[1]
|
A. Joseph, Paradiso, and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Computing, Vol. 4, Issue 1, pp.18–27, 2005.
|
[2]
|
R. Stephen, Platt, S. Farritor, and H. Haider, “On low- frequency electric power generation with PZT ceramics,” IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 2, pp. 240–252, 2005.
|
[3]
|
T. Starner, “Thick clients for personal wireless devices,” IEEE Computer, Vol. 35, No. 1, pp.133–135, 2002.
|
[4]
|
S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart material and Structures, Vol. 16, No. 3, pp. 1–21, 2007.
|
[5]
|
J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, “Parasitic power harvesting in shoes,” Proceeding of the Second IEEE International Conference on Wearable Computing (ISWC), pp. 132–139, 1998.
|
[6]
|
R. P. Stephen, S. Farritor, K. Garvin, and H. Haider, “The use of piezoelectric ceramics for electric power generation within orthopedic implants,” IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 4, pp. 455–461, 2005.
|
[7]
|
S. Priya, “Modeling of electric energy harvesting using piezoelectric windmill,” Applied Physics Letters, Vol. 87, No. 18, 184101–1–3, 2005.
|
[8]
|
H. A. Sodano, G, Park and D. J. Inman, “Estimation of electric charge output for piezoelectric energy harvesting,” Blackwell Publishing Ltd, Vol. 40, No. 2, pp. 49–58, 2004.
|
[9]
|
H. C. Kim, H. C. Song, D.-Y. Jeong, H.-J. Kim, S.-J. Yoon, and B. K. Ju, “Frequency tuning of unimorph cantilever for piezoelectric energy harvesting,” Korean Journal of Materials Research, Vol. 17, No. 12, 660–663, 2007.
|