Non-Spectrality of Certain Self-Affine Measures on the Generalized Spatial Sierpinski Gasket

Abstract

Let μ M,D be a self-affine measure associated with an expanding integer matrix M=[ p 1 ,0,0; p 4 , p 2 ,0; p 5 ,0, p 3 ] and the digit set D={ 0, e 1 , e 2 , e 3 } in the space R 3 , where p 1 , p 2 , p 3 Z\{ 0,±1 } , p 4 , p 5 Z and e 1 , e 2 , e 3 are the standard basis of unit column vectors in R 3 . In this paper, we mainly consider the case p 1 , p 2 , p 3 2Z+1, p 2 p 3 , p 4 =l( p 1 p 2 ), p 5 =l( p 3 p 1 ), where l2Z . We prove that μ M,D is a non-spectral measure, and there are at most 4-element μ M,D -orthogonal exponentials, and the number 4 is the best. The results here generalize the known results.

Share and Cite:

Hu, Y.L., Zhang, Z.C. and Wang, Q. (2024) Non-Spectrality of Certain Self-Affine Measures on the Generalized Spatial Sierpinski Gasket. Journal of Applied Mathematics and Physics, 12, 3964-3981. doi: 10.4236/jamp.2024.1211241.

1. Introduction

Let M M n ( Z ) be an expanding integer matrix (that is, all the eigenvalues | λ i ( M ) |>1 ) and D Z n be a finite subset of cardinality | D | . The unique probability measure μ:= μ M,D satisfying the self-affine identity

μ= 1 | D | dD μ ϕ d 1 (1.1)

with equal weight, where ϕ d ( ξ )= M 1 ( ξ+d )( ξ R n ) forms an affine iterated function system (IFS) { ϕ d } dD . μ M,D is also called invariant measure or self-similar measure. Such μ is supported on an invariant set T( M,D ) (see [1]), which is a unique nonempty compact set satisfying

MT= dD ( T+d ).

If there exists a set Λ R n such that E( Λ ):={ e 2πi λ,x :λΛ } forms an orthogonal basis (Fourier basis) for the Hilbert space L 2 ( μ M,D ) , we call μ M,D a spectral measure. The set Λ is then called a spectrum for μ M,D and the pair ( μ,Λ ) is called a spectrum pair. The study of spectral measures dates back to the work of Fuglede [2], whose famous spectral-tiling conjecture relation is difficult to establish in most cases. The research on the spectrality or non-spectrality of μ M,D become a hot topic, which has its origin in number theory, harmonic analysis, fractal geometry and dynamical systems [3]-[6].

Jorgensen and Pedersen found the first non-atomic, singular continuous spectral measure, which showed that the Fourier transform theory can be applied to certain classes of fractals [3] [7]. In all these studies, the Fourier transform μ ^ M,D of μ M,D plays an important role. From (1.1), μ ^ M,D ( ξ ) is given by

μ ^ M,D ( ξ )= e 2πi x,ξ d μ M,D ( x ) = j=1 m D ( M j ξ ),( ξ R n )

where M denotes the transposed conjugate of M and

m D ( ξ )= 1 | D | dD e 2πi d,ξ ,( ξ R n )

denotes the symbol function of D. It is known that there are several methods to deal with the spectrality of self-affine measure (see [8]-[11] and references cited therein). Compared with spectral self-affine measures, there are a lot of non-spectral self-affine measures.

Usually, the orthogonal exponentials in L 2 ( μ M,D ) is called μ M,D -orthogonal exponentials. Generally, the non-spectral problem can be divided into the following two classes.

Class (I): There are at most a finite number of orthogonal exponentials in L 2 ( μ M,D ) (but the supremum of these finite numbers may be infinite, see [12] [13] and references cited therein), that is, μ M,D -orthogonal exponentials contain at most finite elements. The main questions here are to estimate the number of orthogonal exponentials in L 2 ( μ M,D ) and to find them (see [14] [15]).

Class (II): There are natural infinite families of orthogonal exponentials in L 2 ( μ M,D ) , but none of them forms an orthogonal basis in L 2 ( μ M,D ) . The main question here is whether some of these families can be combined to form larger collections of orthogonal exponentials (see [16]-[18]).

For the generalized spatial Sierpinski gasket corresponding to

M=[ p 1 0 0 p 4 p 2 0 p 5 p 6 p 3 ]andD={ ( 0 0 0 ),( 1 0 0 ),( 0 1 0 ),( 0 0 1 ) }, (1.2)

where p 1 , p 2 , p 3 Z\{ 0,±1 } and p 4 , p 5 , p 6 Z . The previous results on the non-spectrality of self-affine measures can be summarized as the following.

Theorem 1.1. For self-affine measure μ M,D given by (1.2) and p 4 = p 5 = p 6 =0 , the following spectrality and non-spectrality hold (see [12] [19]-[22]):

1) If p 1 , p 2 , p 3 ( 2Z+1 )\{ ±1 } , then μ M,D is a non-spectral measure, and there exist at most 4 mutually orthogonal exponential functions in L 2 ( μ M,D ) , and the number 4 is the best;

2) If p 1 2Z\{ 0 } and p 2 = p 3 ( 2Z+1 )\{ ±1 } , then there exist at most 4 mutually orthogonal exponential functions in L 2 ( μ M,D ) , and the number 4 is the best;

3) If p 1 2Z\{ 0 } and p 2 = p 3 ( 2Z+1 )\{ ±1 } , then there exist at most 8 mutually orthogonal exponential functions in L 2 ( μ M,D ) , where the number 8 is the best possible;

4) If p 1 2Z\{ 0 } and p 2 ± p 3 ( 2Z+1 )\{ ±1 } , then for any lN , there exist 2l+6 mutually orthogonal exponential functions in L 2 ( μ M,D ) .

Theorem 1.2. [23] Let μ M,D corresponding to (1.2), if p 1 , p 2 , p 3 ( 2Z+1 )\{ ±1 } and

p 4 = p 1 p 2 ,γ p 6 =η( p 3 p 2 ),γ( p 5 p 1 + p 3 )=η( p 2 p 1 ) (1.3)

for some β,γ2Z+1 and η2Z , then μ M * ,D is a non-spectral measure, and there exist at most 4 mutually orthogonal exponential functions in L 2 ( μ M * ,D ) , where the number 4 is the best.

Theorem 1.3. [24] Let μ M,D corresponding to (1.2) and p 6 =0 , if

p 1 , p 2 = p 3 ( 2Z+1 )\{ 0,±1 }, (1.4)

then μ M,D is a non-spectral measure, and there exist at most 4 mutually orthogonal exponential functions in L 2 ( μ M,D ) , where the number 4 is the best.

Theorem 1.4. [25] Let μ M,D corresponding to (1.2) and p 4 =0 , p 5 = p 6 =ξR , if

p 1 = p 2 , p 3 { p q :p,q2Z+1 }, (1.5)

then μ M * ,D is a non-spectral measure, and there exist at most 4 mutually orthogonal exponential functions in L 2 ( μ M * ,D ) , where the number 4 is the best.

