[1]
|
Holland, T.H. (1900) The Charnockite Series: A Group of Archæan Hypersthenic Rocks in Peninsular India (Vol. 28, No. 2). Office of the Geological Survey.
|
[2]
|
Subramaniam, A.P. (1960) Petrology of the Charnockite Suite of Rocks from the Type Area Around St. Thomas Mount and Pallavaram Near Madras City, India, Internal. International Geological Congress 21st., Copenhagen, 15-25 August 1960, 394-403.
|
[3]
|
Clark, C., Collins, A.S., Santosh, M., Taylor, R. and Wade, B.P. (2009) The P-T-t Architecture of a Gondwanan Suture: REE, U-Pb and Ti-in-Zircon Thermometric Constraints from the Palghat Cauvery Shear System, South India. Precambrian Research, 174, 129-144. https://doi.org/10.1016/j.precamres.2009.07.003
|
[4]
|
Rajesh, H.M. and Santosh, M. (2012) Charnockites and Charnockites. Geoscience Frontiers, 3, 737-744. https://doi.org/10.1016/j.gsf.2012.07.001
|
[5]
|
Samuel, V.O., Santosh, M., Liu, S., Wang, W. and Sajeev, K. (2014) Neoarchean Continental Growth through Arc Magmatism in the Nilgiri Block, Southern India. Precambrian Research, 245, 146-173. https://doi.org/10.1016/j.precamres.2014.02.002
|
[6]
|
Li, S., Santosh, M., Ganguly, S., Thanooja, P.V., Sajeev, K., Pahari, A., et al. (2018) Neoarchean Microblock Amalgamation in Southern India: Evidence from the Nallamalai Suture Zone. Precambrian Research, 314, 1-27. https://doi.org/10.1016/j.precamres.2018.05.017
|
[7]
|
Santosh, M. (2020) The Southern Granulite Terrane: A Synopsis. Episodes, 43, 109-123. https://doi.org/10.18814/epiiugs/2020/020006
|
[8]
|
Janardhan, A.S., Newton, R.C. and Hansen, E.C. (1982) The Transformation of Amphibolite Facies Gneiss to Charnockite in Southern Karnataka and Northern Tamil Nadu, India. Contributions to Mineralogy and Petrology, 79, 130-149. https://doi.org/10.1007/bf01132883
|
[9]
|
Santosh, M. and Yoshida, M. (1992) A Petrologic and Fluid Inclusion Study of Charnockites from the Lützow-Holm Bay Region, East Antarctica: Evidence for Fluid-Rich Metamorphism in the Lower Crust. Lithos, 29, 107-126. https://doi.org/10.1016/0024-4937(92)90036-x
|
[10]
|
Ronald Frost, B. (2000) Origin of the Charnockites of the Louis Lake Batholith, Wind River Range, Wyoming. Journal of Petrology, 41, 1759-1776. https://doi.org/10.1093/petrology/41.12.1759
|
[11]
|
Santosh, M., Xiao, W.J., Tsunogae, T., Chetty, T.R.K. and Yellappa, T. (2012) The Neoproterozoic Subduction Complex in Southern India: SIMS Zircon U-Pb Ages and Implications for Gondwana Assembly. Precambrian Research, 192, 190-208. https://doi.org/10.1016/j.precamres.2011.10.025
|
[12]
|
Tomson, J.K., Bhaskar Rao, Y.J., Vijaya Kumar, T. and Choudhary, A.K. (2013) Geochemistry and Neodymium Model Ages of Precambrian Charnockites, Southern Granulite Terrain, India: Constraints on Terrain Assembly. Precambrian Research, 227, 295-315. https://doi.org/10.1016/j.precamres.2012.06.014
|
[13]
|
Collins, A.S., Clark, C. and Plavsa, D. (2014) Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts. Gondwana Research, 25, 190-203. https://doi.org/10.1016/j.gr.2013.01.002
|
[14]
|
Yang, Q., Santosh, M., Rajesh, H.M. and Tsunogae, T. (2014) Late Paleoproterozoic Charnockite Suite within Post-Collisional Setting from the North China Craton: Petrology, Geochemistry, Zircon U–pb Geochronology and Lu-Hf Isotopes. Lithos, 208, 34-52. https://doi.org/10.1016/j.lithos.2014.08.020
|
[15]
|
Vishwakarma, N. and Thomas, H. (2015) Petrographic and Geochemical Characteristics of Charnockite from Asind, District-Bhilwara, Rajasthan: Implications for Its Origin. Journal of Applied Geochemistry, 17, 10-21.
