[1]
|
Ayala, A., Muñoz, M.F. and Argüelles, S. (2014) Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 360438. https://doi.org/10.1155/2014/360438
|
[2]
|
Berliner, J.A. and Heinecke, J.W. (1996) The Role of Oxidized Lipoproteins in Atherogenesis. Free Radical Biology and Medicine, 20, 707-727. https://doi.org/10.1016/0891-5849(95)02173-6
|
[3]
|
Gianazza, E., Brioschi, M., Martinez Fernandez, A., Casalnuovo, F., Altomare, A., Aldini, G., et al. (2021) Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxidants & Redox Signaling, 34, 49-98. https://doi.org/10.1089/ars.2019.7955
|
[4]
|
Lee, J., Shin, D. and Roh, J. (2023) Lipid Metabolism Alterations and Ferroptosis in Cancer: Paving the Way for Solving Cancer Resistance. European Journal of Pharmacology, 941, Article ID: 175497. https://doi.org/10.1016/j.ejphar.2023.175497
|
[5]
|
Khan, M., Nouman, M., Hashim, H., Latif, S., Husain, S., Sattar, S., et al. (2023) A Correlation Biomarker between BMI and Lipid Peroxidation in Type 2 Diabetes Mellitus with and without Other Complications. Biological and Clinical Sciences Research Journal, 2023, 253. https://doi.org/10.54112/bcsrj.v2023i1.253
|
[6]
|
Simonian, N.A. and Coyle, J.T. (1996) Oxidative Stress in Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 36, 83-106. https://doi.org/10.1146/annurev.pa.36.040196.000503
|
[7]
|
Wang, Y., Xu, E., Musich, P.R. and Lin, F. (2019) Mitochondrial Dysfunction in Neurodegenerative Diseases and the Potential Countermeasure. CNS Neuroscience & Therapeutics, 25, 816-824. https://doi.org/10.1111/cns.13116
|
[8]
|
Nasery, M., Hassanzadeh, M.K., Najaran, Z.T. and Emami, S.A. (2016) Rose (Rosa × damascena Mill.) Essential Oils. In: Preedy, V.R., Ed., Essential Oils in Food Preservation, Flavor and Safety, Elsevier, 659-665. https://doi.org/10.1016/b978-0-12-416641-7.00075-4
|
[9]
|
Gonçalves-Filho, D. and De Souza, D. (2022) Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules, 27, Article No. 7137. https://doi.org/10.3390/molecules27207137
|
[10]
|
Liu, R. and Mabury, S.A. (2018) Synthetic Phenolic Antioxidants and Transformation Products in Human Sera from United States Donors. Environmental Science & Technology Letters, 5, 419-423. https://doi.org/10.1021/acs.estlett.8b00223
|
[11]
|
Felter, S.P., Zhang, X. and Thompson, C. (2021) Butylated Hydroxyanisole: Carcinogenic Food Additive to Be Avoided or Harmless Antioxidant Important to Protect Food Supply? Regulatory Toxicology and Pharmacology, 121, Article ID: 104887. https://doi.org/10.1016/j.yrtph.2021.104887
|
[12]
|
Lourenço, S.C., Moldão-Martins, M. and Alves, V.D. (2019) Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 24, Article No. 4132. https://doi.org/10.3390/molecules24224132
|
[13]
|
Fernández-López, J., Lucas-González, R., Viuda-Martos, M., Sayas-Barberá, E., Navarro, C., Haros, C.M., et al. (2019) Chia (Salvia hispanica L.) Products as Ingredients for Reformulating Frankfurters: Effects on Quality Properties and Shelf-Life. Meat Science, 156, 139-145. https://doi.org/10.1016/j.meatsci.2019.05.028
|
[14]
|
Guzmán, D.C., Brizuela, N.O., Mejía, G.B., Olguín, H.J., Reyes, L.S., Pereza, A.V., et al. (2019) Effect of Cardioxane and Selenium on Lipoperoxidation and Levels of Dopamine in Rat Brain and Heart. Neuroscience and Medicine, 10, 354-368. https://doi.org/10.4236/nm.2019.104026
|
[15]
