[1]
|
Vasim, I., Majeed, C.N. and DeBoer, M.D. (2022) Intermittent Fasting and Metabolic Health. Nutrients, 14, Article 631. https://doi.org/10.3390/nu14030631
|
[2]
|
Varady, K.A., Cienfuegos, S., Ezpeleta, M. and Gabel, K. (2022) Clinical Application of Intermittent Fasting for Weight Loss: Progress and Future Directions. Nature Reviews Endocrinology, 18, 309-321. https://doi.org/10.1038/s41574-022-00638-x
|
[3]
|
Di Francesco, A., Di Germanio, C., Bernier, M. and de Cabo, R. (2018) A Time to Fast. Science, 362, 770-775. https://doi.org/10.1126/science.aau2095
|
[4]
|
Carvajal, V., Marín, A., Gihardo, D., Maluenda, F., Carrasco, F. and Chamorro, R. (2023) El ayuno intermitente y sus efectos en la salud metabólica en humanos. Revista médica de Chile, 151, 81-100. https://doi.org/10.4067/s0034-98872023000100081
|
[5]
|
Ranjbar, M., Shab-Bidar, S., Rostamian, A., Mohammadi, H. and Djafarian, K. (2024) The Effects of Intermittent Fasting Diet on Quality of Life, Clinical Symptoms, Inflammation, and Oxidative Stress in Overweight and Obese Postmenopausal Women with Rheumatoid Arthritis: Study Protocol of a Randomized Controlled Trial. Trials, 25, Article No. 168. https://doi.org/10.1186/s13063-024-07977-2
|
[6]
|
Joshi, S., Kalantar-Zadeh, K., Chauveau, P. and Carrero, J.J. (2023) Risks and Benefits of Different Dietary Patterns in CKD. American Journal of Kidney Diseases, 81, 352-360. https://doi.org/10.1053/j.ajkd.2022.08.013
|
[7]
|
Gabel, K., Cares, K., Varady, K., Gadi, V. and Tussing-Humphreys, L. (2022) Current Evidence and Directions for Intermittent Fasting during Cancer Chemotherapy. Advances in Nutrition, 13, 667-680. https://doi.org/10.1093/advances/nmab132
|
[8]
|
Albrahim, T., Alangry, R., Alotaibi, R., Almandil, L. and Alburikan, S. (2023) Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients, 15, Article 4270. https://doi.org/10.3390/nu15194270
|
[9]
|
Mladenovic Djordjevic, A., Loncarevic-Vasiljkovic, N. and Gonos, E.S. (2021) Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxidants & Redox Signaling, 34, 421-438. https://doi.org/10.1089/ars.2019.7959
|
[10]
|
Zhang, A., Wang, J., Zhao, Y., He, Y. and Sun, N. (2024) Intermittent Fasting, Fatty Acid Metabolism Reprogramming, and Neuroimmuno Microenvironment: Mechanisms and Application Prospects. Frontiers in Nutrition, 11, Article 1485632. https://doi.org/10.3389/fnut.2024.1485632
|
[11]
|
He, Z., Xu, H., Li, C., Yang, H. and Mao, Y. (2023) Intermittent Fasting and Immunomodulatory Effects: A Systematic Review. Frontiers in Nutrition, 10, Article 1048230. https://doi.org/10.3389/fnut.2023.1048230
|
[12]
|
Antoni, R., Johnston, K.L., Collins, A.L. and Robertson, M.D. (2017) Effects of Intermittent Fasting on Glucose and Lipid Metabolism. Proceedings of the Nutrition Society, 76, 361-368. https://doi.org/10.1017/s0029665116002986
|
[13]
|
Ravera, S. and Panfoli, I. (2023) The Liaison between Metabolism and Oxidative Stress in Human Diseases. Cells, 12, Article 2823. https://doi.org/10.3390/cells12242823
|
[14]
|
González, P., Lozano, P., Ros, G. and Solano, F. (2023) Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. International Journal of Molecular Sciences, 24, Article 9352. https://doi.org/10.3390/ijms24119352
|
[15]
|