In the case p 6 =0 , one can rewrite (1.3) as follows

p 4 = p 1 p 2 , p 5 = p 1 p 3 . (1.6)

From Theorem 1.2, we know that μ M,D is a non-spectral measure in the case (1.6), and there exist at most 4 mutually orthogonal exponential functions in L 2 ( μ M,D ) , where the number 4 is the best. In Theorem 1.3, Yuan is given the exact number of μ M,D -orthogonal exponentials in the case (1.5). This naturally leads to an open problem: How about the spectrality or non-spectrality of μ M,D in the case

p 1 , p 2 , p 3 ( 2Z+1 )\{ 0,±1 }, p 2 p 3 ? (1.7)

Motivated by this, in the present paper, we resolve the above question in some cases. The main result of the paper is the following.

Theorem 1.5. Let the self-affine measure μ M,D corresponding to (1.2) (1.7) and p 6 =0 , if

p 4 =l( p 1 p 2 ), p 5 =l( p 3 p 1 ), (1.8)

where l2Z , then μ M,D is a non-spectral measure, there are at most 4-element μ M,D -orthogonal exponentials, where the number 4 is the best.

2. The Zero Set Z( μ ^ M,D ) of μ M,D

For the given digit set D in (1.2), it is known [19] that the zero set

Z( m D ):={ x R 3 : m D ( x )=0 }= Z 1 Z 2 Z 3 ,

where

Z 1 ={ ( 1 2 + k 1 a+ k 2 1 2 +a+ k 3 ):aR, k 1 , k 2 , k 3 Z } R 3 ;

Z 2 ={ ( 1 2 +a+ k 1 1 2 + k 2 a+ k 3 ):aR, k 1 , k 2 , k 3 Z } R 3 ;

Z 3 ={ ( a+ k 1 1 2 +a+ k 2 1 2 + k 3 ):aR, k 1 , k 2 , k 3 Z } R 3 .

Then the zero set of Fourier transform μ ^ M,D can be presented as

Z( μ ^ M,D )= j=1 M j Z( m D ):= A 1 A 2 A 3 , (2.1)

where

A 1 = j=1 { ( m ( a+ k 2 ) p 2 j ( 1 2 +a+ k 3 ) p 3 j ):aR, k 1 , k 2 , k 3 Z } R 3 ; (2.2)

A 2 = j=1 { ( n ( 1 2 + k 2 ) p 2 j ( a+ k 3 ) p 3 j ):aR, k 1 , k 2 , k 3 Z } R 3 ; (2.3)

A 3 = j=1 { ( p ( 1 2 +a+ k 2 ) p 2 j ( 1 2 + k 3 ) p 3 j ):aR, k 1 , k 2 , k 3 Z } R 3 (2.4)

and

m=( 1 2 + k 1 ) p 1 j +( a+ k 2 ) i=0 j1 p 1 i p 2 j1i p 4 +( 1 2 +a+ k 3 ) i=0 j1 p 1 i p 3 j1i p 5 ;

n=( 1 2 +a+ k 1 ) p 1 j +( 1 2 + k 2 ) i=0 j1 p 1 i p 2 j1i p 4 +( a+ k 3 ) i=0 j1 p 1 i p 3 j1i p 5 ;

p=( a+ k 1 ) p 1 j +( 1 2 +a+ k 2 ) i=0 j1 p 1 i p 2 j1i p 4 +( 1 2 + k 3 ) i=0 j1 p 1 i p 3 j1i p 5 .

Combined with (1.7) and (1.8), one can verify the following propositions hold.

Proposition 2.1. The sets A 1 , A 2 , A 3 given by (2.2), (2.3) and (2.4) hold the following statements:

(i) ζ A j if and only if ζ A j , j=1,2,3 ;

(ii) Z( μ ^ M,D ) Z 3 =Z( μ ^ M,D ){ ( x,y,z ) t :x,y,z 1 2 +Z }= ;

(ii) If ζ= ( ζ 1 , ζ 2 , ζ 3 ) t A 1 , then ζ 1 +l ζ 2 l ζ 3 1 2 +Z ;

(iv) If ζ= ( ζ 1 , ζ 2 , ζ 3 ) t A 2 , then ζ 2 1 2 +Z ;

(v) If ζ= ( ζ 1 , ζ 2 , ζ 3 ) t A 3 , then ζ 3 1 2 +Z .

Proposition 2.2. Let ζ= ( ζ 1 , ζ 2 , ζ 3 ) t Z( μ ^ M,D ) . Then the following statements hold:

(a) If ζ A 1 ± A 1 , then ζ A 2 A 3 and ζ 1 +l ζ 2 l ζ 3 Z ;

(b) If ζ A 2 ± A 2 , then ζ A 1 A 3 and ζ 2 Z, ζ 3 Z ;

(c) If ζ A 3 ± A 3 , then ζ A 1 A 2 and ζ 3 Z, ζ 2 Z ;

(d) If ζ A 1 and ζ 2 Z , then ζ 3 Z ; if ζ A 1 and ζ 3 Z , then ζ 2 Z ;

(e) If ζ A 2 and ζ 3 Z , then ζ 1 Z ;

(f) If ζ A 3 and ζ 2 Z , then ζ 1 Z .

3. Proof of Theorem 1.5

Assume that if λ j ( j=1,2,,5 ) R 3 are such that the five functions

e 2πi λ 1 ,x , e 2πi λ 2 ,x , e 2πi λ 3 ,x , e 2πi λ 4 ,x , e 2πi λ 5 ,x

are mutually orthogonal in L 2 ( μ M,D ) , then

λ i λ j Z( μ ^ M,D )= A 1 A 2 A 3 ,( 1ij5 ).

Equivalently, the following 10 differences

λ 2 λ 1 , λ 3 λ 1 , λ 4 λ 1 , λ 5 λ 1 ; λ 3 λ 2 , λ 4 λ 2 , λ 5 λ 2 ; λ 4 λ 3 , λ 5 λ 3 ; λ 5 λ 4

belong to A 1 A 2 A 3 . In particular, we have

λ 2 λ 1 , λ 3 λ 1 , λ 4 λ 1 , λ 5 λ 1 A 1 A 2 A 3 . (3.1)

For convenience, define

λ j λ k = ( x j,k , y j,k , z j,k ) t R 3 forj,k1andjk.

From Proposition 2.1 and 2.2, one can obtain the following claims.

Claim 3.1. The set A 1 (or A 2 or A 3 ) can not contain three differences of the form λ j 1 λ j , λ j 2 λ j , λ j 3 λ j , where j 1 , j 2 , j 3 { 1,2,,5 }\{ j } are three different numbers.