|
[16]
|
Liu, P.H., Liu, F.L., Cai, J., Yang, H., Wang, F., Liu, C.H., Liu, J.H. and Shi, J.R. (2016) Metamorphic PT Conditions and Timing of the Wuchuan Garnet Mafic Granulite from the Yinshan Block, North China Craton: Insight from Phase Equilibria and Zircon U-Pb Dating. Acta Petrologica Sinica, 32, 1949-1979.
|
[17]
|
Gao, P. and Santosh, M. (2020) Mesoarchean Accretionary Mélange and Tectonic Erosion in the Archean Dharwar Craton, Southern India: Plate Tectonics in the Early Earth. Gondwana Research, 85, 291-305. https://doi.org/10.1016/j.gr.2020.05.004
|
[18]
|
Yang, C., Santosh, M., Tsunogae, T., Shaji, E., Gao, P. and Kwon, S. (2021) Global Type Area Charnockites in Southern India Revisited: Implications for Earth's Oldest Supercontinent. Gondwana Research, 94, 106-132. https://doi.org/10.1016/j.gr.2021.03.003
|
[19]
|
Zhai, M., Guo, J. and Liu, W. (2005) Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 24, 547-561. https://doi.org/10.1016/j.jseaes.2004.01.018
|
[20]
|
Endo, T., Tsunogae, T., Santosh, M. and Shaji, E. (2012) Phase Equilibrium Modeling of Incipient Charnockite Formation in NCKFMASHTO and Mnnckfmashto Systems: A Case Study from Rajapalaiyam, Madurai Block, Southern India. Geoscience Frontiers, 3, 801-811. https://doi.org/10.1016/j.gsf.2012.05.005
|
[21]
|
Shaji, E., Santosh, M., He, X., Fan, H., Dev, S.G.D., Yang, K., et al. (2014) Convergent Margin Processes during Archean–proterozoic Transition in Southern India: Geochemistry and Zircon U–pb Geochronology of Gold-Bearing Amphibolites, Associated Metagabbros, and TTG Gneisses from Nilambur. Precambrian Research, 250, 68-96. https://doi.org/10.1016/j.precamres.2014.05.021
|
[22]
|
Yellappa, T., Venkatasivappa, V., Koizumi, T., Chetty, T.R.K., Santosh, M. and Tsunogae, T. (2014) The Mafic–ultramafic Complex of Aniyapuram, Cauvery Suture Zone, Southern India: Petrological and Geochemical Constraints for Neoarchean Suprasubduction Zone Tectonics. Journal of Asian Earth Sciences, 95, 81-98. https://doi.org/10.1016/j.jseaes.2014.04.023
|
[23]
|
Sarkar, T. and Schenk, V. (2014) Two-stage Granulite Formation in a Proterozoic Magmatic Arc (ongole Domain of the Eastern Ghats Belt, India): Part 1. Petrology and Pressure–temperature Evolution. Precambrian Research, 255, 485-509. https://doi.org/10.1016/j.precamres.2014.07.026
|
[24]
|
Santosh, M., Yang, Q., Ram Mohan, M., Tsunogae, T., Shaji, E. and Satyanarayanan, M. (2014) Cryogenian Alkaline Magmatism in the Southern Granulite Terrane, India: Petrology, Geochemistry, Zircon U-Pb Ages and Lu-Hf Isotopes. Lithos, 208, 430-445. https://doi.org/10.1016/j.lithos.2014.09.016
|
[25]
|
Tang, L., Santosh, M. and Teng, X. (2015) Paleoproterozoic (ca. 2.1-2.0Ga) Arc Magmatism in the Fuping Complex: Implications for the Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 268, 16-32. https://doi.org/10.1016/j.precamres.2015.07.001
|
[26]
|
Frost, B.R. and Frost, C.D. (2008) On Charnockites. Gondwana Research, 13, 30-44. https://doi.org/10.1016/j.gr.2007.07.006
|
[27]
|
Pichamuthu, C.S. (1960) Charnockite in the Making. Nature, 188, 135-136. https://doi.org/10.1038/188135a0
|
[28]
|
Santosh, M., Harris, N.B.W., Jackson, D.H. and Mattey, D.P. (1990) Dehydration and Incipient Charnockite Formation: A Phase Equilibria and Fluid Inclusion Study from South India. The Journal of Geology, 98, 915-926. https://doi.org/10.1086/629461
|
[29]
|
Kumar, G.R. and Raghavan, V. (1992) The Incipient Charnockites of Transition Zone, Granulite Zone and Khondalite Zone of South India: Contrasting Mechanisms and Controlling Factors. Journal of Geological Society of India, 39, 293-302.
