Research on θ -Intuitionistic Fuzzy Homomorphism Theory

Abstract

Fuzzy homomorphism is an important research content of fuzzy group theory, different fuzzy mappings will produce different fuzzy homomorphisms. In this paper, the fuzzy homomorphism of groups is generalized. Firstly, the θ -intuitionistic fuzzy mapping is defined, and the θ -intuitionistic fuzzy homomorphism of groups is obtained. The properties of intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups are studied under the θ -intuitionistic fuzzy homomorphism of groups, and the fundamental theorem of θ -intuitionistic fuzzy homomorphism is proved.

Share and Cite:

Wang, Y. , Yan, Y. and Shang, X. (2024) Research on θ -Intuitionistic Fuzzy Homomorphism Theory. Journal of Applied Mathematics and Physics, 12, 3579-3589. doi: 10.4236/jamp.2024.1210213.

1. Introduction

In 1965, Zadeh proposed the concept of fuzzy subsets. It is a class of objects with continuous membership grades. Its set feature is to use a membership function to give each object a membership grade between 0 and 1 [1]. In 1971, Rosenfeld proposed the concept of fuzzy subgroups, which is of pioneering significance for the study of fuzzy algebraic structure [2]. In 2001, Yao obtained the concept of fuzzy homomorphism of groups by defining the concept of fuzzy mapping. He studied the properties of fuzzy subgroups and fuzzy normal subgroups under fuzzy homomorphism and proved the basic theorem of fuzzy homomorphism [3]. Different fuzzy mappings will produce different fuzzy homomorphisms. In 2014, Hao defined θ -fuzzy mappings and discussed the fuzzy homomorphisms generated by θ -fuzzy mappings on groups [4]. In 2018, Addis introduced the concept of fuzzy kernels of fuzzy homomorphisms on groups, proved that any fuzzy normal subgroup is a fuzzy kernel of some fuzzy epimorphism, and finally gave and proved the fuzzy version of the fundamental theorem of homomorphism and those isomorphism theorems [5].

In 1986, Atanassov proposed the concept of intuitionistic fuzzy subsets, which is a generalization of fuzzy subsets proposed by Zadeh [6]. In 1989, Biswas proposed the concept of intuitionistic fuzzy subgroups [7]. After that, the concepts of intuitionistic fuzzy normal subgroups, intuitionistic fuzzy cosets and intuitionistic fuzzy quotient groups are introduced and their related properties are studied [8]. In 2011, Sharma studied the related conclusions about intuitionistic fuzzy subgroups under group homomorphism [9]. In 2020, Adamu studied the properties of intuitionistic fuzzy multigroups under group homomorphism [10], Muhammad et al. proposed the concept of complex intuitionistic fuzzy subgroups and studied the homomorphic image and preimage of complex intuitionistic fuzzy subgroups under group homomorphism [11]. It can be seen that group homomorphism plays an important role in intuitionistic fuzzy theory. In recent years, the application of intuitionistic fuzzy information in multi-attribute group decision-making has also been an important research direction [12] [13]. Since the fuzzy homomorphism of groups has been widely studied in fuzzy group theory, there are few studies on the intuitionistic fuzzy homomorphism of groups. This paper attempts to generalize the fuzzy mapping, define the θ -intuitionistic fuzzy mapping, and further study the θ -intuitionistic fuzzy homomorphism of groups.

2. Preliminaries

Let G, G 1 , G 2 denote an arbitrary group with binary multiplication, whose identities are e, e 1 , e 2 respectively. The concepts of intuitionistic fuzzy subsets, intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups are given below.

Definition 2.1 [6] Let X be a non-empty set. An intuitionistic fuzzy subset A of X is A={ x, μ A ( x ), v A ( x ) |xX } , Where μ A ( x )[ 0,1 ] define the degree of membership element xX and v A ( x )[ 0,1 ] define the degree of non-membership of element xX , these functions must be satisfied the condition 0 μ A ( x )+ v A ( x )1 .

Definition 2.2 [6] An intuitionistic fuzzy subset A={ x, μ A ( x ), v A ( x ) |xX } of G is an intuitionistic fuzzy subgroup of G , if the following conditions hold:

1) μ A ( xy ) μ A ( x ) μ A ( y ) ;

2) μ A ( x 1 ) μ A ( x ) ;

3) v A ( xy ) v A ( x ) v A ( y ) ;

4) v A ( x 1 ) v A ( x ),x,yG .

Equivalently, an intuitionistic fuzzy subset A of G is an intuitionistic fuzzy subgroup of G if μ A ( x y 1 ) μ A ( x ) μ A ( y ) and v A ( x y 1 ) v A ( x ) v A ( y ) holds for x,y G .

Definition 2.3 [7] Let A be an intuitionistic fuzzy subgroup of G , if for x,yG , μ A ( xy x 1 ) μ A ( y ) , v A ( xy x 1 ) v A ( y ) , then A is said to be an intuitionistic fuzzy normal subgroup of G .