In fact, if

λ j 1 λ j , λ j 2 λ j , λ j 3 λ j A 1 , (3.2)

then λ j 2 λ j 1 , λ j 3 λ j 1 , λ j 3 λ j 2 A 2 A 3 (by Proposition 2.2 (a)). If λ j 2 λ j 1 , λ j 3 λ j 1 , λ j 3 λ j 2 A 2 , then (by Proposition 2.1 (iv)), y j 2 , j 1 , y j 3 , j 1 1 2 +Z and y j 3 , j 2 Z , a contradiction. The same reason illustrates that λ j 2 λ j 1 , λ j 3 λ j 1 , λ j 3 λ j 2 can not in the set A 3 simultaneously. Without loss of generality, we may assume that λ j 2 λ j 1 , λ j 3 λ j 1 A 2 , λ j 3 λ j 2 A 3 . By Proposition 2.1 (iv), Proposition 2.2 (a) and (3.2), we have y j 2 , j 1 , y j 3 , j 1 , z j 3 , j 2 1 2 +Z and x j 3 , j 2 +l y j 3 , j 2 l z j 3 , j 2 Z , then x j 3 , j 2 , y j 3 , j 2 Z , a contradiction (by Proposition 2.2 (f)). Hence, the set A 1 can not contain three differences of the form λ j 1 λ j , λ j 2 λ j , λ j 3 λ j . If

λ j 1 λ j , λ j 2 λ j , λ j 3 λ j A 2 , (3.3)

then λ j 2 λ j 1 , λ j 3 λ j 1 , λ j 3 λ j 2 A 1 A 3 (by Proposition 2.2 (b)). If λ j 2 λ j 1 , λ j 3 λ j 1 , λ j 3 λ j 2 A 1 , then (by Proposition 2.1 (iii))

x j 2 , j 1 +l y j 2 , j 1 l z j 2 , j 1 , x j 3 , j 1 +l y j 3 , j 1 l z j 3 , j 1 1 2 +Z and x j 3 , j 2 +l y j 3 , j 2 l z j 3 , j 2 Z,

a contradiction of Proposition 2.1 (iii). If λ j 2 λ j 1 , λ j 3 λ j 1 , λ j 3 λ j 2 A 3 , then z j 2 , j 1 , z j 3 , j 1 1 2 +Z and z j 3 , j 2 Z (by Proposition 2.1 (v)), a contradiction. Without loss of generality, let

λ j 2 λ j 1 , λ j 3 λ j 1 A 1 , λ j 3 λ j 2 A 3 . (3.4)

Then from Proposition 2.1 (v), Proposition 2.2 (b) and (3.3) (3.4), we have y j 3 , j 2 Z , z j 3 , j 2 1 2 +Z and x j 2 , j 1 +l y j 2 , j 1 l z j 2 , j 1 , x j 3 , j 1 +l y j 3 , j 1 l z j 3 , j 1 1 2 +Z , which yields x j 3 , j 2 Z , a contradiction of Proposition 2.2 (f). If λ j 2 λ j 1 , λ j 3 λ j 1 A 3 , λ j 3 λ j 2 A 1 , from Proposition 2.1 (v), Proposition 2.2 (b) and (3.3), we have z j 2 , j 1 , z j 3 , j 1 1 2 +Z , then y j 3 , j 2 , z j 3 , j 2 Z , a contradiction of Proposition 2.2 (d). Hence, the set A 2 can not contain three differences of the form λ j 1 λ j , λ j 2 λ j , λ j 3 λ j . This proof is also suitable for the set A 3 .

Based on Claim 3.1, we only need to consider the following four cases:

Case 1. 2-2-0 (2-0-2) distribution. In this case, we may assume (without loss of generality) that

λ 2 λ 1 , λ 3 λ 1 A 1 , λ 4 λ 1 , λ 5 λ 1 A 2 . (3.5)

Then (by Proposition 2.1 (iv) and Proposition 2.2 (a) (b))

x 3,2 +l y 3,2 l z 3,2 Z, y 4,1 , y 5,1 1 2 +Z (3.6)

and

λ 3 λ 2 A 2 A 3 , λ 5 λ 4 A 1 A 3 . (3.7)

We can divide (3.7) into four cases.

Case 1.1. λ 3 λ 2 A 2 , λ 5 λ 4 A 1 . In this case, from Proposition 2.1 (iii) (iv), we have

y 3,2 1 2 +Z, x 5,4 +l y 5,4 l z 5,4 1 2 +Z. (3.8)

If λ 5 λ 2 A 1 , then (by Proposition 2.1 (iii) and (3.6) (3.8))

x 5,2 +l y 5,2 l z 5,2 1 2 +Zand x 4,2 +l y 4,2 l z 4,2 , x 4,3 +l y 4,3 l z 4,3 Z, (3.9)

which yields λ 4 λ 2 , λ 4 λ 3 A 2 A 3 . In the case λ 4 λ 2 A 2 , from (3.8) and Proposition 2.2 (b), we have y 4,3 Z . Hence, λ 4 λ 3 A 3 and z 4,3 1 2 +Z . Combined with (3.9), we get x 4,3 Z , a contradiction. In the case λ 4 λ 2 A 3 , from Proposition 2.1 (v), we have

z 4,2 1 2 +Z. (3.10)

If λ 4 λ 3 A 2 , then y 4,2 , x 4,2 Z (by Proposition 2.2 (b) and (3.8) (3.9)), a contradiction. If λ 4 λ 3 A 3 , then z 3,2 , x 3,2 Z (by Proposition 2.2 (c) and (3.8) (3.10)), a contradiction. Hence, λ 5 λ 2 A 1 . The same reason illustrates that λ 5 λ 3 , λ 4 λ 2 , λ 4 λ 3 A 1 . Hence

λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 A 2 A 3 .

Based on Claim 3.1, we only need to consider the following three cases.

Case 1.1.1 λ 4 λ 2 A 3 , λ 5 λ 2 A 3 . In this case, from Proposition 2.2 (c) and (3.6), we have y 5,4 , z 5,4 Z and λ 5 λ 4 A 1 , a contradiction (by Proposition 2.2 (d)).

Case 1.1.2 λ 4 λ 2 A 2 , λ 5 λ 2 A 3 . In this case, from Proposition 2.2 (b) and (3.6), we have y 2,1 Z , y 5,2 1 2 +Z . Combined with λ 3 λ 2 A 2 , we get y 5,3 Z and λ 5 λ 3 A 3 . Now, λ 3 λ 2 =( λ 5 λ 2 )( λ 5 λ 3 ) A 3 A 3 , we have x 3,2 , z 3,2 Z , a contradiction.

Case 1.1.3 λ 4 λ 2 A 3 , λ 5 λ 3 A 2 . This case can be proved similarly to Case 1.1.2.

Case 1.2. λ 3 λ 2 A 3 , λ 5 λ 4 A 1 . This case can be proved similarly to Case 1.1.

Case 1.3. λ 3 λ 2 , λ 5 λ 4 A 3 . In this case, by Proposition 2.1 (v) and (3.6), we have

z 3,2 , z 5,4 1 2 +Z, y 5,4 Z. (3.11)

We first show that the following Claim holds.