|
[30]
|
Newton, R.C. and Tsunogae, T. (2014) Incipient Charnockite: Characterization at the Type Localities. Precambrian Research, 253, 38-49. https://doi.org/10.1016/j.precamres.2014.06.021
|
[31]
|
Sheraton, J.W. (1982) Origin of Charnockitic Rocks of MacRobertson Land. In: Craddock, C., Ed., Antarctic Geoscience, Madison University of Wisconsin Press, 489-497.
|
[32]
|
Munksgaard, N.C., Thost, D.E. and Hensen, B.J. (1992) Geochemistry of Proterozoic Granulites from Northern Prince Charles Mountains, East Antarctica. Antarctic Science, 4, 59-69. https://doi.org/10.1017/s0954102092000129
|
[33]
|
Rajesh, H.M. (2007) The Petrogenetic Characterization of Intermediate and Silicic Charnockites in High-Grade Terrains: A Case Study from Southern India. Contributions to Mineralogy and Petrology, 154, 591-606. https://doi.org/10.1007/s00410-007-0211-y
|
[34]
|
Mikhalsky, E.V. and Kamenev, I.A. (2013) Recurrent Transitional Group Charnockites in the East Amery Ice Shelf Coast (East Antarctica): Petrogenesis and Implications on Tectonic Evolution. Lithos, 175, 230-243. https://doi.org/10.1016/j.lithos.2013.05.004
|
[35]
|
Ghosh, J.G., de Wit, M.J. and Zartman, R.E. (2004) Age and Tectonic Evolution of Neoproterozoic Ductile Shear Zones in the Southern Granulite Terrain of India, with Implications for Gondwana Studies. Tectonics, 23, TC3006. https://doi.org/10.1029/2002tc001444
|
[36]
|
Gopalakrishnan, K. and Subramanian, K.S. (2007) Inherited Geochemical Characteristics of Palaeo-Domains by Alkaline Complexes and Related Rocks within Southern Granulite Terrain, India-Implications of Crustal Contamination in Their Genesis and Emplacement. Geological Society of India, 69, 684-698.
|
[37]
|
Peucat, J.J., Vidal, P., Bernard-Griffiths, J. and Condie, K.C. (1989) Sr, Nd, and Pb Isotopic Systematics in the Archean Low-to High-Grade Transition Zone of Southern India: Syn-Accretion vs. Post-Accretion Granulites. The Journal of Geology, 97, 537-549. https://doi.org/10.1086/629333
|
[38]
|
Drury, S.A., Harris, N.B.W., Holt, R.W., Reeves-Smith, G.J. and Wightman, R.T. (1984) Precambrian Tectonics and Crustal Evolution in South India. The Journal of Geology, 92, 3-20. https://doi.org/10.1086/628831
|
[39]
|
Santosh, M., Yokoyama, K., Biju-Sekhar, S. and Rogers, J.J.W. (2003) Multiple Tectonothermal Events in the Granulite Blocks of Southern India Revealed from EPMA Dating: Implications on the History of Supercontinents. Gondwana Research, 6, 29-63. https://doi.org/10.1016/s1342-937x(05)70643-2
|
[40]
|
Krishna, A.K., Murthy, N.N. and Govil, P.K. (2007) Multielement Analysis of Soils by Wavelength-Dispersive X-Ray Fluorescence Spectrometry. Atomic Spectroscopy-Norwalk Connecticut, 28, 202-214.
|
[41]
|
Streckeisen, A. (1974) Classification and Nomenclature of Plutonic Rocks Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geologische Rundschau, 63, 773-786. https://doi.org/10.1007/bf01820841
|
[42]
|
Streckeisen, A. (1976) To Each Plutonic Rock Its Proper Name. Earth-Science Reviews, 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
|
[43]
|
Maitre, L.E. (1989) A Classification of Igneous Rocks and Glossary of Terms. Recom-mendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 193.
