability Transition through Drp1 Phosphorylation during Chronic Β-AR Stimulation. Nature Communications, 7, Article No. 13189. https://doi.org/10.1038/ncomms13189
|
[118]
|
Sharma, V., Abraham, T., So, A., Allard, M.F. and McNeill, J.H. (2009) Functional Effects of Protein Kinases and Peroxynitrite on Cardiac Carnitine Palmitoyltransferase-1 in Isolated Mitochondria. Molecular and Cellular Biochemistry, 337, 223-237. https://doi.org/10.1007/s11010-009-0303-2
|
[119]
|
Yousif, M.H.M., Akhtar, S., Walther, T. and Benter, I.F. (2007) Role of Ca2+/Calmodulin-Dependent Protein Kinase II in Development of Vascular Dysfunction in Diabetic Rats with Hypertension. Cell Biochemistry and Function, 26, 256-263. https://doi.org/10.1002/cbf.1446
|
[120]
|
Gaertner, T.R., Kolodziej, S.J., Wang, D., Kobayashi, R., Koomen, J.M., Stoops, J.K., et al. (2004) Comparative Analyses of the Three-Dimensional Structures and Enzymatic Properties of Α, Β, Γ, and Δ Isoforms of Ca2+-Calmodulin-Dependent Protein Kinase II. Journal of Biological Chemistry, 279, 12484-12494. https://doi.org/10.1074/jbc.m313597200
|
[121]
|
Maack, C., Lehrke, M., Backs, J., Heinzel, F.R., Hulot, J., Marx, N., et al. (2018) Heart Failure and Diabetes: Metabolic Alterations and Therapeutic Interventions: A State-of-the-Art Review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal, 39, 4243-4254. https://doi.org/10.1093/eurheartj/ehy596
|
[122]
|
Sugawara, K., Fujikawa, M. and Yoshida, M. (2013) Screening of Protein Kinase Inhibitors and Knockdown Experiments Identified Four Kinases That Affect Mitochondrial ATP Synthesis Activity. FEBS Letters, 587, 3843-3847. https://doi.org/10.1016/j.febslet.2013.10.012
|
[123]
|
Huang, R.Y., Laing, J.G., Kanter, E.M., Berthoud, V.M., Bao, M., Rohrs, H.W., et al. (2011) Identification of CaMKII Phosphorylation Sites in Connexin43 by High-Resolution Mass Spectrometry. Journal of Proteome Research, 10, 1098-1109. https://doi.org/10.1021/pr1008702
|
[124]
|
Bao, M., Kanter, E.M., Huang, R.Y., Maxeiner, S., Frank, M., Zhang, Y., et al. (2011) Residual Cx45 and Its Relationship to Cx43 in Murine Ventricular Myocardium. Channels, 5, 489-499. https://doi.org/10.4161/chan.5.6.18523
|
[125]
|
Takanari, H., Bourgonje, V.J.A., Fontes, M.S.C., Raaijmakers, A.J.A., Driessen, H., Jansen, J.A., et al. (2016) Calmodulin/CaMKII Inhibition Improves Intercellular Communication and Impulse Propagation in the Heart and Is Antiarrhythmic under Conditions When Fibrosis Is Absent. Cardiovascular Research, 111, 410-421. https://doi.org/10.1093/cvr/cvw173
|
[126]
|
Kannel, W.B., Doyle, J.T., McNamara, P.M., Quickenton, P. and Gordon, T. (1975) Precursors of Sudden Coronary Death. Factors Related to the Incidence of Sudden Death. Circulation, 51, 606-613. https://doi.org/10.1161/01.cir.51.4.606
|
[127]
|
Molkentin, J.D., Lu, J., Antos, C.L., Markham, B., Richardson, J., Robbins, J., et al. (1998) A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy. Cell, 93, 215-228. https://doi.org/10.1016/s0092-8674(00)81573-1
|
[128]
|