Claim 3.2. The set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 1 .

In fact, if

λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 A 2 A 3 , (3.12)

then, from Claim 3.1, we need to divide (3.12) into the following three cases.

Case A: λ 4 λ 2 A 2 , λ 5 λ 2 A 2 . In this case, from (3.6) Proposition 2.1 (iii) and Proposition 2.2 (b), we have

y 4,2 , y 5,2 1 2 +Zand y 2,1 Z. (3.13)

In the case λ 4 λ 3 A 2 , from (3.6) (3.11) (3.13) and Proposition 2.2 (b), we have x 3,2 , y 3,2 Z , a contradiction. In the case λ 4 λ 3 A 3 , from (3.11) and (3.12), we have λ 5 λ 3 A 2 and y 5,3 1 2 +Z . Combined with (3.6) (3.11) (3.13), we get x 3,2 , y 3,2 Z , a contradiction.

Case B: λ 4 λ 2 A 2 , λ 5 λ 2 A 3 . In this case, from Proposition 2.2 (b) and (3.6), we have y 2,1 Z and y 5,2 1 2 +Z . For λ 5 λ 3 =( λ 5 λ 2 )( λ 3 λ 2 ) A 3 A 3 and (3.12) (3.13), we get y 5,3 1 2 +Z and y 3,2 Z . Combined with (3.6) and (3.9), we have x 3,2 Z , a contradiction.

Case C: λ 4 λ 2 A 3 , λ 5 λ 2 A 2 . This case can be proved similarly to Case B.

Therefore, the set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 1 .

From Claim 3.2, without loss of generality, we may assume that λ 4 λ 2 A 1 , then

x 4,2 +l y 4,2 l z 4,2 1 2 +Z. (3.14)

By Proposition 2.2 (a) (f) and (3.11), we get that λ 5 λ 2 A 1 and λ 5 λ 3 A 1 . Then λ 5 λ 2 , λ 5 λ 3 A 2 A 3 . Based on Claim 3.1, we need to consider the following three cases.

Case 1.3.1 λ 5 λ 2 A 2 , λ 5 λ 3 A 2 . In this case, from (3.6) (3.11) and Proposition 2.2 (b), we have x 3,2 , y 3,2 Z , a contradiction.

Case 1.3.2 λ 5 λ 2 A 2 , λ 5 λ 3 A 3 . In this case, for λ 5 λ 2 =( λ 5 λ 3 )( λ 2 λ 3 ) A 3 A 3 and Proposition 2.2 (b), we get y 2,1 , z 5,2 Z . Combined with (3.6) (3.11) (3.14), we have x 4,2 , y 4,2 , z 4,2 1 2 +Z , a contradiction of Proposition 2.1 (ii).

Case 1.3.3 λ 5 λ 2 A 3 , λ 5 λ 3 A 2 . This case can be proved similarly to Case 1.3.2.

Case 1.4 λ 3 λ 2 A 2 , λ 5 λ 4 A 3 . In this case, from (3.6) and Proposition 2.1 (iv) (v), we have

y 3,2 , z 5,4 1 2 +Z. (3.15)

With the same method as Claim 3.2, we can prove that the set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 3 . Without loss of generality, we may assume that λ 4 λ 2 A 3 , then (by Proposition 2.1 (v))

z 4,2 1 2 +Z. (3.16)

By Proposition 2.2 (c) and (3.15), we get z 5,2 Z and λ 5 λ 2 A 1 A 2 .

If λ 5 λ 2 A 1 , then x 5,1 +l y 5,1 l z 5,1 Z (by Proposition 2.2 (a) and (3.6)). In the case λ 4 λ 3 A 1 , from Proposition 2.2 (a) and (3.6), we have x 4,1 +l y 4,1 l z 4,1 Z , x 5,4 +l y 5,4 l z 5,4 Z . Combined with (3.6) (3.15), we get x 5,4 Z , a contradiction. In the case λ 4 λ 3 A 2 , from Proposition 2.1 (iv) and (3.6) (3.15), we have y 4,3 1 2 +Z and y 4,2 Z . Combined with (3.15) (3.16), we have z 5,2 Z , a contradiction. In the case λ 4 λ 3 A 3 , for λ 3 λ 2 =( λ 4 λ 2 )( λ 4 λ 3 ) A 3 A 3 and (3.6), we get x 3,2 , z 3,2 Z , a contradiction.

If λ 5 λ 2 A 2 , then y 2,1 Z and y 4,2 1 2 +Z (by Proposition 2.2 (b) and (3.6)). In the case λ 4 λ 3 A 1 , from Proposition 2.2 (a) and (3.5), we get

x 4,1 +l y 4,1 l z 4,1 Z. (3.17)

By (3.5) (3.16) and (3.17), we have x 4,2 +l y 4,2 l z 4,2 1 2 +Z and x 4,2 1 2 +Z , a contradiction of Proposition 2.1 (ii). In the case λ 4 λ 3 A 2 , from Proposition 2.1 (iv) and (3.15), we have y 2,1 1 2 +Z and y 5,2 Z , a contradiction. In the case λ 4 λ 3 A 3 , from Proposition 2.1 (v) and (3.6) (3.15) (3.16), we get x 3,2 , z 3,2 Z , a contradiction.

Similarly, we can prove 2-0-2 distribution does not hold.

Case 2 2-1-1 distribution. In this case, we may assume that

λ 2 λ 1 , λ 3 λ 1 A 1 , λ 4 λ 1 A 2 , λ 5 λ 1 A 3 , (3.18)

then (by Proposition 2.1 (iv)(v) and Proposition 2.2 (a))

y 4,1 , z 5,1 1 2 +Zand x 3,2 +l y 3,2 l z 3,2 Z (3.19)

and

λ 3 λ 2 A 2 A 3 . (3.20)

We can divide (3.20) into two cases.

Case 2.1. λ 3 λ 2 A 2 . In this case, we have (by Proposition 2.1 (iv))

y 3,2 1 2 +Z. (3.21)

With the same method as Claim 3.2, we can prove that the set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 1 . Without loss of generality, we may assume that λ 4 λ 2 A 1 , then (by (3.6) and Proposition 2.2 (a))

x 4,1 +l y 4,1 l z 4,1 Z. (3.22)

If λ 5 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.6)),

x 5,1 +l y 5,1 l z 5,1 Z. (3.23)

By Proposition 2.1 (iii) and (3.22) (3.23), we get λ 5 λ 4 A 2 A 3 . In the case λ 5 λ 4 A 2 , from Proposition 2.2 (b) and (3.19) (3.23), we have x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 4 A 3 , from Proposition 2.2 (c) and (3.19) (3.22), we have x 4,1 , z 4,1 Z , a contradiction. Hence, λ 5 λ 2 A 1 . The same reason illustrates that λ 5 λ 3 A 1 . Then

λ 5 λ 2 , λ 5 λ 3 A 2 A 3 .

Based on Claim 3.1, we need to consider the following three cases.