García-Peña, L.M., Abel, E.D. and Pereira, R.O. (2024) Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes, 73, 151-161. https://doi.org/10.2337/dbi23-0003
|
[16]
|
Mayor, E. (2023) Neurotrophic Effects of Intermittent Fasting, Calorie Restriction and Exercise: A Review and Annotated Bibliography. Frontiers in Aging, 4, Article 1161814. https://doi.org/10.3389/fragi.2023.1161814
|
[17]
|
Kim, D.H., Park, M.H., Ha, S., Bang, E.J., Lee, Y., Lee, A.K., et al. (2019) Anti-Inflammatory Action of β-Hydroxybutyrate via Modulation of PGC-1α and FoxO1, Mimicking Calorie Restriction. Aging, 11, 1283-1304. https://doi.org/10.18632/aging.101838
|
[18]
|
Actis Dato, V., Lange, S. and Cho, Y. (2024) Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. International Journal of Molecular Sciences, 25, Article 1211. https://doi.org/10.3390/ijms25021211
|
[19]
|
Farahzadi, R., Valipour, B., Fathi, E., Pirmoradi, S., Molavi, O., Montazersaheb, S., et al. (2023) Oxidative Stress Regulation and Related Metabolic Pathways in Epithelial-Mesenchymal Transition of Breast Cancer Stem Cells. Stem Cell Research & Therapy, 14, Article No. 342. https://doi.org/10.1186/s13287-023-03571-6
|
[20]
|
Surugiu, R., Iancu, M.A., Vintilescu, Ș.B., Stepan, M.D., Burdusel, D., Genunche-Dumitrescu, A.V., et al. (2024) Molecular Mechanisms of Healthy Aging: The Role of Caloric Restriction, Intermittent Fasting, Mediterranean Diet, and Ketogenic Diet—A Scoping Review. Nutrients, 16, Article 2878. https://doi.org/10.3390/nu16172878
|
[21]
|
Brandhorst, S., Choi, I.Y., Wei, M., Cheng, C.W., Sedrakyan, S., Navarrete, G., et al. (2015) A Periodic Diet That Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metabolism, 22, 86-99. https://doi.org/10.1016/j.cmet.2015.05.012
|
[22]
|
Mishra, S. and Singh, B. (2020) Intermittent Fasting and Metabolic Switching: A Brief Overview. Biomedical and Pharmacology Journal, 13, 1555-1562. https://doi.org/10.13005/bpj/2030
|
[23]
|
Yuan, Y., Tian, Y., Jiang, H., Cai, L., Song, J., Peng, R., et al. (2023) Mechanism of PGC-1α-Mediated Mitochondrial Biogenesis in Cerebral Ischemia-Reperfusion Injury. Frontiers in Molecular Neuroscience, 16, Article 1224964. https://doi.org/10.3389/fnmol.2023.1224964
|
[24]
|
Abu Shelbayeh, O., Arroum, T., Morris, S. and Busch, K.B. (2023) Pgc-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants, 12, 1075. https://doi.org/10.3390/antiox12051075
|
[25]
|
Lettieri-Barbato, D., Minopoli, G., Caggiano, R., Izzo, R., Santillo, M., Aquilano, K., et al. (2020) Fasting Drives NRF2-Related Antioxidant Response in Skeletal Muscle. International Journal of Molecular Sciences, 21, Article 7780. https://doi.org/10.3390/ijms21207780
|
[26]
|
Gabel, K. and Varady, K.A. (2020) Intermittent Fasting and Muscle Lipid Metabolism. The Journal of Clinical Endocrinology & Metabolism, 106, e1468-e1470. https://doi.org/10.1210/clinem/dgaa818
|
[27]
|
Antunes, F., Erustes, A.G., Costa, A.J., Nascimento, A.C., Bincoletto, C., Ureshino, R.P., et al. (2018) Autophagy and Intermittent Fasting: The Connection for Cancer Therapy? Clinics, 73, e814s. https://doi.org/10.6061/clinics/2018/e814s
|
[28]
|
Chen, G., Kroemer, G. and Kepp, O. (2020) Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Frontiers in Cell and Developmental Biology, 8, Article 200. https://doi.org/10.3389/fcell.2020.00200