|
Rahaman, M.M., Hossain, R., Herrera‐Bravo, J., Islam, M.T., Atolani, O., Adeyemi, O.S., et al. (2023) Natural Antioxidants from Some Fruits, Seeds, Foods, Natural Products, and Associated Health Benefits: An Update. Food Science & Nutrition, 11, 1657-1670. https://doi.org/10.1002/fsn3.3217
|
[16]
|
Gouvêa, F.d.J., de Oliveira, V.S., Mariano, B.J., Takenaka, N.A.R., Gamallo, O.D., da Silva Ferreira, M., et al. (2023) Natural Antioxidants as Strategy to Minimize the Presence of Lipid Oxidation Products in Canned Fish: Research Progress, Current Trends and Future Perspectives. Food Research International, 173, Article ID: 113314. https://doi.org/10.1016/j.foodres.2023.113314
|
[17]
|
Fernández-López, J., Ponce-Martínez, A.J., Rodríguez-Párraga, J., Solivella-Poveda, A.M., Fernández-López, J.A., Viuda-Martos, M., et al. (2023) Beetroot Juices as Colorant in Plant-Based Minced Meat Analogues: Color, Betalain Composition and Antioxidant Activity as Affected by Juice Type. Food Bioscience, 56, Article ID: 103156. https://doi.org/10.1016/j.fbio.2023.103156
|
[18]
|
Amensour, M., Sendra, E., Pérez-Alvarez, J.A., Skali-Senhaji, N., Abrini, J. and Fernández-López, J. (2010) Antioxidant Activity and Chemical Content of Methanol and Ethanol Extracts from Leaves of Rockrose (Cistus ladaniferus). Plant Foods for Human Nutrition, 65, 170-178. https://doi.org/10.1007/s11130-010-0168-2
|
[19]
|
Gad, A.S. and Sayd, A.F. (2015) Antioxidant Properties of Rosemary and Its Potential Uses as Natural Antioxidant in Dairy Products—A Review. Food and Nutrition Sciences, 6, 179-193. https://doi.org/10.4236/fns.2015.61019
|
[20]
|
Surai, P.F. (2013) Polyphenol Compounds in the Chicken/Animal Diet: From the Past to the Future. Journal of Animal Physiology and Animal Nutrition, 98, 19-31. https://doi.org/10.1111/jpn.12070
|
[21]
|
Martins, N., Barros, L. and Ferreira, I.C.F.R. (2016) In Vivo Antioxidant Activity of Phenolic Compounds: Facts and Gaps. Trends in Food Science & Technology, 48, 1-12. https://doi.org/10.1016/j.tifs.2015.11.008
|
[22]
|
Belakhdar, J. (1997) La pharmacopée marocaine traditionnelle. Médecine arabe an-cienne et savoirs populaires. IBIS.
|
[23]
|
Youbi, A., Ouahidi, I., Mansouri, L., Daoudi, A. and Bousta, D. (2016) Ethnopharmacological Survey of Plants Used for Immunological Diseases in Four Regions of Morocco. European Journal of Medicinal Plants, 13, 1-24. https://doi.org/10.9734/ejmp/2016/12946
|
[24]
|
Morales-Soto, A., Oruna-Concha, M.J., Elmore, J.S., Barrajón-Catalán, E., Micol, V., Roldán, C., et al. (2015) Volatile Profile of Spanish Cistus Plants as Sources of Antimicrobials for Industrial Applications. Industrial Crops and Products, 74, 425-433. https://doi.org/10.1016/j.indcrop.2015.04.034
|
[25]
|
Guimarães, R., Sousa, M.J. and Ferreira, I.C.F.R. (2010) Contribution of Essential Oils and Phenolics to the Antioxidant Properties of Aromatic Plants. Industrial Crops and Products, 32, 152-156. https://doi.org/10.1016/j.indcrop.2010.04.011
|
[26]
|
Barrajón‐Catalán, E., Fernández‐Arroyo, S., Roldán, C., Guillén, E., Saura, D., Segura‐Carretero, A., et al. (2011) A Systematic Study of the Polyphenolic Composition of Aqueous Extracts Deriving from Several Cistus Genus Species: Evolutionary Relationship. Phytochemical Analysis, 22, 303-312. https://doi.org/10.1002/pca.1281
|
[27]
|