Case 2.1.1 λ 5 λ 2 A 3 , λ 5 λ 3 A 3 . From Proposition 2.2 (c), we have λ 3 λ 2 =( λ 5 λ 2 )( λ 5 λ 3 ) A 3 A 3 . Combined with (3.19) (3.21), we have x 3,2 , z 3,2 Z , a contradiction.

Case 2.1.2 λ 5 λ 2 A 2 , λ 5 λ 3 A 3 . From Proposition 2.1 (v) Proposition 2.2 (c) and (3.21), we have

z 3,1 , y 5,3 Z, z 5,3 1 2 +Z. (3.24)

By Claim 3.1 and (3.22) (3.33), we know that λ 5 λ 4 A 2 A 3 . In the case λ 5 λ 4 A 2 , from Proposition 2.2 (b) and (3.19) (3.23), we have x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 4 A 3 , from Proposition 2.2 (c) and (3.19) (3.22), we have x 4,1 , y 4,1 Z , a contradiction.

Case 2.1.3 λ 5 λ 2 A 3 , λ 5 λ 3 A 2 . This case can be proved similarly to Case 2.1.2.

Case 2.2. λ 3 λ 2 A 3 . This case can be proved similarly to Case 2.1.

Case 3 0-2-2 distribution. In this case, we may assume that

λ 2 λ 1 , λ 3 λ 1 A 2 , λ 4 λ 1 , λ 5 λ 1 A 3 , (3.25)

then (by Proposition 2.1 (iv) (v) and Proposition 2.2 (b) (c))

y 2,1 , y 3,1 , z 4,1 , z 5,1 1 2 +Zand y 3,2 , z 5,4 Z (3.26)

and

λ 3 λ 2 A 1 A 3 and λ 5 λ 4 A 1 A 2 . (3.27)

We can divide (3.27) into four cases.

Case 3.1. λ 3 λ 2 A 1 , λ 5 λ 4 A 1 . In this case, we have

x 3,2 +l y 3,2 l z 3,2 , x 5,4 +l y 5,4 l z 5,4 1 2 +Z. (3.28)

With the same method as Claim 3.2, we can prove that the set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 1 . Without loss of generality, we may assume that λ 4 λ 2 A 1 , then

x 4,2 +l y 4,2 l z 4,2 1 2 +Z. (3.29)

From Claim 3.1 and (3.28) (3.29), we have λ 5 λ 2 , λ 4 λ 3 A 2 A 3 .

In the case λ 5 λ 2 A 2 , λ 4 λ 3 A 2 , from Proposition 2.2 (b) and (3.26) (3.28), we have y 4,1 , y 5,1 Z and y 5,4 Z , a contradiction.

In the case λ 5 λ 2 A 3 , λ 4 λ 3 A 3 , from Proposition 2.2 (c) and (3.26), we have z 2,1 , z 3,1 Z and y 3,2 , z 3,2 Z , a contradiction.

In the case λ 5 λ 2 A 3 , λ 4 λ 3 A 2 , from Proposition 2.2 (b) (c) and (3.26) (3.29), we have z 2,1 , y 4,1 Z and x 4,2 , y 4,2 , z 4,2 1 2 +Z , a contradiction.

In the case λ 5 λ 2 A 2 , λ 4 λ 3 A 3 , from Proposition 2.2 (b) (c) and (3.26) (3.28) (3.29), we have z 3,1 , y 5,1 , x 5,2 +l y 5,2 l z 5,2 Z and x 5,3 +l y 5,3 l z 5,3 1 2 +Z . Combined with (3.26), we get x 5,3 , y 5,3 , z 5,3 1 2 +Z , a contradiction.

Case 3.2. λ 3 λ 2 A 1 , λ 5 λ 4 A 2 . In this case, from Proposition 2.1 (iii) (iv), we have

y 5,4 1 2 +Z, x 3,2 +l y 3,2 l z 3,2 1 2 +Z. (3.30)

With the same method as Claim 3.2, we can prove that the set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 1 . Without loss of generality, we may assume that λ 4 λ 2 A 1 , then (by Proposition 2.1 (iii))

x 4,2 +l y 4,2 l z 4,2 1 2 +Z. (3.31)

From Claim 3.1 and Proposition 2.2 (a), we have λ 5 λ 2 , λ 4 λ 3 A 2 A 3 . In the case λ 5 λ 2 A 2 , λ 4 λ 3 A 2 , from Proposition 2.2 (b) and (3.26) (3.30), we have y 4,1 , y 5,1 Z and y 5,4 Z , a contradiction. In the case λ 5 λ 2 A 3 , λ 4 λ 3 A 3 , from Proposition 2.2 (c) and (3.26), we have z 2,1 , z 3,1 Z and y 3,2 , z 3,2 Z , a contradiction. In the case λ 5 λ 2 A 3 , λ 4 λ 3 A 2 , from Proposition 2.2 (b) (c) and (3.26) (3.31), we have z 2,1 , y 4,1 Z and x 4,2 , y 4,2 , z 4,2 1 2 +Z , a contradiction. In the case λ 5 λ 2 A 2 , λ 4 λ 3 A 3 , from λ 4 λ 2 = λ 5 λ 2 ( λ 5 λ 4 ) A 2 A 2 and (3.26), we have y 4,2 Z , y 4,1 1 2 +Z and y 4,3 Z . Combined with λ 4 λ 3 = λ 4 λ 2 ( λ 3 λ 2 ) A 1 A 1 and Proposition 2.2 (a), we get x 4,3 Z , a contradiction.

Case 3.3. λ 3 λ 2 A 3 , λ 5 λ 4 A 1 . This case can be proved similarly to Case 3.2.

Case 3.4. λ 3 λ 2 A 3 , λ 5 λ 4 A 2 . In this case, from Proposition 2.1 (iv) (v), we have

z 3,2 , y 5,4 1 2 +Z. (3.32)

With the same method as Claim 3.2, we can prove that the set { λ 4 λ 2 , λ 4 λ 3 , λ 5 λ 2 , λ 5 λ 3 } has at least one element in A 1 . Without loss of generality, we may assume that λ 4 λ 2 A 1 , then

x 4,2 +l y 4,2 l z 4,2 1 2 +Z. (3.33)

From Claim 3.1 and Proposition 2.2 (a), we have λ 5 λ 2 , λ 4 λ 3 A 2 A 3 . In the case λ 5 λ 2 A 2 , λ 4 λ 3 A 2 , from Proposition 2.2 (b) and (3.26), we have y 4,1 , y 5,1 Z and y 5,4 Z , a contradiction. In the case λ 5 λ 2 A 2 , λ 4 λ 3 A 3 , from Proposition 2.2 (b) (c) and (3.32), we have y 4,2 , z 4,2 Z , a contradiction. In the case λ 5 λ 2 A 3 , λ 4 λ 3 A 2 , from Proposition 2.2 (b) (c) and (3.32), we have y 5,3 , z 5,3 Z , a contradiction. In the case λ 5 λ 2 A 3 , λ 4 λ 3 A 3 , from Proposition 2.2 (c) and (3.25), we have z 3,1 , z 2,1 Z , a contradiction of (3.32).