Definition 2.4 [8] Let A be an intuitionistic fuzzy subgroup of G . Let xG be a fixed element. Then xA={ g, μ xA ( g ), v xA ( g ) |gG } where μ xA ( g )= μ A ( x 1 g ) and v xA ( g )= v A ( x 1 g ) for gG is called intuitionistic fuzzy left coset of G determined by A and x . Similarly, Ax={ g, μ Ax ( g ), v Ax ( g ) |gG } where μ Ax ( g )= μ A ( g x 1 ) and v Ax ( g )= v A ( g x 1 ) for gG is called intuitionistic fuzzy right coset of G determined by A and x .

Theorem 2.5 [8] Let A be an intuitionistic fuzzy normal subgroup of G, then G/A={ xA|xG } is a group with respect to the operation ( xA )( yA )=( xy )A , and the identity of G/A is A , the identity of xA is x 1 A .

3. θ -Intuitionistic Fuzzy Homomorphism

The classical mapping f from G 1 to G 2 can be considered as a special relation from G 1 to G 2 , that is f is a special subset of G 1 × G 2 . Therefore, the intuitionistic fuzzy mapping can be considered as the intuitionistic fuzzy relation from G 1 to G 2 , that is the intuitionistic fuzzy subset of G 1 × G 2 . The concept of θ -intuitionistic fuzzy mapping is given below.

Let θ=( θ 1 , θ 2 ) , where θ 1 , θ 2 [ 0,1 ] and 0 θ 1 + θ 2 1 , f is an intuitionistic fuzzy relation from G 1 to G 2 . The following conditions are considered:

(A) x G 1 ,y G 2 , such that μ f ( x,y ) θ 1 , v f ( x,y ) θ 2 ;

(B) y G 2 ,x G 1 , such that μ f ( x,y ) θ 1 , v f ( x,y ) θ 2 ;

(C) x G 1 , y 1 , y 2 G 2 , from μ f ( x, y 1 ) θ 1 , v f ( x, y 1 ) θ 2 ; μ f ( x, y 2 ) θ 1 , v f ( x, y 2 ) θ 2 , it follows that y 1 = y 2 ;

(D) x 1 , x 2 G 1 ,y G 2 , from μ f ( x 1 ,y ) θ 1 , v f ( x 1 ,y ) θ 2 ; μ f ( x 2 ,y ) θ 1 , v f ( x 2 ,y ) θ 2 , it follows that x 1 = x 2 .

Definition 3.1 Let f be an intuitionistic fuzzy relation from G 1 to G 2 . If Conditions (A), (C) are satisfied, then f is called a θ -intuitionistic fuzzy mapping from G 1 to G 2 ; if Conditions (A), (B), (C) are satisfied, then f is called a θ -intuitionistic fuzzy surjection; if Conditions (A), (C), (D) are satisfied, then f is called θ -intuitionistic fuzzy injective; if Conditions (A)-(D) are satisfied, then f is called a θ -intuitionistic fuzzy bijection.

When f is a θ -intuitionistic fuzzy mapping from G 1 to G 2 , for x G 1 , there exists a unique y G 2 such that μ f ( x,y ) θ 1 , v f ( x,y ) θ 2 holds, denote this y as y x .

Definition 3.2 Let f be a θ -intuitionistic fuzzy mapping from G 1 to G 2 , if for x 1 , x 2 G 1 ,y G 2 , μ f ( x 1 x 2 ,y )=sup{ μ f ( x 1 , y 1 ) μ f ( x 2 , y 2 )|y= y 1 y 2 } , v f ( x 1 x 2 ,y )=inf{ v f ( x 1 , y 1 ) v f ( x 2 , y 2 )|y= y 1 y 2 } , then f is called a θ -intuitionistic fuzzy homomorphism from G 1 to G 2 , for short θ -intuitionistic fuzzy homomorphism.

If a θ -intuitionistic fuzzy homomorphism f from G 1 to G 2 is a θ -intuitionistic fuzzy surjective, then f is called a θ -intuitionistic fuzzy epimorphism from G 1 to G 2 ; if a θ -intuitionistic fuzzy homomorphism f from G 1 to G 2 is a θ -intuitionistic fuzzy bijection, then f is called a θ -intuitionistic fuzzy isomorphism from G 1 to G 2 .

If there exists a θ -intuitionistic fuzzy epimorphism from G 1 to G 2 , then G 1 and G 2 are θ -intuitionistic fuzzy homomorphism. If there exists a θ -intuitionistic fuzzy isomorphism from G 1 to G 2 , then G 1 and G 2 are said to be θ -intuitionistic fuzzy isomorphism.

Theorem 3.3 Let f: G 1 G 2 be a θ -intuitionistic fuzzy homomorphism, then

1) μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 ; μ f ( x 2 , y 2 ) θ 1 , v f ( x 2 , y 2 ) θ 2 μ f ( x 1 x 2 , y 1 y 2 ) θ 1 , v f ( x 1 x 2 , y 1 y 2 ) θ 2 ;

2) μ f ( e 1 , e 2 ) θ 1 , v f ( e 1 , e 2 ) θ 2 ;

3) μ f ( x,y ) θ 1 , v f ( x,y ) θ 2 μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 ;

4) y x 1 x 2 = y x 1 y x 2 ;

5) ( y x ) 1 = y x 1 .