Pereira, L., Métrich, M., Fernández‐Velasco, M., Lucas, A., Leroy, J., Perrier, R., et al. (2007) The Camp Binding Protein Epac Modulates Ca2+ Sparks by a Ca2+/Calmodulin Kinase Signalling Pathway in Rat Cardiac Myocytes. The Journal of Physiology, 583, 685-694. https://doi.org/10.1113/jphysiol.2007.133066
|
[129]
|
Khoo, M.S.C., Li, J., Singh, M.V., Yang, Y., Kannankeril, P., Wu, Y., et al. (2006) Death, Cardiac Dysfunction, and Arrhythmias Are Increased by Calmodulin Kinase II in Calcineurin Cardiomyopathy. Circulation, 114, 1352-1359. https://doi.org/10.1161/circulationaha.106.644583
|
[130]
|
Hegyi, B., Fasoli, A., Ko, C.Y., Van, B.W., Alim, C.C., Shen, E.Y., et al. (2021) CaMKII Serine 280 O-Glcnacylation Links Diabetic Hyperglycemia to Proarrhythmia. Circulation Research, 129, 98-113. https://doi.org/10.1161/circresaha.120.318402
|
[131]
|
Hart, G.W., Housley, M.P. and Slawson, C. (2007) Cycling of O-Linked Β-N-Acetylglucosamine on Nucleocytoplasmic Proteins. Nature, 446, 1017-1022. https://doi.org/10.1038/nature05815
|
[132]
|
Dias, W.B., Cheung, W.D., Wang, Z. and Hart, G.W. (2009) Regulation of Calcium/calmodulin-Dependent Kinase IV by O-Glcnac Modification. Journal of Biological Chemistry, 284, 21327-21337. https://doi.org/10.1074/jbc.m109.007310
|
[133]
|
Gao, Y., Wells, L., Comer, F.I., Parker, G.J. and Hart, G.W. (2001) Dynamic O-Glycosylation of Nuclear and Cytosolic Proteins. Journal of Biological Chemistry, 276, 9838-9845. https://doi.org/10.1074/jbc.m010420200
|
[134]
|
Federico, M., Portiansky, E.L., Sommese, L., Alvarado, F.J., Blanco, P.G., Zanuzzi, C.N., et al. (2017) Calcium-Calmodulin-Dependent Protein Kinase Mediates the Intracellular Signalling Pathways of Cardiac Apoptosis in Mice with Impaired Glucose Tolerance. The Journal of Physiology, 595, 4089-4108. https://doi.org/10.1113/jp273714
|
[135]
|
Sommese, L., Valverde, C.A., Blanco, P., Castro, M.C., Rueda, O.V., Kaetzel, M., et al. (2016) Ryanodine Receptor Phosphorylation by CaMKII Promotes Spontaneous Ca2+ Release Events in a Rodent Model of Early Stage Diabetes: The Arrhythmogenic Substrate. International Journal of Cardiology, 202, 394-406. https://doi.org/10.1016/j.ijcard.2015.09.022
|
[136]
|
Veitch, C.R., Power, A.S. and Erickson, J.R. (2021) CaMKII Inhibition Is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Frontiers in Pharmacology, 12, Article 695401. https://doi.org/10.3389/fphar.2021.695401
|
[137]
|
Nassal, D., Gratz, D. and Hund, T.J. (2020) Challenges and Opportunities for Therapeutic Targeting of Calmodulin Kinase II in Heart. Frontiers in Pharmacology, 11, Article 35. https://doi.org/10.3389/fphar.2020.00035
|
[138]
|
Parackal, R.E. (2022) Characterizing a Novel Mouse Model of Nitric Oxide Induced Cardiac Dysfunction. Doctoral Dissertation, University of Otago.
|
[139]
|
Reyes Gaido, O.E., Nkashama, L.J., Schole, K.L., Wang, Q., Umapathi, P., Mesubi, O.O., et al. (2023) CaMKII as a Therapeutic Target in Cardiovascular Disease. Annual Review of Pharmacology and Toxicology, 63, 249-272. https://doi.org/10.1146/annurev-pharmtox-051421-111814
|
[140]
|
Duncker, D.J., Meder, B. and Backs, J. (2021) CaMKII Inhibition in Heart Failure: A Critical Appraisal of Current Strategies and Future Directions. Circulation Research, 128, 1422-1442.
|