Case 4. 1-2-1 distribution. In this case, we may assume that

λ 2 λ 1 A 1 , λ 3 λ 1 , λ 4 λ 1 A 2 , λ 5 λ 1 A 3 , (3.34)

then (by Proposition 2.1 (iii) (iv) (v))

y 3,1 , y 4,1 , z 5,1 , x 2,1 +l y 2,1 l z 2,1 1 2 +Z (3.35)

and

λ 4 λ 3 A 1 A 3 . (3.36)

We can divide (3.36) into two cases.

Case 4.1. λ 4 λ 3 A 1 . In this case, we have

x 4,3 +l y 4,3 l z 4,3 1 2 +Z. (3.37)

We can prove the following Claim hold.

Claim 3.3. The set { λ 3 λ 2 , λ 4 λ 2 } has at least one element in A 1 .

In fact, if

λ 3 λ 2 , λ 4 λ 2 A 2 A 3 .

Then, based on Claim 3.1, we need to consider the following three cases.

Case (a): λ 3 λ 2 , λ 4 λ 2 A 3 . In this case, from (3.35) and Proposition 2.2 (c), we have y 4,3 , z 4,3 Z , a contradiction.

Case (b): λ 3 λ 2 , λ 4 λ 2 A 2 . In this case, from (3.35) and Proposition 2.2 (b), we have

y 2,1 Z. (3.38)

If λ 5 λ 3 , λ 5 λ 4 A 2 , then y 5,1 , y 5,2 Z and λ 5 λ 2 A 1 A 3 (by Proposition 2.1 (iv) and (3.38)). In the case λ 5 λ 2 A 1 , from Proposition 2.2 (a) and (3.35), we have x 5,1 +l y 5,1 l z 5,1 Z and x 5,1 Z , a contradiction. In the case λ 5 λ 2 A 3 , from Proposition 2.2 (c) and (3.38), we get y 2,1 , z 2,1 Z , a contradiction. If λ 5 λ 3 , λ 5 λ 4 A 3 , then (by Proposition 2.2 (c) and (3.38)) y 4,3 , z 4,3 Z , a contradiction. If λ 5 λ 3 A 2 , λ 5 λ 4 A 3 , then, y 5,1 , y 5,2 Z and λ 5 λ 2 A 1 A 3 (by Proposition 2.2 (c) and (3.38)). In the case λ 5 λ 2 A 1 , from Proposition 2.2 (a) and (3.35), we have x 5,1 +l y 5,1 l z 5,1 Z and x 5,1 Z , a contradiction. In the case λ 5 λ 2 A 3 , from Proposition 2.2 (c) and (3.38), we get y 2,1 , z 2,1 Z , a contradiction. Hence the set { λ 5 λ 3 , λ 5 λ 4 } has at least one element in A 1 . In this case, without loss of generality, we may assume that

λ 5 λ 3 A 1 . (3.39)

It follows from Claim 3.1 that λ 5 λ 2 A 1 A 3 . If λ 5 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35) (3.38))

x 5,1 +l y 5,1 l z 5,1 Z. (3.40)

From Claim 3.1, we know that λ 5 λ 4 A 2 A 3 . In the case λ 5 λ 4 A 2 , from Proposition 2.2 (b) and (3.35) (3.40), we have x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 4 A 3 , from (3.37) (3.39) (3.40) and Proposition 2.2 (c), we get x 4,1 +l y 4,1 l z 4,1 Z and x 4,1 , z 4,1 Z , a contradiction. If λ 5 λ 2 A 3 , then y 2,1 , z 2,1 Z ( by Proposition 2.2 (c) and (3.35) (3.38)), a contradiction.

Case (c): λ 3 λ 2 A 2 , λ 4 λ 2 A 3 . In this case, from (3.35) and Proposition 2.2 (b), we have

y 2,1 Zand y 4,2 , z 4,2 1 2 +Z. (3.41)

With the same method as Case (b), we can prove that the set { λ 5 λ 3 , λ 5 λ 4 } has at least one element in A 1 . In this case, without loss of generality, we may assume that

λ 5 λ 3 A 1 . (3.42)

Combined with (3.37), we have λ 5 λ 4 A 2 A 3 . If λ 5 λ 4 A 2 , from Proposition 2.2 (b) and (3.35) (3.41), we have

y 5,1 , y 5,2 Zand λ 5 λ 2 A 1 A 3 . (3.43)

In the case λ 5 λ 2 A 1 , from Proposition 2.2 (a) and (3.35) (3.43), we have x 5,1 +l y 5,1 l z 5,1 Z and x 5,1 Z , a contradiction. In the case λ 5 λ 2 A 3 , from Proposition 2.2 (c) and (3.41), we get y 2,1 , z 2,1 Z , a contradiction. If λ 5 λ 4 A 3 , then (by Proposition 2.2 (c) and (3.35) (3.37) (3.42))

z 4,1 , z 5,2 Z, z 5,4 , z 2,1 1 2 +Zand x 5,4 +l y 5,4 l z 5,4 Z (3.44)

and λ 5 λ 2 A 1 A 2 . In the case λ 5 λ 2 A 1 , from Proposition 2.2 (a) and (3.35) (3.44), we have x 5,1 +l y 5,1 l z 5,1 , x 4,1 +l y 4,1 l z 4,1 Z and x 4,1 Z , a contradiction. In the case λ 5 λ 2 A 2 , from Proposition 2.1 (iv) and (3.35) (3.41) (3.44), we have y 5,1 1 2 +Z and x 5,4 , y 5,4 Z , a contradiction.

Hence the set { λ 3 λ 2 , λ 4 λ 2 } has at least one element in A 1 . In this case, without loss of generality, we may assume that λ 3 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.37))

x 3,1 +l y 3,1 l z 3,1 Zand x 4,2 +l y 4,2 l z 4,2 Z (3.45)

and λ 4 λ 2 A 2 A 3 .

If λ 4 λ 2 A 2 , then

y 2,1 Z. (3.46)

If λ 5 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35) (3.45))

x 5,1 +l y 5,1 l z 5,1 , x 5,3 +l y 5,3 l z 5,3 Z (3.47)

and λ 5 λ 3 A 2 A 3 . In the case λ 5 λ 3 A 2 , from Proposition 2.2 (b) and (3.35) (3.47), we get x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 3 A 3 , from Proposition 2.2 (c) and (3.35) (3.45), we have x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 2 , then (by (3.35) (3.46))

y 5,1 1 2 +Z, y 5,3 Z (3.48)

and λ 5 λ 3 A 1 A 3 . In the case λ 5 λ 3 A 1 , from Proposition 2.1 (iii) and (3.35) (3.37) (3.45) (3.48), we have

x 5,4 +l y 5,4 l z 5,4 , y 5,4 Z. (3.49)

Hence, λ 5 λ 4 A 3 and z 5,4 1 2 +Z . Combined with (3.49), we get x 5,4 Z , a contradiction. In the case λ 5 λ 3 A 3 , from (3.35) (3.45), we have x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 3 , then (by Proposition 2.2 (c) and (3.46)) z 2,1 Z , a contradiction.