Proof: 1) Since μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 ; μ f ( x 2 , y 2 ) θ 1 , v f ( x 2 , y 2 ) θ 2 , we can get μ f ( x 1 x 2 , y 1 y 2 ) μ f ( x 1 , y 1 ) μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 x 2 , y 1 y 2 ) v f ( x 1 , y 1 ) v f ( x 2 , y 2 ) θ 2 .

2) Let y G 2 satisfies μ f ( e 1 ,y ) θ 1 , v f ( e 1 ,y ) θ 2 , then μ f ( e 1 ,yy )= μ f ( e 1 e 1 ,yy ) θ 1 , v f ( e 1 ,yy )= v f ( e 1 e 1 ,yy ) θ 2 , so yy=y , i.e., y = e2, hence, μ f ( e 1 , e 2 ) θ 1 , v f ( e 1 , e 2 ) θ 2 .

3) Let μ f ( x,y ) θ 1 , v f ( x,y ) θ 2 , and suppose there exists z G 2 that satisfies μ f ( x 1 ,z ) θ 1 , v f ( x 1 ,z ) θ 2 , then μ f ( e 1 ,yz )= μ f ( x x 1 ,yz ) θ 1 , v f ( e 1 ,yz )= v f ( x x 1 ,yz ) θ 2 , which is equivalent to yz= e 2 , also z= y 1 , so μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 .

4) Because of μ f ( x 1 , y x 1 ) θ 1 , v f ( x 1 , y x 1 ) θ 2 , μ f ( x 2 , y x 2 ) θ 1 , v f ( x 2 , y x 2 ) θ 2 , we can conclude μ f ( x 1 x 2 , y x 1 y x 2 ) θ 1 , v f ( x 1 x 2 , y x 1 y x 2 ) θ 2 , also μ f ( x 1 x 2 , y x 1 x 2 ) θ 1 , v f ( x 1 x 2 , y x 1 x 2 ) θ 2 , therefore y x 1 x 2 = y x 1 y x 2 .

5) Because μ f ( x, y x ) θ 1 , v f ( x, y x ) θ 2 , then μ f ( x 1 , ( y x ) 1 ) θ 1 , v f ( x 1 , ( y x ) 1 ) θ 2 can be obtained, also μ f ( x 1 , y x 1 ) θ 1 , v f ( x 1 , y x 1 ) θ 2 , hence ( y x ) 1 = y x 1 .

Theorem 3.4 Let f be a θ -intuitionistic fuzzy homomorphism, then.

1) N=kerf={ x G 1 | μ f ( x, e 2 ) θ 1 , v f ( x, e 2 ) θ 2 } is a normal subgroup of G 1 , and N is called the kernel of θ -intuitionistic fuzzy homomorphism f ;

2) If f is a θ -intuitionistic fuzzy epimorphism, then G 1 /N G 2 .

Proof: 1) Obviously e 1 N , let x 1 , x 2 N , then μ f ( x 1 , e 2 ) θ 1 , v f ( x 1 , e 2 ) θ 2 , μ f ( x 2 , e 2 ) θ 1 , v f ( x 2 , e 2 ) θ 2 , therefore μ f ( x 1 1 , e 2 )= μ f ( x 1 1 , e 2 1 ) θ 1 , v f ( x 1 1 , e 2 )= v f ( x 1 1 , e 2 1 ) θ 2 ; μ f ( x 1 x 2 , e 2 )= μ f ( x 1 x 2 , e 2 e 2 ) θ 1 , v f ( x 1 x 2 , e 2 )= v f ( x 1 x 2 , e 2 e 2 ) θ 2 i.e., x 1 1 N , x 1 x 2 N , N is a subgroup of G 1 . Let x 1 N , x G 1 , then μ f ( x 1 , e 2 ) θ 1 , v f ( x 1 , e 2 ) θ 2 , and there exists y G 2 such that μ f ( x,y ) θ 1 , v f ( x,y ) θ 2 , we can get μ f ( x x 1 ,y e 2 ) θ 1 , v f ( x x 1 ,y e 2 ) θ 2 . Also because μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 , so μ f ( x x 1 x 1 ,y e 2 y 1 ) θ 1 , v f ( x x 1 x 1 ,y e 2 y 1 ) θ 2 , i.e., x x 1 x 1 N , so N is a normal subgroup of G 1 .