|
[29]
|
Ozcan, M., Abdellatif, M., Javaheri, A. and Sedej, S. (2024) Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Canadian Journal of Cardiology, 40, 1445-1457. https://doi.org/10.1016/j.cjca.2024.02.004
|
[30]
|
Mulas, A., Cienfuegos, S., Ezpeleta, M., Lin, S., Pavlou, V. and Varady, K.A. (2023) Effect of Intermittent Fasting on Circulating Inflammatory Markers in Obesity: A Review of Human Trials. Frontiers in Nutrition, 10, Article 1146924. https://doi.org/10.3389/fnut.2023.1146924
|
[31]
|
Matter, M.L. and Gkretsi, V. (2023) Editorial: Molecular Regulation of Tumor Cells Migration and Metastatic Growth. Frontiers in Oncology, 13, Article 1329053. https://doi.org/10.3389/fonc.2023.1329053
|
[32]
|
Rieger, L. and O’Connor, R. (2021) Controlled Signaling—Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. Frontiers in Endocrinology, 11, Article 620013. https://doi.org/10.3389/fendo.2020.620013
|
[33]
|
Moller, L., Dalman, L., Norrelund, H., Billestrup, N., Frystyk, J., Moller, N., et al. (2009) Impact of Fasting on Growth Hormone Signaling and Action in Muscle and Fat. The Journal of Clinical Endocrinology & Metabolism, 94, 965-972. https://doi.org/10.1210/jc.2008-1385
|
[34]
|
Hollstein, T., Basolo, A., Unlu, Y., Ando, T., Walter, M., Krakoff, J., et al. (2022) Effects of Short-Term Fasting on Ghrelin/GH/IGF-1 Axis in Healthy Humans: The Role of Ghrelin in the Thrifty Phenotype. The Journal of Clinical Endocrinology & Metabolism, 107, e3769-e3780. https://doi.org/10.1210/clinem/dgac353
|
[35]
|
Bailes, J. and Soloviev, M. (2021) Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules, 11, Article 217. https://doi.org/10.3390/biom11020217
|
[36]
|
Yu, H. (2000) Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute, 92, 1472-1489. https://doi.org/10.1093/jnci/92.18.1472
|
[37]
|
Werner, H. (2023) The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. International Journal of Molecular Sciences, 24, Article 14882. https://doi.org/10.3390/ijms241914882
|
[38]
|
Guan, J., Borenäs, M., Xiong, J., Lai, W., Palmer, R.H. and Hallberg, B. (2023) IGF1R Contributes to Cell Proliferation in Alk-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers, 15, Article 4252. https://doi.org/10.3390/cancers15174252
|
[39]
|
Hayes, J.D., Dinkova-Kostova, A.T. and Tew, K.D. (2020) Oxidative Stress in Cancer. Cancer Cell, 38, 167-197. https://doi.org/10.1016/j.ccell.2020.06.001
|
[40]
|
Stratton, M.T., Albracht-Schulte, K., Harty, P.S., Siedler, M.R., Rodriguez, C. and Tinsley, G.M. (2021) Physiological Responses to Acute Fasting: Implications for Intermittent Fasting Programs. Nutrition Reviews, 80, 439-452. https://doi.org/10.1093/nutrit/nuab094
|
[41]
|
Salvadori, G., Mirisola, M.G. and Longo, V.D. (2021) Intermittent and Periodic Fasting, Hormones, and Cancer Prevention. Cancers, 13, Article 4587. https://doi.org/10.3390/cancers13184587
|
[42]
|
Baxter, R.C. (2023) Signaling Pathways of the Insulin-Like Growth Factor Binding Proteins. Endocrine Reviews, 44, 753-778. https://doi.org/10.1210/endrev/bnad008
|
[43]
|
Cai, W., Ma, Y., Song, L., Cao, N., Gao, J., Zhou, S., et al. (2023) IGF-1R down Regulates the Sensitivity of Hepatocellular Carcinoma to Sorafenib through the PI3K/akt and RAS/raf/ERK Signaling Pathways. BMC Cancer, 23, Article No. 87. https://doi.org/10.1186/s12885-023-10561-7