Tomás-Menor, L., Morales-Soto, A., Barrajón-Catalán, E., Roldán-Segura, C., Segura-Carretero, A. and Micol, V. (2013) Correlation between the Antibacterial Activity and the Composition of Extracts Derived from Various Spanish Cistus Species. Food and Chemical Toxicology, 55, 313-322. https://doi.org/10.1016/j.fct.2013.01.006
|
[28]
|
Lukas, B., Jovanovic, D., Schmiderer, C., Kostas, S., Kanellis, A., Gómez Navarro, J., et al. (2021) Intraspecific Genetic Diversity of Cistus creticus L. and Evolutionary Relationships to Cistus albidus L. (Cistaceae): Meeting of the Generations? Plants, 10, Article No. 1619. https://doi.org/10.3390/plants10081619
|
[29]
|
Mastino, P.M., Marchetti, M., Costa, J., Juliano, C. and Usai, M. (2021) Analytical Profiling of Phenolic Compounds in Extracts of Three Cistus Species from Sardinia and Their Potential Antimicrobial and Antioxidant Activity. Chemistry & Biodiversity, 18, e2100053. https://doi.org/10.1002/cbdv.202100053
|
[30]
|
Mastino, P.M., Marchetti, M., Costa, J. and Usai, M. (2016) Comparison of Essential Oils from Cistus Species Growing in Sardinia. Natural Product Research, 31, 299-307. https://doi.org/10.1080/14786419.2016.1236095
|
[31]
|
Abu-Orabi, S.T., Al-Qudah, M.A., Saleh, N.R., Bataineh, T.T., Obeidat, S.M., Al-Sheraideh, M.S., et al. (2020) Antioxidant Activity of Crude Extracts and Essential Oils from Flower Buds and Leaves of Cistus creticus and Cistus salviifolius. Arabian Journal of Chemistry, 13, 6256-6266. https://doi.org/10.1016/j.arabjc.2020.05.043
|
[32]
|
Rebaya, A., Igueld Belghith, S., Baghdikian, B., Leddet, V.M., Mabrouki, F., Olivier, E., Cherif, J. and Ayadi, M. (2015) Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium halimifolium (Cistaceae). Journal of Applied Pharmaceutical Science, 5, 52-57.
|
[33]
|
Karim, H., Boubaker, H., Askarne, L., Talibi, I., Msanda, F., Boudyach, E.H., et al. (2015) Antifungal Properties of Organic Extracts of Eight Cistus L. Species against Postharvest Citrus Sour Rot. Letters in Applied Microbiology, 62, 16-22. https://doi.org/10.1111/lam.12507
|
[34]
|
Fokialakis, N., Kalpoutzakis, E., Tekwani, B.L., Khan, S.I., Kobaisy, M., Skaltsounis, A.L., et al. (2006) Evaluation of the Antimalarial and Antileishmanial Activity of Plants from the Greek Island of Crete. Journal of Natural Medicines, 61, 38-45. https://doi.org/10.1007/s11418-006-0013-y
|
[35]
|
Sayah, K., Chemlal, L., Marmouzi, I., El Jemli, M., Cherrah, Y. and Faouzi, M.E.A. (2017) In Vivo Anti-Inflammatory and Analgesic Activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aqueous Extracts. South African Journal of Botany, 113, 160-163. https://doi.org/10.1016/j.sajb.2017.08.015
|
[36]
|
Vitali, F., Pennisi, G., Attaguile, G., Savoca, F. and Tita, B. (2011) Antiproliferative and Cytotoxic Activity of Extracts from Cistus incanus L. and Cistus monspeliensis L. on Human Prostate Cell Lines. Natural Product Research, 25, 188-202. https://doi.org/10.1080/14786410802583148
|
[37]
|
Sayah, K., Marmouzi, I., Naceiri Mrabti, H., Cherrah, Y. and Faouzi, M.E.A. (2017) Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. BioMed Research International, 2017, Article ID: 2789482. https://doi.org/10.1155/2017/2789482
|
[38]
|
AOCS (1990) Official Methods and Recommended Practices of the American Oil Chemists Society. 4th Edition, American Oil Chemists Society.