2) Let g: G 1 /N G 2 ,g( xN )= y x ,x G 1 , Since

x 1 N= x 2 N x 1 1 x 2 N μ f ( x 1 1 x 2 , e 2 ) θ 1 , v f ( x 1 1 x 2 , e 2 ) θ 2 y x 1 1 x 2 = e 2 ( y x 1 ) 1 y x 2 = e 2 y x 1 = y x 2

Then g is a mapping. In turn, since

y x 1 = y x 2 ( y x 1 ) 1 y x 2 = e 2 y x 1 1 x 2 = e 2 μ f ( x 1 1 x 2 , e 2 ) θ 1 , v f ( x 1 1 x 2 , e 2 ) θ 2 x 1 1 x 2 N x 1 N= x 2 N

So, g is a injective. Moreover, because f is a θ -intuitionistic fuzzy epimorphism, g is a surjective, therefore g is a bijective. For x 1 , x 2 G , g( ( x 1 N )( x 2 N ) )=g( x 1 x 2 N )= y x 1 x 2 = y x 1 y x 2 =g( x 1 N )g( x 2 N ) , so g is an isomorphic mapping, hence G 1 /N G 2 .

Theorem 3.5 Let f be a θ -intuitionistic fuzzy homomorphism, then

1) If A is an intuitionistic fuzzy subgroup of G 1 , then f( A ) is an intuitionistic fuzzy subgroup of G 2 ;

2) If A is an intuitionistic fuzzy normal subgroup of G 1 , and f is θ -intuitionistic fuzzy homomorphism epimorphism, then f( A ) is an intuitionistic fuzzy normal subgroup of G 2 ;

3) If B is an intuitionistic fuzzy subgroup of G 2 , then f 1 ( B ) is an intuitionistic fuzzy subgroup of G 1 ;

4) If B is an intuitionistic fuzzy normal subgroup of G 2 , then f 1 ( B ) is an intuitionistic fuzzy normal subgroup of G 1 , where

f( A )( y )=( μ f( A ) ( y ), v f( A ) ( y ) ) , f 1 ( B )=( μ f 1 ( B ) ( x ), v f 1 ( B ) ( x ) ) .

μ f( A ) ( y )={ sup{ μ A ( x )| μ f ( x,y ) θ 1 },x G 1 , μ f ( x,y ) θ 1 0,x G 1 , μ f ( x,y )< θ 1 ,y G 2

v f( A ) ( y )={ inf{ v A ( x )| v f ( x,y ) θ 2 },x G 1 , v f ( x,y ) θ 2 1,x G 1 , v f ( x,y )> θ 2 ,y G 2

μ f 1 ( B ) ( x )= μ B ( y x ), v f 1 ( B ) ( x )= v B ( y x )

Proof: 1) For y 1 , y 2 G 2 , if there is no x 1 G 1 such that μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 , or there is no x 2 G 2 such that μ f ( x 2 , y 2 ) θ 1 , v f ( x 2 , y 2 ) θ 2 , then μ f( A ) ( y 1 1 y 2 )0= μ f( A ) ( y 1 ) μ f( A ) ( y 2 ) , v f( A ) ( y 1 1 y 2 )1= v f( A ) ( y 1 ) v f( A ) ( y 2 ) , otherwise A is an intuitionistic fuzzy subgroup of G 1 , we can get

μ f( A ) ( y 1 1 y 2 )=sup{ μ A ( x 1 1 x 2 )| μ f ( x 1 1 x 2 , y 1 1 y 2 ) θ 1 } sup{ μ A ( x 1 ) μ A ( x 2 )| μ f ( x 1 , y 1 ) θ 1 , μ f ( x 2 , y 2 ) θ 1 } =sup{ μ A ( x 1 )| μ f ( x 1 , y 1 ) θ 1 }sup{ μ A ( x 2 )| μ f ( x 2 , y 2 ) θ 1 } = μ f( A ) ( y 1 ) μ f( A ) ( y 2 )

Similarly, it can be obtained v f( A ) ( y 1 1 y 2 ) v f( A ) ( y 1 ) v f( A ) ( y 2 ) , So f( A ) is an intuitionistic fuzzy subgroup of G 2 .

2) If A is an intuitionistic fuzzy normal subgroup of G 1 , it follows from 1) that f( A ) is an intuitionistic fuzzy subgroup of G 2 . Since f is θ -intuitionistic fuzzy epimorphism, so for y 1 , y 2 G 2 , x 1 , x 2 G 1 such that μ f ( x 1 , y 1 ) θ 1 , μ f ( x 2 , y 2 ) θ 1 , we can get

μ f( A ) ( y 1 y 2 y 1 1 )=sup{ μ A ( x 1 x 2 x 1 1 )| μ f ( x 1 x 2 x 1 1 , y 1 y 2 y 1 1 ) θ 1 } sup{ μ A ( x 2 )| μ f ( x 2 , y 2 ) θ 1 } = μ f( A ) ( y 2 )

Similarly, it can be obtained v f( A ) ( y 1 y 2 y 1 1 ) v f( A ) ( y 2 ) , So f( A ) is an intuitionistic fuzzy normal subgroup of G 2 .

3) For x 1 , x 2 G 1 , because B is an intuitionistic fuzzy subgroup of G 2 , we have

μ f 1 ( B ) ( x 1 1 x 2 )= μ B ( y x 1 1 x 2 )= μ B ( y x 1 1 y x 2 ) μ B ( y x 1 ) μ B ( y x 2 ) = μ f 1 ( B ) ( x 1 ) μ f 1 ( B ) ( x 2 )

Similarly, it can be obtained v f 1 ( B ) ( x 1 1 x 2 ) v f 1 ( B ) ( x 1 ) v f 1 ( B ) ( x 2 ) , So f 1 ( B ) is an intuitionistic fuzzy subgroup of G 1 .