|
[44]
|
Morimoto, N. (1988) Nomenclature of Pyroxenes. Mineralogy and Petrology, 39, 55-76. https://doi.org/10.1007/bf01226262
|
[45]
|
Dev, S.G.D., Shaji, E., Santosh, M., Tsunogae, T. and Prasanth, R.S. (2023) Mesoarchean Charnockites from the Coorg Block, Southern India: Petrology, Geochemistry and Tectonic Implications. Geosystems and Geoenvironment, 2, Article 100134. https://doi.org/10.1016/j.geogeo.2022.100134
|
[46]
|
Indu, G., Shaji, E., Binojkumar, R.B., Santosh, M. and Tsunogae, T. (2021) Petrology of Charnockites from Madurai Block of Southern Granulite Terrain, South India. Bulletin of Pure & Applied Sciences-Geology, 40, 25-37. https://doi.org/10.5958/2320-3234.2021.00004.4
|
[47]
|
Rajesh, H.M., Santosh, M. and Yoshikura, S. (2010) The Nagercoil Charnockite: A Magnesian, Calcic to Calc-Alkalic Granitoid Dehydrated during a Granulite-Facies Metamorphic Event. Journal of Petrology, 52, 375-400. https://doi.org/10.1093/petrology/egq084
|
[48]
|
Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., et al. (1998) Nomenclature of the Micas. Clays and Clay Minerals, 46, 586-595. https://doi.org/10.1346/ccmn.1998.0460513
|
[49]
|
Nachit, H., Ibhi, A., Abia, E.H. and Ben Ohoud, M. (2005) Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus. Géoscience, 337, 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002
|
[50]
|
Lindsley, D.H. (1983) Pyroxene Thermometry. American Mineralogist, 68, 477-493.
|
[51]
|
Smith, J.V. (1974) Intergrowths of Feldspars with Other Minerals. In: Smith, J.V., Ed., Feldspar Minerals, Springer, 553-647. https://doi.org/10.1007/978-3-642-65743-6_8
|
[52]
|
Shand, S.J. (1943) Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons.
|
[53]
|
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42, 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
|
[54]
|
Kar, R., Bhattacharya, S., Basei, M. and Chaudhary, A.K. (2020) Petrological and Geochronological Constraints on the Evolution of Charnockitic Rocks in the Massifs of Cauvery Shear Zone, Southern Granulite Terrain, India. Journal of the Geological Society of India, 95, 527-537. https://doi.org/10.1007/s12594-020-1472-6
|
[55]
|
Fowler, M.B. and Henney, P.J. (1996) Mixed Caledonian Appinite Magmas: Implications for Lamprophyre Fractionation and High Ba-Sr Granite Genesis. Contributions to Mineralogy and Petrology, 126, 199-215. https://doi.org/10.1007/s004100050244
|
[56]
|
Fowler, M.B., Henney, P.J., Darbyshire, D.P.F. and Greenwood, P.B. (2001) Petrogenesis of High Ba-Sr Granites: The Rogart Pluton, Sutherland. Journal of the Geological Society, 158, 521-534. https://doi.org/10.1144/jgs.158.3.521
|
[57]
|
Tarney, J. and Jones, C.E. (1994) Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 151, 855-868. https://doi.org/10.1144/gsjgs.151.5.0855
|
[58]
|
Patiño Douce, A.E. (1999) What Do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168, 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
|
[59]
|
Halla, J., Whitehouse, M.J., Ahmad, T. and Bagai, Z. (2016) Archaean Granitoids: An Overview and Significance from a Tectonic Perspective. Geological Society, London, Special Publications, 449, 1-18. https://doi.org/10.1144/sp449.10
|
[60]
|
Martin, H. (1987) Petrogenesis of Archaean Trondhjemites, Tonalites, and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry. Journal of Petrology, 28, 921-953. https://doi.org/10.1093/petrology/28.5.921
|
[61]
|
Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The Interpretation of Data for Plutonic Rocks. In: Cox, K.G., Bell, J.D. and Pankhurst, R.J., Eds., The Interpretation of Igneous Rocks, Springer, 308-331. https://doi.org/10.1007/978-94-017-3373-1_13
|
[62]
|
Defant, M.J. and Drummond, M.S. (1990) Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347, 662-665. https://doi.org/10.1038/347662a0
|
[63]
|
Green, T.H. and Pearson, N.J. (1986) Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P,T. Chemical Geology, 54, 185-201. https://doi.org/10.1016/0009-2541(86)90136-1
|
[64]
|
Harrison, T.M. and Watson, E.B. (1984) The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48, 1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4
|
[65]
|
Grantham, G.H., Eglington, B.M., Thomas, R.J. and Mendonidis, P. (2001) The Nature of the Grenville-Age Charnockitic A-Type Magmatism from the Natal, Namaqua and Maud Belts of Southern Africa and Western Dronning Maud Land, Antarctica. Memoirs of National Institute of Polar Research, 59-86.