|
[39]
|
Sakanaka, S., Tachibana, Y. and Okada, Y. (2005) Preparation and Antioxidant Properties of Extracts of Japanese Persimmon Leaf Tea (Kakinoha-Cha). Food Chemistry, 89, 569-575. https://doi.org/10.1016/j.foodchem.2004.03.013
|
[40]
|
Blois, M.S. (1958) Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
|
[41]
|
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
|
[42]
|
Oyaizu, M. (1986) Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. The Japanese Journal of Nutrition and Dietetics, 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
|
[43]
|
Decker, E.A. and Welch, B. (1990) Role of Ferritin as a Lipid Oxidation Catalyst in Muscle Food. Journal of Agricultural and Food Chemistry, 38, 674-677. https://doi.org/10.1021/jf00093a019
|
[44]
|
Kuppusamy, U.R., Indran, M. and Balraj, B.R.S. (2002) Antioxidant Effects of Local Fruits and Vegetable Extracts. Journal of Tropical Medicinal Plants, 3, 47-53.
|
[45]
|
Dapkevicius, A., Venskutonis, R., van Beek, T.A. and Linssen, J.P.H. (1998) Antioxidant Activity of Extracts Obtained by Different Isolation Procedures from Some Aromatic Herbs Grown in Lithuania. Journal of the Science of Food and Agriculture, 77, 140-146. https://doi.org/10.1002/(sici)1097-0010(199805)77:1<140::aid-jsfa18>3.0.co;2-k
|
[46]
|
Bhebhe, M., Füller, T.N., Chipurura, B. and Muchuweti, M. (2015) Effect of Solvent Type on Total Phenolic Content and Free Radical Scavenging Activity of Black Tea and Herbal Infusions. Food Analytical Methods, 9, 1060-1067. https://doi.org/10.1007/s12161-015-0270-z
|
[47]
|
Sepahpour, S., Selamat, J., Abdul Manap, M., Khatib, A. and Abdull Razis, A. (2018) Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules, 23, Article No. 402. https://doi.org/10.3390/molecules23020402
|
[48]
|
Venkatesan, T., Choi, Y. and Kim, Y. (2019) Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract. BioMed Research International, 2019, Article ID: 3520675. https://doi.org/10.1155/2019/3520675
|
[49]
|
Shakun, A.S., Vorobyova, V.I., Chygyrynets, O.E. and Skiba, M.I. (2020) Influence of Solvent on the Component Composition and Antioxidant Properties of Apricot Cake (Prunus armeniaca L.) Extracts. Journal of Chemistry, 2020, Article ID: 2913454. https://doi.org/10.1155/2020/2913454
|
[50]
|
Kaczorová, D., Karalija, E., Dahija, S., Bešta-Gajević, R., Parić, A. and Ćavar Zeljković, S. (2021) Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules, 26, Article No. 1601. https://doi.org/10.3390/molecules26061601
|
[51]
|
Banica, F., Bungau, S., Tit, D.M., Behl, T., Otrisal, P., Nechifor, A.C., et al. (2020) Determination of the Total Polyphenols Content and Antioxidant Activity of Echinacea Purpurea Extracts Using Newly Manufactured Glassy Carbon Electrodes Modified with Carbon Nanotubes. Processes, 8, Article No. 833. https://doi.org/10.3390/pr8070833
|
[52]
|
Quyen, N.T.C., Quyen, N.T.N., Nhan, L.T.H. and Toan, T.Q. (2020) Antioxidant Activity, Total Phenolics and Flavonoids Contents of Pandanus amaryllifolius (Roxb.). IOP Conference Series: Materials Science and Engineering, 991, Article ID: 012019. https://doi.org/10.1088/1757-899x/991/1/012019
|
[53]
|
Khiya, Z., Oualcadi, Y., Gamar, A., Berrekhis, F., Zair, T. and Hilali, F.E. (2021) Correlation of Total Polyphenolic Content with Antioxidant Activity of Hydromethanolic Extract and Their Fractions of the Salvia Officinalis Leaves from Different Regions of Morocco. Journal of Chemistry, 2021, Article ID: 8585313. https://doi.org/10.1155/2021/8585313
|
[54]
|