4) If B is an intuitionistic fuzzy normal subgroup of G 2 , it follows from 3) that f 1 ( B ) is an intuitionistic fuzzy subgroup of G 1 . For x 1 , x 2 G 1 , we have

μ f 1 ( B ) ( x 1 x 2 x 1 1 )= μ B ( y x 1 x 2 x 1 1 )= μ B ( y x 1 y x 2 y x 1 1 ) μ B ( y x 2 )= μ f 1 ( B ) ( x 2 )

Similarly, it can be obtained v f 1 ( B ) ( x 1 x 2 x 1 1 ) v f 1 ( B ) ( x 2 ) , So f 1 ( B ) is an intuitionistic fuzzy normal subgroup of G 1 .

4. Fundamental Theorem of θ -Intuitionistic Fuzzy Homomorphism

Theorem 4.1 Let A be an intuitionistic fuzzy normal subgroup of G , then G and G/A are θ -intuitionistic fuzzy homomorphism, where θ=( θ 1 , θ 2 ) , θ 1 = μ A ( e ) , θ 2 = v A ( e ) .

Proof: Let f:GG/A , μ f ( x,y μ A )= μ A ( y 1 x ) , v f ( x,y v A )= v A ( y 1 x ) , x,yG . First, prove that f is an intuitionistic fuzzy relation, i.e., prove that y 1 A= y 2 A A( y 1 1 x )=A( y 2 1 x ) . From y 1 A= y 2 A we can get μ y 1 A ( x )= μ y 2 A ( x ) , v y 1 A ( x )= v y 2 A ( x ) , xG , then μ A ( y 1 1 x )= μ A ( y 2 1 x ) , v A ( y 1 1 x )= v A ( y 2 1 x ) , i.e., A( y 1 1 x )=A( y 2 1 x ) , so f is an intuitionistic fuzzy relation. In the following, we prove that f is a θ -intuitionistic fuzzy epimorphism, for xG , obviously μ f ( x,x μ A )= μ A ( x 1 x )= μ A ( e ) θ 1 , v f ( x,x v A )= v A ( x 1 x )= v A ( e ) θ 2 holds, so f satisfies Conditions (A) (B). If for xG , y 1 , y 2 G , satisfies μ f ( x, y 1 μ A ) θ 1 , v f ( x, y 1 v A ) θ 2 ; μ f ( x, y 2 μ A ) θ 1 , v f ( x, y 2 v A ) θ 2 , this implies that μ A ( y 1 1 x ) μ A ( e ) , v A ( y 1 1 x ) v A ( e ) , μ A ( y 2 1 x ) μ A ( e ) , v A ( y 2 1 x ) v A ( e ) , We can get μ A ( y 1 1 x )= μ A ( e ) , v A ( y 1 1 x )= v A ( e ) , μ A ( y 2 1 x )= μ A ( e ) , v A ( y 2 1 x )= v A ( e ) , So y 1 A=xA , y 2 A=xA i.e., y 1 A = y 2 A , f satisfies Condition (C), so f is a θ -intuitionistic fuzzy surjective from G to G/A . For x 1 , x 2 ,yG , if y 1 , y 2 G , such that yA=( y 1 A )( y 2 A )=( y 1 y 2 )A , then

μ f ( x 1 x 2 ,y μ A )= μ f ( x 1 x 2 ,( y 1 y 2 ) μ A )= μ A ( ( y 1 y 2 ) 1 x 1 x 2 ) = μ A ( y 2 1 x 2 x 2 1 y 1 1 x 1 x 2 ) μ A ( y 2 1 x 2 ) μ A ( x 2 1 y 1 1 x 1 x 2 ) μ f ( x 2 , y 2 μ A ) μ A ( y 1 1 x 1 ) = μ f ( x 2 , y 2 μ A ) μ f ( x 1 , y 1 μ A )

Similarly, it can be obtained v f ( x 1 x 2 ,y v A ) v f ( x 2 , y 2 v A ) v f ( x 1 , y 1 v A ) , we can get

μ f ( x 1 x 2 ,y μ A )sup{ μ f ( x 2 , y 2 μ A ) μ f ( x 1 , y 1 μ A )|y μ A =( y 1 μ A )( y 2 μ A ) }

v f ( x 1 x 2 ,y v A )inf{ v f ( x 2 , y 2 v A ) v f ( x 1 , y 1 v A )|y v A =( y 1 v A )( y 2 v A ) }

Also because of

sup{ μ f ( x 1 , y 1 μ A ) μ f ( x 2 , y 2 μ A )|y μ A =( y 1 μ A )( y 2 μ A ) } μ f ( x 1 , x 1 μ A ) μ f ( x 2 ,( x 1 1 y ) μ A )= μ A ( e ) μ A ( y 1 x 1 x 2 ) = μ A ( y 1 x 1 x 2 )= μ f ( x 1 x 2 ,y μ A )