|
[66]
|
Henry, D.J. (2005) The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90, 316-328. https://doi.org/10.2138/am.2005.1498
|
[67]
|
Fuhrman, M.L. and Lindsley, D.H. (1988) Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73, 201-215.
|
[68]
|
Kumar, K.V., Rathna, K. and Leelanandam, C. (2015) Proterozoic Subduction-Related and Continental Rift-Zone Mafic Magmas from the Eastern Ghats Belt, SE India: geo-Chemical Characteristics and Mantle Sources. Current Science, 108, 184-197.
|
[69]
|
Thieblemont, D. and Tegyey, M. (1994) Geochemical Discrimination of Differentiated Magmatic Rocks Attesting for the Variable Origin and Tectonic Setting of Calc-Alkaline Magmas. Comptes Rendus de l’Académie des Sciences Série II, 319, 87-94.
|
[70]
|
Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
|
[71]
|
Cocherie, A. (1986) Systematic Use of Trace Element Distribution Patterns in Log-Log Diagrams for Plutonic Suites. Geochimica et Cosmochimica Acta, 50, 2517-2522. https://doi.org/10.1016/0016-7037(86)90034-7
|
[72]
|
De Souza, Z.S., Martin, H., Peucat, J., Jardim De Sá, E.F. and Macedo, M.H.D.F. (2007) Calc-Alkaline Magmatism at the Archean-Proterozoic Transition: The Caicó Complex Basement (NE Brazil). Journal of Petrology, 48, 2149-2185. https://doi.org/10.1093/petrology/egm055
|
[73]
|
Sun, S.-S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
[74]
|
Boynton, W.V. (1984) Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Developments in Geochemistry, 2, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
|
[75]
|
Condie, K.C. and Allen, P. (1984) Origin of Archaean Charnockites from Southern India. In: Kröner, A., Hanson, G.N. and Goodwin, A.M., Eds., Archaean Geochemistry: The Origin and Evolution of the Archaean Continental Crust, Springer, 182-203. https://doi.org/10.1007/978-3-642-70001-9_9
|
[76]
|
Raith, M.M., Srikantappa, C., Buhl, D. and Koehler, H. (1999) The Nilgiri Enderbites, South India: Nature and Age Constraints on Protolith Formation, High-Grade Metamorphism and Cooling History. Precambrian Research, 98, 129-150. https://doi.org/10.1016/s0301-9268(99)00045-5
|
[77]
|
Shaw, D.M. (1972) The Origin of the Apsley Gneiss, Ontario. Canadian Journal of Earth Sciences, 9, 18-35. https://doi.org/10.1139/e72-002
|
[78]
|
Miller, C.F. (1985) Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? The Journal of Geology, 93, 673-689. https://doi.org/10.1086/628995
|
[79]
|
Ellis, D.J. and Thompson, A.B. (1986) Subsolidus and Partial Melting Reactions in the Quartz-Excess CaO+MgO+Al2O3+SiO2+H2O System under Water-Excess and Water-Deficient Conditions to 10 kb: Some Implications for the Origin of Peraluminous Melts from Mafic Rocks. Journal of Petrology, 27, 91-121. https://doi.org/10.1093/petrology/27.1.91
|
[80]
|
Mackenzie, F.T. and Garrels, R.M. (1971) Evolution of Sedimentary Rocks. Norton.
|
[81]
|
Tarney, J. (1976) Geochemistry of Archaean High-Grade Gneisses, with Implications as to the Origin and Evolution of the Precambrian Crust. In: Windley, B.F. Ed., The Early History of the Earth, Wiley, 405-424.
|