|
[44]
|
Xie, L. and Wang, W. (2013) Weight Control and Cancer Preventive Mechanisms: Role of Insulin Growth Factor-1-Mediated Signaling Pathways. Experimental Biology and Medicine, 238, 127-132. https://doi.org/10.1177/1535370213477602
|
[45]
|
Yang, L., Wang, H., Liu, L. and Xie, A. (2018) The Role of Insulin/igf-1/pi3k/akt/gsk3β Signaling in Parkinson’s Disease Dementia. Frontiers in Neuroscience, 12, Article 73. https://doi.org/10.3389/fnins.2018.00073
|
[46]
|
Dakic, T., Jevdjovic, T., Djordjevic, J. and Vujovic, P. (2020) Short-term Fasting Differentially Regulates PI3K/AKT/mTOR and ERK Signalling in the Rat Hypothalamus. Mechanisms of Ageing and Development, 192, Article ID: 111358. https://doi.org/10.1016/j.mad.2020.111358
|
[47]
|
Asati, V., Mahapatra, D.K. and Bharti, S.K. (2016) PI3K/AKT/mTOR and Ras/Raf/MEK/ERK Signaling Pathways Inhibitors as Anticancer Agents: Structural and Pharmacological Perspectives. European Journal of Medicinal Chemistry, 109, 314-341. https://doi.org/10.1016/j.ejmech.2016.01.012
|
[48]
|
Jomova, K., Raptova, R., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., et al. (2023) Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Archives of Toxicology, 97, 2499-2574. https://doi.org/10.1007/s00204-023-03562-9
|
[49]
|
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. https://doi.org/10.1016/j.semcancer.2019.05.012
|
[50]
|
Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138. https://doi.org/10.1186/s12943-023-01827-6
|
[51]
|
Peng, Y., Wang, Y., Zhou, C., Mei, W. and Zeng, C. (2022) PI3K/AKT/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Frontiers in Oncology, 12, Article 819128. https://doi.org/10.3389/fonc.2022.819128
|
[52]
|
Salvadori, G., Zanardi, F., Iannelli, F., Lobefaro, R., Vernieri, C. and Longo, V.D. (2021) Fasting-Mimicking Diet Blocks Triple-Negative Breast Cancer and Cancer Stem Cell Escape. Cell Metabolism, 33, 2247-2259.e6. https://doi.org/10.1016/j.cmet.2021.10.008
|
[53]
|
Hayat, R., Manzoor, M. and Hussain, A. (2022) WNT Signaling Pathway: A Comprehensive Review. Cell Biology International, 46, 863-877. https://doi.org/10.1002/cbin.11797
|
[54]
|
He, S. and Tang, S. (2020) Wnt/β-Catenin Signaling in the Development of Liver Cancers. Biomedicine & Pharmacotherapy, 132, Article ID: 110851. https://doi.org/10.1016/j.biopha.2020.110851
|
[55]
|
Fleming-de-Moraes, C.D., Rocha, M.R., Tessmann, J.W., de Araujo, W.M. and Morgado-Diaz, J.A. (2022) Crosstalk between PI3K/AKT and WNT/β-Catenin Pathways Promote Colorectal Cancer Progression Regardless of Mutational Status. Cancer Biology & Therapy, 23, 1-13. https://doi.org/10.1080/15384047.2022.2108690
|
[56]
|
Gajos-Michniewicz, A. and Czyz, M. (2024) WNT/β-Catenin Signaling in Hepatocellular Carcinoma: The Aberrant Activation, Pathogenic Roles, and Therapeutic Opportunities. Genes & Diseases, 11, 727-746. https://doi.org/10.1016/j.gendis.2023.02.050
|
[57]
|
Shabkhizan, R., Haiaty, S., Moslehian, M.S., Bazmani, A., Sadeghsoltani, F., Saghaei Bagheri, H., et al. (2023) The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Advances in Nutrition, 14, 1211-1225. https://doi.org/10.1016/j.advnut.2023.07.006