Similarly, it can be obtained inf{ v f ( x 1 , y 1 v A ) v f ( x 2 , y 2 v A )|y v A =( y 1 v A )( y 2 v A ) } v f ( x 1 x 2 ,y v A ) , so

μ f ( x 1 x 2 ,y μ A )=sup{ μ f ( x 1 , y 1 μ A ) μ f ( x 2 , y 2 μ A )|y μ A =( y 1 μ A )( y 2 μ A ) }

v f ( x 1 x 2 ,y v A )=inf{ v f ( x 1 , y 1 v A ) v f ( x 2 , y 2 v A )|y v A =( y 1 v A )( y 2 v A ) }

Hence f:GG/A is a θ -intuitionistic fuzzy epimorphism, G and G/A are θ -intuitionistic fuzzy homomorphism.

Theorem 4.2 Let f: G 1 G 2 be a θ -intuitionistic fuzzy homomorphism, μ f ( e 1 , e 2 ) μ f ( x,y ) , v f ( e 1 , e 2 ) v f ( x,y ) , for x G 1 ,y G 2 , then

1) A is an intuitionistic fuzzy normal subgroup of G 1 , where μ A ( x )= μ f ( x, e 2 ) μ f ( x 1 , e 2 ) θ 1 , v A ( x )= v f ( x, e 2 ) v f ( x 1 , e 2 ) θ 2 , x G 1 ;

2) If f is a θ -intuitionistic fuzzy epimorphism, then G 1 /A and G 2 are θ -intuitionistic fuzzy isomorphic.

Proof: 1) For x,y G 1 , we have

μ A ( xy )= μ f ( xy, e 2 ) μ f ( ( xy ) 1 , e 2 ) θ 1 μ f ( x, e 2 ) μ f ( y, e 2 ) μ f ( y 1 , e 2 ) μ f ( x 1 , e 2 ) θ 1 =( μ f ( x, e 2 ) μ f ( x 1 , e 2 ) )( μ f ( y, e 2 ) μ f ( y 1 , e 2 ) ) θ 1

=( μ f ( x, e 2 ) μ f ( x 1 , e 2 ) θ 1 )( μ f ( y, e 2 ) μ f ( y 1 , e 2 ) θ 1 ) = μ A ( x ) μ A ( y )

Similarly, it can be obtained v A ( xy ) v A ( x ) v A ( y ) , and also have

μ A ( x 1 )= μ f ( x 1 , e 2 ) μ f ( x, e 2 ) θ 1 = μ A ( x )

v A ( x 1 )= v f ( x 1 , e 2 ) v f ( x, e 2 ) θ 2 = v A ( x )

Therefore A is an intuitionistic fuzzy subgroup of G 1 . Let A be an intuitionistic fuzzy normal subgroup of G 1 , and we have

μ A ( xy x 1 ) = μ f ( xy x 1 , e 2 ) μ f ( x y 1 x 1 , e 2 ) θ 1 μ f ( x, y x ) μ f ( y, e 2 ) μ f ( x 1 , y x 1 ) μ f ( x, y x ) μ f ( y 1 , e 2 ) μ f ( x 1 , y x 1 ) θ 1 = μ f ( x, y x ) μ f ( x 1 , y x 1 ) μ f ( y, e 2 ) μ f ( y 1 , e 2 ) θ 1 θ 1 θ 1 μ f ( y, e 2 ) μ f ( y 1 , e 2 ) θ 1 = μ f ( y, e 2 ) μ f ( y 1 , e 2 ) θ 1 = μ A ( y )

Similarly, v A ( xy x 1 ) v A ( y ) can be obtained, hence A is an intuitionistic fuzzy normal subgroup of G 1 .

2) Let h: G 1 /A G 2 , μ h ( x μ A ,y )= μ f ( x,y ) , v h ( x v A ,y )= v f ( x,y ) , x G 1 , y G 2 . First, prove that h is an intuitionistic fuzzy relation, i.e., x 1 A= x 2 A μ f ( x 1 ,y )= μ f ( x 2 ,y ) , v f ( x 1 ,y )= v f ( x 2 ,y ) . If x 1 A= x 2 A , then μ A ( x 2 1 x 1 )= μ A ( e 1 ) , v A ( x 2 1 x 1 )= v A ( e 1 ) . From μ A ( x 2 1 x 1 )= μ A ( e 1 ) we can get

μ f ( x 2 1 x 1 , e 2 ) μ f ( x 1 1 x 2 , e 2 )= μ f ( e 1 , e 2 ) μ f ( e 1 1 , e 2 ) μ f ( x 2 1 x 1 , e 2 ) μ f ( x 1 1 x 2 , e 2 )= μ f ( e 1 , e 2 ) μ f ( x 2 1 x 1 , e 2 )= μ f ( e 1 , e 2 ), μ f ( x 1 1 x 2 , e 2 )= μ f ( e 1 , e 2 )

Therefore

μ f ( x 1 ,y )= μ f ( x 2 x 2 1 x 1 ,y ) μ f ( x 2 ,y ) μ f ( x 2 1 x 1 , e 2 ) = μ f ( x 2 ,y ) μ f ( e 1 , e 2 )= μ f ( x 2 ,y )