Motolinia-Alcántara, E.A., Franco-Vásquez, A.M., Nieto-Camacho, A., Arreguín-Espinosa, R., Rodríguez-Monroy, M., Cruz-Sosa, F., et al. (2023) Phenolic Compounds from Wild Plant and in Vitro Cultures of Ageratina pichichensis and Evaluation of Their Antioxidant Activity. Plants, 12, Article No. 1107. https://doi.org/10.3390/plants12051107
|
[55]
|
Koraqi, H., Petkoska, A.T., Khalid, W., Sehrish, A., Ambreen, S. and Lorenzo, J.M. (2023) Optimization of the Extraction Conditions of Antioxidant Phenolic Compounds from Strawberry Fruits (Fragaria X ananassa Duch.) Using Response Surface Methodology. Food Analytical Methods, 16, 1030-1042. https://doi.org/10.1007/s12161-023-02469-6
|
[56]
|
Zaitun Hasibuan, P.A. and Mardiana (2018) Antioxidant Activity of N-Hexane, Ethyl Acetate and Ethanol Extract from Lakoocha Leaves (Artocarpus lacucha Buch.-Ham.) Using DPPH Method. Indonesian Journal of Pharmaceutical and Clinical Research, 1, 41-47. https://doi.org/10.32734/idjpcr.v1i2.433
|
[57]
|
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., et al. (2022) Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules, 27, Article No. 1326. https://doi.org/10.3390/molecules27041326
|
[58]
|
Gulcin, İ. and Alwasel, S.H. (2023) DPPH Radical Scavenging Assay. Processes, 11, Article No. 2248. https://doi.org/10.3390/pr11082248
|
[59]
|
Ilyasov, I.R., Beloborodov, V.L., Selivanova, I.A. and Terekhov, R.P. (2020) ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. International Journal of Molecular Sciences, 21, Article No. 1131. https://doi.org/10.3390/ijms21031131
|
[60]
|
Mira, L., Silva, M., Rocha, R. and Manso, C.F. (1999) Measurement of Relative Antioxidant Activity of Compounds: A Methodological Note. Redox Report, 4, 69-74. https://doi.org/10.1179/135100099101534666
|
[61]
|
Chung, Y., Chang, C., Chao, W., Lin, C. and Chou, S. (2002) Antioxidative Activity and Safety of the 50 Ethanolic Extract from Red Bean Fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 50, 2454-2458. https://doi.org/10.1021/jf011369q
|
[62]
|
Govindan, P. and Muthukrishnan, S. (2013) Evaluation of Total Phenolic Content and Free Radical Scavenging Activity of Boerhavia erecta. Journal of Acute Medicine, 3, 103-109. https://doi.org/10.1016/j.jacme.2013.06.003
|
[63]
|
Liu, Y., Wen, F., Yang, H., Bao, L., Zhao, Z. and Zhong, Z. (2022) The Preparation and Antioxidant Activities of Three Phenyl-Acylchitooligosaccharides. Heliyon, 8, e10624. https://doi.org/10.1016/j.heliyon.2022.e10624
|
[64]
|
Chaves, N., Santiago, A. and Alías, J.C. (2020) Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants, 9, Article No. 76. https://doi.org/10.3390/antiox9010076
|
[65]
|
Kalinowska, M., Płońska, A., Trusiak, M., Gołębiewska, E. and Gorlewska-Pietluszenko, A. (2022) Comparing the Extraction Methods, Chemical Composition, Phenolic Contents and Antioxidant Activity of Edible Oils from Cannabis sativa and Silybum marianum Seeds. Scientific Reports, 12, Article No. 20609. https://doi.org/10.1038/s41598-022-25030-7
|
[66]
|
Maliar, T., Maliarová, M., Blažková, M., Kunštek, M., Uváčková, Ľ., Viskupičová, J., et al. (2023) Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules, 28, Article No. 6890. https://doi.org/10.3390/molecules28196890
|
[67]
|
Ajiboye, B.O., Ojo, O.A., Oyinloye, B.E., Akuboh, O., Okesola, M.A., Idowu, O. and Kappo, A.P. (2020) In Vitro Antioxidant and Inhibitory Activities of Polyphenolic-Rich Extracts of Syzygium cumini (Linn) Skeels Leaf on Two Important Enzymes Relevant to Type II Diabetes Mellitus. Pakistan Journal of Pharmaceutical Sciences, 33, 523-529. https://doi.org/10.36721/PJPS.2020.33.2.REG.523-529.1.