|
[58]
|
Zhao, B., Li, Z., Yu, S., Li, T., Wang, W., Liu, R., et al. (2023) LEF1 Enhances β-Catenin Transactivation through IDR-Dependent Liquid-Liquid Phase Separation. Life Science Alliance, 6, e202302118. https://doi.org/10.26508/lsa.202302118
|
[59]
|
Fu, J., Su, X., Li, Z., Deng, L., Liu, X., Feng, X., et al. (2021) HGF/c-MET Pathway in Cancer: From Molecular Characterization to Clinical Evidence. Oncogene, 40, 4625-4651. https://doi.org/10.1038/s41388-021-01863-w
|
[60]
|
Yi, Y., Zeng, S., Wang, Z., Wu, M., Ma, Y., Ye, X., et al. (2018) Cancer-Associated Fibroblasts Promote Epithelial-Mesenchymal Transition and EGFR-TKI Resistance of Non-Small Cell Lung Cancers via HGF/IGF-1/ANXA2 Signaling. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 793-803. https://doi.org/10.1016/j.bbadis.2017.12.021
|
[61]
|
Shen, Z., Xue, W., Zheng, Y., Geng, Q., Wang, L., Fan, Z., et al. (2021) Molecular Mechanism Study of HGF/c-MET Pathway Activation and Immune Regulation for a Tumor Diagnosis Model. Cancer Cell International, 21, Article No. 374. https://doi.org/10.1186/s12935-021-02051-2
|
[62]
|
Chen, W., Wu, J., Shi, H., Wang, Z., Zhang, G., Cao, Y., et al. (2014) Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways. BioMed Research International, 2014, Article ID: 764981. https://doi.org/10.1155/2014/764981
|
[63]
|
Clavijo-Cornejo, D., Enriquez-Cortina, C., López-Reyes, A., Domínguez-Pérez, M., Nuño, N., Domínguez-Meraz, M., et al. (2013) Biphasic Regulation of the NADPH Oxidase by HGF/c-Met Signaling Pathway in Primary Mouse Hepatocytes. Biochimie, 95, 1177-1184. https://doi.org/10.1016/j.biochi.2013.01.005
|
[64]
|
Pothula, S.P., Xu, Z., Goldstein, D., Pirola, R.C., Wilson, J.S. and Apte, M.V. (2020) Targeting HGF/c-Met Axis in Pancreatic Cancer. International Journal of Molecular Sciences, 21, Article 9170. https://doi.org/10.3390/ijms21239170
|
[65]
|
Jing, Y., Sun, Q., Xiong, X., Meng, R., Tang, S., Cao, S., et al. (2018) Hepatocyte Growth Factor Alleviates Hepatic Insulin Resistance and Lipid Accumulation in High-Fat Diet-Fed Mice. Journal of Diabetes Investigation, 10, 251-260. https://doi.org/10.1111/jdi.12904
|
[66]
|
Gomez-Quiroz, L.E., Seo, D., Lee, Y., Kitade, M., Gaiser, T., Gillen, M., et al. (2016) Loss of C-Met Signaling Sensitizes Hepatocytes to Lipotoxicity and Induces Cholestatic Liver Damage by Aggravating Oxidative Stress. Toxicology, 361, 39-48. https://doi.org/10.1016/j.tox.2016.07.004
|
[67]
|
Yang, Y., Liu, Y., Wang, Y., Chao, Y., Zhang, J., Jia, Y., et al. (2022) Regulation of SIRT1 and Its Roles in Inflammation. Frontiers in Immunology, 13, Article 831168. https://doi.org/10.3389/fimmu.2022.831168
|
[68]
|
Nam, D., Park, S., Omole, S., Um, E., Hakami, R.M. and Hahn, Y.S. (2024) Activated Gab1 Drives Hepatocyte Proliferation and Anti-Apoptosis in Liver Fibrosis via Potential Involvement of the HGF/c-Met Signaling Axis. PLOS ONE, 19, e0306345. https://doi.org/10.1371/journal.pone.0306345
|
[69]
|
Christensen, J.G., Schreck, R., Burrows, J., Kuruganti, P., Chan, E., Le, P., et al. (2003) A Selective Small Molecule Inhibitor of c-Met Kinase Inhibits c-Met-Dependent Phenotypes in Vitro and Exhibits Cytoreductive Antitumor Activity in Vivo. Cancer Research, 63, 7345-7355.
|