Similarly, μ f ( x 2 ,y ) μ f ( x 1 ,y ) can be obtained, so we have μ f ( x 2 ,y )= μ f ( x 1 ,y ) . From v A ( x 2 1 x 1 )= v A ( e 1 ) , we can get

v f ( x 2 1 x 1 , e 2 ) v f ( x 1 1 x 2 , e 2 )= v f ( e 1 , e 2 ) v f ( e 1 1 , e 2 ) v f ( x 2 1 x 1 , e 2 ) v f ( x 1 1 x 2 , e 2 )= v f ( e 1 , e 2 ) v f ( x 2 1 x 1 , e 2 )= v f ( e 1 , e 2 ), v f ( x 2 1 x 1 , e 2 )= v f ( e 1 , e 2 )

Therefore

v f ( x 1 ,y )= v f ( x 2 x 2 1 x 1 ,y ) v f ( x 2 ,y ) v f ( x 2 1 x 1 , e 2 ) = v f ( x 2 ,y ) v f ( e 1 , e 2 )= v f ( x 2 ,y )

Similarly, v f ( x 2 ,y ) v f ( x 1 ,y ) can be obtained, so v f ( x 2 ,y )= v f ( x 1 ,y ) , this implies that h is an intuitionistic fuzzy relation. The following we prove h that is a θ -intuitionistic fuzzy isomorphism such that μ h ( x μ A , y x )= μ f ( x, y x ) θ 1 , v h ( x v A , y x )= v f ( x, y x ) θ 2 for x G 1 , y x G 2 . If x 1 A= x 2 A , y 1 , y 2 G 2 , then μ h ( x 1 μ A , y 1 ) θ 1 , v h ( x 1 v A , y 1 ) θ 2 , μ h ( x 2 μ A , y 2 ) θ 1 , v h ( x 2 v A , y 2 ) θ 2 , so μ f ( x 1 , y 1 ) θ 1 , v f ( x 1 , y 1 ) θ 2 , μ f ( x 2 , y 2 ) θ 1 , v f ( x 2 , y 2 ) θ 2 and

μ f ( x 1 1 , y 1 1 ) θ 1 , v f ( x 1 1 , y 1 1 ) θ 2 . From x 1 A= x 2 A we get e 1 μ A =( x 1 1 x 2 ) μ A , e 1 v A =( x 1 1 x 2 ) v A , therefore μ h ( e 1 μ A , y 1 1 y 2 )= μ h ( ( x 1 1 x 2 ) μ A , y 1 1 y 2 ) , v h ( e 1 v A , y 1 1 y 2 )= v h ( ( x 1 1 x 2 ) v A , y 1 1 y 2 ) , so we have

μ f ( e 1 , y 1 1 y 2 )= μ f ( x 1 1 x 2 , y 1 1 y 2 ) μ f ( x 1 1 , y 1 1 ) μ f ( x 2 , y 2 ) θ 1 θ 1 = θ 1

and

v f ( e 1 , y 1 1 y 2 )= v f ( x 1 1 x 2 , y 1 1 y 2 ) v f ( x 1 1 , y 1 1 ) v f ( x 2 , y 2 ) θ 2 θ 2 = θ 2

Then y 1 1 y 2 = e 2 , y 1 = y 2 , so h is a θ -intuitionistic fuzzy mapping, also because f is a θ -intuitionistic fuzzy epimorphism, so h is a θ -intuitionistic fuzzy surjection. If x 1 , x 2 G 1 , such that μ h ( x 1 μ A ,y ) θ 1 , v h ( x 1 v A ,y ) θ 2 , μ h ( x 2 μ A ,y ) θ 1 , v h ( x 2 v A ,y ) θ 2 , i.e., μ f ( x 1 ,y ) θ 1 , v f ( x 1 ,y ) θ 2 , μ f ( x 2 ,y ) θ 1 , v f ( x 2 ,y ) θ 2 , then μ f ( x 1 1 , y 1 ) θ 1 , v f ( x 1 1 , y 1 ) θ 2 , μ f ( x 2 1 , y 1 ) θ 1 , v f ( x 2 1 , y 1 ) θ 2 , therefore we have

μ f ( x 1 1 x 2 , e 2 )= μ f ( x 1 1 x 2 , y 1 y ) μ f ( x 1 1 , y 1 ) μ f ( x 2 ,y ) θ 1 θ 1 = θ 1

and

v f ( x 1 1 x 2 , e 2 )= v f ( x 1 1 x 2 , y 1 y ) v f ( x 1 1 , y 1 ) v f ( x 2 ,y ) θ 2 θ 2 = θ 2