If λ 4 λ 2 A 3 , then (by Proposition 2.1 (v) and (3.35) (3.45))

z 4,2 1 2 +Z, x 4,2 +l y 4,2 l z 4,2 Zand x 4,1 +l y 4,1 l z 4,1 1 2 +Z. (3.50)

If λ 5 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35) (3.45))

x 5,1 +l y 5,1 l z 5,1 Z (3.51)

and λ 5 λ 3 A 2 A 3 . In the case λ 5 λ 3 A 2 , from Proposition 2.2 (b) and (3.35) (3.51), we have x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 3 A 3 , from Proposition 2.2 (c) and (3.35) (3.45), we get x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 2 , then (by Proposition 2.1 (iv))

y 5,2 1 2 +Z. (3.52)

If λ 5 λ 3 A 1 , then (by Proposition 2.2 (a) and (3.37)) x 5,4 +l y 5,4 l z 5,4 Z and λ 5 λ 4 A 2 A 3 . In the case λ 5 λ 4 A 2 , from Proposition 2.2 (b) and (3.50) (3.52), we get x 4,2 , y 4,2 Z , a contradiction. In the case λ 5 λ 4 A 3 , from Proposition 2.2 (c) (3.50) (3.52) and λ 5 λ 2 =( λ 5 λ 3 )( λ 2 λ 3 ) A 1 A 1 , we have z 4,1 Z, z 2,1 1 2 +Z and x 5,2 , z 5,2 Z , a contradiction. If λ 5 λ 3 A 2 , then (by Proposition 2.2 (b) and (3.35) (3.52)) y 3,2 Z and y 2,1 1 2 +Z . Combined with (3.35) and (3.50), we have x 4,2 , y 4,2 Z , a contradiction. If λ 5 λ 3 A 3 , then (by Proposition 2.2 (c) and (3.35) (3.45)) x 3.1 , z 3.1 Z , a contradiction. If λ 5 λ 2 A 3 , then (by Proposition 2.2 (c) and (3.35)) z 2,1 Z . Combined with (3.35) and (3.50), we have x 4,1 , y 4,1 , z 4,1 1 2 +Z , a contradiction.

Case 4.2. λ 4 λ 3 A 3 . In this case, we have

y 4,3 Z, z 4,3 1 2 +Z. (3.53)

With the same method as Claim 3.3, we can prove that the set { λ 3 λ 2 , λ 4 λ 2 } has at least one element in A 1 . Without loss of generality, we may assume that λ 3 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35))

x 3,1 +l y 3,1 l z 3,1 Z. (3.54)

If λ 4 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35) (3.53) (3.54)) x 4,1 +l y 4,1 l z 4,1 , x 4,3 +l y 4,3 l z 4,3 Z and x 4,3 Z , a contradiction.

If λ 4 λ 2 A 2 , then (by Proposition 2.2 (b) and (3.35))

y 2,1 Z. (3.55)

If λ 5 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35))

x 5,1 +l y 5,1 l z 5,1 Z. (3.56)

Combined with (3.54) and (3.55), we have x 5,3 +l y 5,3 l z 5,3 Z and λ 5 λ 3 A 2 A 3 . In the case λ 5 λ 3 A 2 , from Proposition 2.2 (b) and (3.35) (3.56), we get x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 3 A 3 , from Proposition 2.2 (c) and (3.35) (3.54), we have x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 2 , then (by Proposition 2.1 (iv) and (3.35) (3.55))

y 5,1 1 2 +Z, y 5,3 Z (3.57)

and λ 5 λ 3 A 1 A 3 . In the case λ 5 λ 3 A 1 , from Proposition 2.1 (iii) and (3.54), we get

x 5,1 +l y 5,1 l z 5,1 1 2 +Z. (3.58)

Combined with (3.35) and (3.57), we have x 5,1 1 2 +Z , a contradiction. In the

case λ 5 λ 3 A 3 , from Proposition 2.2 (c) and (3.54), we get x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 3 , from Proposition 2.2 (c) and (3.55), we have y 2,1 , z 2,1 Z , a contradiction.

If λ 4 λ 2 A 3 , then (by Proposition 2.1 (v))

z 4,2 1 2 +Z. (3.59)

Combined with (3.53), we have

z 3,2 Z. (3.60)

If λ 5 λ 2 A 1 , then (by Proposition 2.2 (a) and (3.35) (3.54))

x 5,1 +l y 5,1 l z 5,1 Zand x 5,3 +l y 5,3 l z 5,3 Z. (3.61)

Hence, λ 5 λ 3 A 2 A 3 . In the case λ 5 λ 3 A 2 , from Proposition 2.2 (b) and (3.35) (3.61), we have x 5,1 , y 5,1 Z , a contradiction. In the case λ 5 λ 3 A 3 , from Proposition 2.2 (c) and (3.35) (3.54), we get x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 2 , then (by Proposition 2.1 (iv))

y 5,2 1 2 +Z. (3.62)

In the case λ 5 λ 3 A 1 , for λ 4 λ 2 , λ 4 λ 3 A 3 , Proposition 2.1 (i) and Claim 3.1, we have λ 5 λ 4 A 1 A 2 . If λ 5 λ 4 A 1 , then, for λ 4 λ 3 =( λ 5 λ 3 )( λ 5 λ 4 ) A 1 A 1 and (3.53), we get x 4,3 , y 4,3 Z , a contradiction. If λ 5 λ 4 A 2 , then (by Proposition 2.2 (b) and (3.35) (3.60) (3.62)), y 2,1 1 2 +Z and y 5,1 , y 3,2 , z 3,2 Z , a contradiction. In the case λ 5 λ 3 A 2 , from Proposition 2.2 (b) and (3.35) (3.60) (3.62), we get y 3,2 , z 3,2 Z , a contradiction. In the case λ 5 λ 3 A 3 , from (3.35) and (3.54), we have x 3,1 , z 3,1 Z , a contradiction. If λ 5 λ 2 A 3 , then (by Proposition 2.2 (c) and (3.35) (3.59)) z 2,1 Z, z 4,1 1 2 +Z . Combined with (3.53) and (3.54), we have x 3,1 , z 3,1 Z , a contradiction.

The above discussion shows that L 2 ( μ M,D ) can not contain five mutually orthogonal exponential functions. Take

Λ={ ( 0 0 0 ),( ( 1l ) p 1 j +l p 3 j 2 0 p 3 j 2 ),( ( 1l ) p 1 j l p 2 j 2 p 2 j 2 0 ),( l( p 2 j + p 3 j ) 2 p 2 j 2 p 3 j 2 ) },

where p 1 , p 2 , p 3 ( 2Z+1 )\{ 0,±1 },l2Z . We can verify that E( Λ ) is a 4-element μ M,D -orthogonal exponentials, which yields the number 4 is the best.