|
[68]
|
Kumar, S., Krishna Chaitanya, R. and Preedy, V.R. (2018) Assessment of Antioxidant Potential of Dietary Components. In: Preedy, V.R. and Watson, R.R., Eds., HIV/AIDS, Elsevier, 239-253. https://doi.org/10.1016/b978-0-12-809853-0.00020-1
|
[69]
|
Yao, Y., Liu, Y., Li, C., Huang, X., Zhang, X., Deng, P., et al. (2023) Effects of Rosemary Extract Supplementation in Feed on Growth Performance, Meat Quality, Serum Biochemistry, Antioxidant Capacity, and Immune Function of Meat Ducks. Poultry Science, 102, Article ID: 102357. https://doi.org/10.1016/j.psj.2022.102357
|
[70]
|
Kandyliari, A., Potsaki, P., Bousdouni, P., Kaloteraki, C., Christofilea, M., Almpounioti, K., et al. (2023) Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization. Antioxidants, 12, Article No. 500. https://doi.org/10.3390/antiox12020500
|
[71]
|
Manzoor, A., Yousuf, B., Pandith, J.A. and Ahmad, S. (2023) Plant-Derived Active Substances Incorporated as Antioxidant, Antibacterial or Antifungal Components in Coatings/Films for Food Packaging Applications. Food Bioscience, 53, Article ID: 102717. https://doi.org/10.1016/j.fbio.2023.102717
|
[72]
|
Kola, V. and Carvalho, I.S. (2023) Plant Extracts as Additives in Biodegradable Films and Coatings in Active Food Packaging. Food Bioscience, 54, Article ID: 102860. https://doi.org/10.1016/j.fbio.2023.102860
|
[73]
|
Kulisic, T., Radonic, A., Katalinic, V. and Milos, M. (2004) Use of Different Methods for Testing Antioxidative Activity of Oregano Essential Oil. Food Chemistry, 85, 633-640. https://doi.org/10.1016/j.foodchem.2003.07.024
|
[74]
|
Ahmadi, F., Kadivar, M. and Shahedi, M. (2007) Antioxidant Activity of Kelussia odoratissima Mozaff. in Model and Food Systems. Food Chemistry, 105, 57-64. https://doi.org/10.1016/j.foodchem.2007.03.056
|
[75]
|
Lelono, R.A.A., Tachibana, S. and Itoh, K. (2009) In Vitro Antioxidative Activities and Polyphenol Content of Eugenia Polyantha Wight Grown in Indonesia. Pakistan Journal of Biological Sciences, 12, 1564-1570. https://doi.org/10.3923/pjbs.2009.1564.1570
|
[76]
|
Laguerre, M., Bayrasy, C., Panya, A., Weiss, J., McClements, D.J., Lecomte, J., et al. (2014) What Makes Good Antioxidants in Lipid-Based Systems? The Next Theories Beyond the Polar Paradox. Critical Reviews in Food Science and Nutrition, 55, 183-201. https://doi.org/10.1080/10408398.2011.650335
|
[77]
|
Safaei-Ghomi, J., Ghadamib, M. and Batooli, H. (2010) Bioactivity of Methanol Extracts of Eucalyptus sargentii Maiden Cultivated in Iran. Digest Journal of Nanomaterials and Biostructures, 5, 859-863.
|
[78]
|
Shahidi, F. and Zhong, Y. (2011) Revisiting the Polar Paradox Theory: A Critical Overview. Journal of Agricultural and Food Chemistry, 59, 3499-3504. https://doi.org/10.1021/jf104750m
|
[79]
|
Kiokias, S. and Oreopoulou, V. (2022) Review on the Antioxidant Activity of Phenolics in O/W Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. Colloids and Interfaces, 6, Article No. 79. https://doi.org/10.3390/colloids6040079
|
[80]
|
Farooq, S., Abdullah, Zhang, H. and Weiss, J. (2021) A Comprehensive Review on Polarity, Partitioning, and Interactions of Phenolic Antioxidants at Oil-Water Interface of Food Emulsions. Comprehensive Reviews in Food Science and Food Safety, 20, 4250-4277. https://doi.org/10.1111/1541-4337.12792
|
[81]
|
Munteanu, I.G. and Apetrei, C. (2021) Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22, Article No. 3380. https://doi.org/10.3390/ijms22073380
|