Similarly, we can get μ f ( x 2 1 x 1 , e 2 ) θ 1 , v f ( x 2 1 x 1 , e 2 ) θ 2 , so. μ A ( x 1 1 x 2 )= μ f ( x 1 1 x 2 , e 2 ) μ f ( x 2 1 x 1 , e 2 ) θ 1 = θ 1 , v A ( x 1 1 x 2 )= v f ( x 1 1 x 2 , e 2 ) v f ( x 2 1 x 1 , e 2 ) θ 2 = θ 2 . Consequently, μ A ( e 1 )= μ f ( e 1 , e 2 ) μ f ( e 1 1 , e 2 ) θ 1 = θ 1 , v A ( e 1 )= v f ( e 1 , e 2 ) v f ( e 1 1 , e 2 ) θ 2 = θ 2 , so μ A ( x 1 1 x 2 )= μ A ( e 1 ) , v A ( x 1 1 x 2 )= v A ( e 1 ) , then we can get x 1 A= x 2 A , this implies that h is θ -intuitionistic fuzzy injective, so h is θ -intuitionistic fuzzy bijective. For x 1 , x 2 G 1 , y G 2 , we have

μ h ( ( x 1 μ A )( x 2 μ A ),y )= μ h ( ( x 1 x 2 ) μ A ,y )= μ f ( x 1 x 2 ,y ) =sup{ μ f ( x 1 , y 1 ) μ f ( x 2 , y 2 )|y= y 1 y 2 } =sup{ μ h ( x 1 μ A , y 1 ) μ h ( x 2 μ A , y 2 )|y= y 1 y 2 }

and

v h ( ( x 1 v A )( x 2 v A ),y )= v h ( ( x 1 x 2 ) v A ,y )= v f ( x 1 x 2 ,y ) =inf{ v f ( x 1 , y 1 ) v f ( x 2 , y 2 )|y= y 1 y 2 } =inf{ v h ( x 1 v A , y 1 ) v h ( x 2 v A , y 2 )|y= y 1 y 2 }

Hence h: G 1 /A G 2 is a θ -intuitionistic fuzzy isomorphism, G 1 /A and G 2 are θ -intuitionistic fuzzy isomorphism.

5. Summary

In this paper, we first define θ -intuitionistic fuzzy mapping, then give the definition of θ -intuitionistic fuzzy homomorphism of groups, and further study the related properties of intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups under the θ -intuitionistic fuzzy homomorphism of groups. Finally, the fundamental theorem of θ -intuitionistic fuzzy homomorphism is obtained. Since different intuitionistic fuzzy mappings also produce different intuitionistic fuzzy homomorphisms, we can try to define other intuitionistic fuzzy mappings to study the intuitionistic fuzzy homomorphisms of groups.

Funding

This work has been supported by the National Natural Science Foundation Project (Grant No. 12171137).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
https://doi.org/10.1016/s0019-9958(65)90241-x
[2] Rosenfeld, A. (1971) Fuzzy Groups. Journal of Mathematical Analysis and Applications, 35, 512-517.
https://doi.org/10.1016/0022-247x(71)90199-5
[3] Yao, B.X. (2001) Fuzzy Homomorphisms of Groups and Isomorphism Theorems of Fuzzy Quotient Groups. Fuzzy Systems and Mathematics, 15, 5-9.
[4] Hao, C.X. and Yao, B.X. (2014) θ-Fuzzy Homomorphisms of Groups. Journal of Shan-dong University: Science Edition, 49, 51-62.
[5] Addis, G.M. (2018) Fuzzy Homomorphism Theorems on Groups. Korean Journal of Mathematics, 26, 373-385.
[6] Atanassov, K.T. (1986) Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87-96.
https://doi.org/10.1016/s0165-0114(86)80034-3
[7] Biswas, R. (1989) Intuitionistic Fuzzy Subgroup. Mathematical Forum, 10, 39-44.
[8] Yao, B.X. (2001) Intuitionistic Fuzzy Normal Subgroups and Intuitionistic Fuzzy Quotient Groups. Mathematical Theory and Application, 21, 73-77.
[9] Sharma, P.K. (2011) Homomorphism of Intuitionistic Fuzzy Groups. International Mathematical Forum, 6, 3169-3178.
[10] Adamu, I.M. (2020) Homomorphism of Intuitionistic Fuzzy Multigroups. Open Journal of Mathematical Sciences, 4, 430-441.
https://doi.org/10.30538/oms2020.0132
[11] Gulzar, M., Mateen, M.H., Alghazzawi, D. and Kausar, N. (2020) A Novel Applications of Complex Intuitionistic Fuzzy Sets in Group Theory. IEEE Access, 8, 196075-196085.
https://doi.org/10.1109/access.2020.3034626
[12] Wan, S., Rao, T. and Dong, J. (2023) Time-Series Based Multi-Criteria Large-Scale Group Decision Making with Intuitionistic Fuzzy Information and Application to Multi-Period Battery Supplier Selection. Expert Systems with Applications, 232, Article 120749.
https://doi.org/10.1016/j.eswa.2023.120749
[13] Wan, S., Dong, J. and Chen, S. (2024) A Novel Intuitionistic Fuzzy Best-Worst Method for Group Decision Making with Intuitionistic Fuzzy Preference Relations. Information Sciences, 666, Article 120404.
https://doi.org/10.1016/j.ins.2024.120404

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.