Corollary 3.4. For the self-affine measure μ M,D corresponding to

M=[ P 1 0 0 P 4 P 2 0 P 5 0 P 3 ]andD={ ( 0 0 0 ),( d 0 0 ),( 0 d 0 ),( 0 0 d ) },

if p j ( 2Z+1 )\{ 0,±1 }( j=1,2,3 ), p 2 p 3 ,d0 and

p 4 =l( p 1 p 2 ), p 5 =l( p 3 p 1 ),

where l2Z , then there are at most 4-element μ M,D -orthogonal exponentials, and the number 4 is the best.

Example 3.5. Let

M=[ 5 0 0 52 31 0 36 0 23 ],D={ ( 0 0 0 ),( 1 0 0 ),( 0 1 0 ),( 0 0 1 ) },

then there are at most 4-element μ M,D -orthogonal exponentials, and the number 4 is the best.

Take l=22Z , one can verify that p 1 =5 , p 2 =31 , p 3 =23( 2Z+1 )\{ 0,±1 } , p 4 =2( p 1 p 2 )=52 , p 5 =2( p 3 p 1 )=36 , which shows that the condition (1.8) holds. Then there are at most 4-element μ M,D -orthogonal exponentials, and the number 4 is the best.

Funding

This work is supported by the National Natural Science Foundation of China (No.12001346).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Hutchinson, J. (1981) Fractals and Self-Similarity. Indiana University Mathematics Journal, 30, 713-747.
https://doi.org/10.1512/iumj.1981.30.30055
[2] Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group Theoretic Problem. Journal of Functional Analysis, 16, 101-121.
https://doi.org/10.1016/0022-1236(74)90072-x
[3] Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractall 2-Spaces. Journal dAnalyse Mathématique, 75, 185-228.
https://doi.org/10.1007/bf02788699
[4] Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathematics, 259, 511-531.
https://doi.org/10.1016/j.aim.2014.03.026
[5] Dutkay, D.E. and Haussermann, J. (2016) Number Theory Problems from the Harmonic Analysis of a Fractal. Journal of Number Theory, 159, 7-26.
https://doi.org/10.1016/j.jnt.2015.07.009
[6] Emme, J. (2016) Spectral Measure at Zero for Self-Similar Tilings. arXiv: 1606.02470.
https://doi.org/10.48550/arXiv.1606.02470
[7] Jorgensen, P.E.T. and Pedersen, S. (1996) Harmonic Analysis of Fractal Measures. Constructive Approximation, 12, 1-30.
https://doi.org/10.1007/bf02432853
[8] Łaba, I. and Wang, Y. (2002) On Spectral Cantor Measures. Journal of Functional Analysis, 193, 409-420.
https://doi.org/10.1006/jfan.2001.3941
[9] Dutkay, D., Haussermann, J. and Lai, C. (2018) Hadamard Triples Generate Self-Affine Spectral Measures. Transactions of the American Mathematical Society, 371, 1439-1481.
https://doi.org/10.1090/tran/7325
[10] Liu, J. and Wang, Z. (2023) The Spectrality of Self-Affine Measure under the Similar Transformation of GLn(p). Constructive Approximation, 58, 687-712.
https://doi.org/10.1007/s00365-023-09621-9
[11] Chen, M., Liu, J. and Zheng, J. (2023) Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets. The Journal of Geometric Analysis, 34, Article No. 5.
https://doi.org/10.1007/s12220-023-01447-y
[12] Wang, Q. and Li, J. (2019) The Maximal Cardinality of-Orthogonal Exponentials on the Spatial Sierpinski Gasket. Monatshefte für Mathematik, 191, 203-224.
https://doi.org/10.1007/s00605-019-01348-9
[13] Zheng, J. and Liu, J.C. and Chen, M.L. (2019) The Cardinality of Orthogonal Exponential Functions on the Spatial Sierpinski Gasket. Fractals, 27, Article ID: 1950056.
[14] Dutkay, D.E. and Jorgensen, P.E.T. (2007) Analysis of Orthogonality and of Orbits in Affine Iterated Function Systems. Mathematische Zeitschrift, 256, 801-823.
https://doi.org/10.1007/s00209-007-0104-9
[15] Li, J. (2010) On the-Orthogonal Exponentials. Nonlinear Analysis: Theory, Methods & Applications, 73, 940-951.
https://doi.org/10.1016/j.na.2010.04.017
[16] Hu, T. and Lau, K. (2008) Spectral Property of the Bernoulli Convolutions. Advances in Mathematics, 219, 554-567.
https://doi.org/10.1016/j.aim.2008.05.004
[17] Jorgensen, P.E.T., Kornelson, K. and Shuman, K. (2008) Orthogonal Exponentials for Bernoulli Iterated Function Systems. In: Jorgensen, P.E.T., Merrill, K.D. and Packer, J.A., Eds., Representations, Wavelets, and Frames, Birkhäuser Boston, 217-237.
https://doi.org/10.1007/978-0-8176-4683-7_11
[18] Li, H. and Li, Q. (2022) Spectral Structure of Planar Self-Similar Measures with Four-Element Digit Set. Journal of Mathematical Analysis and Applications, 513, Article ID: 126202.
https://doi.org/10.1016/j.jmaa.2022.126202
[19] Li, J. (2014) Spectral Self-Affine Measures on the Spatial Sierpinski Gasket. Monatshefte für Mathematik, 176, 293-322.
https://doi.org/10.1007/s00605-014-0725-0
[20] Li, J. (2012) Spectrality of Self-Affine Measures on the Three-Dimensional Sierpinski Gasket. Proceedings of the Edinburgh Mathematical Society, 55, 477-496.
https://doi.org/10.1017/s0013091511000502
[21] Wang, Q. and Li, J. (2018) There Are Eight-Element Orthogonal Exponentials on the Spatial Sierpinski Gasket. Mathematische Nachrichten, 292, 211-226.
https://doi.org/10.1002/mana.201700471
[22] Li, J. (2015) Non-spectrality of Self-Affine Measures on the Spatial Sierpinski Gasket. Journal of Mathematical Analysis and Applications, 432, 1005-1017.
https://doi.org/10.1016/j.jmaa.2015.07.032
[23] Wang, Q. and Li, J. (2015) Spectrality of Certain Self-Affine Measures on the Generalized Spatial Sierpinski Gasket. Mathematische Nachrichten, 289, 895-909.
https://doi.org/10.1002/mana.201500227
[24] Yuan, Y. (2021) Non-Spectral Problem of Self-Affine Measures in R3. Advances in Pure Mathematics, 11, 717-734.
https://doi.org/10.4236/apm.2021.118047
[25] Wang, Z. (2024) Orthogonal Exponential Functions on the Three-Dimensional Sierpinski Gasket. Complex Analysis and Operator Theory, 18, Article No. 88.
https://doi.org/10.1007/s11785-024-01536-y

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.