[1]
|
Qu, Y., Zhuo, L., Li, N., Hu, Y., Chen, W., Zhou, Y., et al. (2015) Prevalence of Post-Stroke Cognitive Impairment in China: A Community-Based, Cross-Sectional Study. PLOS ONE, 10, e0122864. https://doi.org/10.1371/journal.pone.0122864
|
[2]
|
Deramecourt, V. and Pasquier, F. (2014) Neuronal Substrate of Cognitive Impairment in Post-Stroke Dementia. Brain, 137, 2404-2405. https://doi.org/10.1093/brain/awu188
|
[3]
|
Taya, F., Sun, Y., Babiloni, F., Thakor, N. and Bezerianos, A. (2015) Brain Enhancement through Cognitive Training: A New Insight from Brain Connectome. Frontiers in Systems Neuroscience, 9, Article 44. https://doi.org/10.3389/fnsys.2015.00044
|
[4]
|
Sun, P.Y., Cai, R.L., Li, P.F., Zhu, Y., Wang, T., Wu, J., Li, N., Liu, H. and Chu, H.R. (2019) Protective Effects on Hippocampal Neurons and the Influence on Hippocampal Monoamine Neurotransmitters with Acupuncture for Promoting the Circulation of the Governor Vessel and Regulating the Mental State in Rats with Post-Stroke Depression. Chinese Acupuncture & Moxibustion, 39, 741-747.
|
[5]
|
Chavez, L., Huang, S., MacDonald, I., Lin, J., Lee, Y. and Chen, Y. (2017) Mechanisms of Acupuncture Therapy in Ischemic Stroke Rehabilitation: A Literature Review of Basic Studies. International Journal of Molecular Sciences, 18, Article 2270. https://doi.org/10.3390/ijms18112270
|
[6]
|
Peng, J., Su, J., Song, L., Lv, Q., Gao, Y., Chang, J., et al. (2023) Altered Functional Activity and Functional Connectivity of Seed Regions Based on ALFF Following Acupuncture Treatment in Patients with Stroke Sequelae with Unilateral Limb Numbness [Corrigendum]. Neuropsychiatric Disease and Treatment, 19, 367-368. https://doi.org/10.2147/ndt.s408402
|
[7]
|
Liu, F., Hou, Y., Chen, X., Chen, Z., Su, G. and Lin, R. (2024) Moxibustion Promoted Axonal Regeneration and Improved Learning and Memory of Post-Stroke Cognitive Impairment by Regulating PI3K/AKt and TACC3. Neuroscience, 551, 299-306. https://doi.org/10.1016/j.neuroscience.2024.05.027
|
[8]
|
Li, Z.T., Ban, L.Q. and Chen, F. (2023) Acupuncture of Revised Acupoint Combination around the Skull Base for Post-Stroke Mild Cognitive Impairment: A Randomized Controlled Trial. Chinese Acupuncture & Moxibustion, 43, 1104-1108.
|
[9]
|
Zhou, Q., Ji, Y., Lv, Y., Xue, J., Wang, Y. and Huang, Y. (2023) Scientific Evidence of Acupuncture for Post-Stroke Cognitive Impairment: An Overview of Systematic Reviews and Meta-Analyses. Neuropsychiatric Disease and Treatment, 19, 1503-1513. https://doi.org/10.2147/ndt.s407162
|
[10]
|
Li, L., Yang, L., Luo, B., Deng, L., Zhong, Y., Gan, D., et al. (2022) Acupuncture for Post-Stroke Cognitive Impairment: An Overview of Systematic Reviews. International Journal of General Medicine, 15, 7249-7264. https://doi.org/10.2147/ijgm.s376759
|
[11]
|
Zhuo, P., Huang, L., Lin, M., Chen, J., Dai, Y., Yang, M., et al. (2023) Efficacy and Safety of Acupuncture Combined with Rehabilitation Training for Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 32, Article 107231. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107231
|
[12]
|
Li, N., Wang, H., Liu, H., Zhu, L., Lyu, Z., Qiu, J., et al. (2023) The Effects and Mechanisms of Acupuncture for Post-Stroke Cognitive Impairment: Progress and Prospects. Frontiers in Neuroscience, 17, Article 1211044. https://doi.org/10.3389/fnins.2023.1211044
|
[13]
|
Liu, Y., Chen, F., Qin, P., Zhao, L., Li, X., Han, J., et al. (2023) Acupuncture Treatment Vs. Cognitive Rehabilitation for Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in Neurology, 14, Article 1035125. https://doi.org/10.3389/fneur.2023.1035125
|
[14]
|
Huang, J., You, X., Liu, W., Song, C., Lin, X., Zhang, X., et al. (2017) Electroacupuncture Ameliorating Post-Stroke Cognitive Impairments via Inhibition of Peri-Infarct Astroglial and Microglial/Macrophage P2 Purinoceptors-Mediated Neuroinflammation and Hyperplasia. BMC Complementary and Alternative Medicine, 17, Article No. 480. https://doi.org/10.1186/s12906-017-1974-y
|
[15]
|
He, Y. and Evans, A. (2014) Magnetic Resonance Imaging of Healthy and Diseased Brain Networks. Frontiers in Human Neuroscience, 8, Article 890. https://doi.org/10.3389/fnhum.2014.00890
|
[16]
|
Wang, H., Huang, Y., Li, M., Yang, H., An, J., Leng, X., et al. (2022) Regional Brain Dysfunction in Insomnia after Ischemic Stroke: A Resting-State fMRI Study. Frontiers in Neurology, 13, Article 1025174. https://doi.org/10.3389/fneur.2022.1025174
|
[17]
|
Wang, R., Liu, N., Tao, Y., Gong, X., Zheng, J., Yang, C., et al. (2020) The Application of rs-fMRI in Vascular Cognitive Impairment. Frontiers in Neurology, 11, Article 951. https://doi.org/10.3389/fneur.2020.00951
|
[18]
|
Wei, B., Huang, X., Ji, Y., Fu, W., Cheng, Q., Shu, B., et al. (2024) Analyzing the Topological Properties of Resting-State Brain Function Network Connectivity Based on Graph Theoretical Methods in Patients with High Myopia. BMC Ophthalmology, 24, Article No. 315. https://doi.org/10.1186/s12886-024-03592-6
|
[19]
|
Liu, X., Qiu, S., Wang, X., Chen, H., Tang, Y. and Qin, Y. (2023) Aberrant Dynamic Functional-Structural Connectivity Coupling of Large-Scale Brain Networks in Poststroke Motor Dysfunction. NeuroImage: Clinical, 37, Article 103332. https://doi.org/10.1016/j.nicl.2023.103332
|
[20]
|
Yin, D., Song, F., Xu, D., Sun, L., Men, W., Zang, L., et al. (2013) Altered Topological Properties of the Cortical Motor-Related Network in Patients with Subcortical Stroke Revealed by Graph Theoretical Analysis. Human Brain Mapping, 35, 3343-3359. https://doi.org/10.1002/hbm.22406
|
[21]
|
Bullmore, E. and Sporns, O. (2009) Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems. Nature Reviews Neuroscience, 10, 186-198. https://doi.org/10.1038/nrn2575
|
[22]
|
Boot, E.M., Omes, Q.P.M., Maaijwee, N., Schaapsmeerders, P., Arntz, R.M., Rutten-Jacobs, L.C.A., et al. (2023) Functional Brain Connectivity in Young Adults with Post-Stroke Epilepsy. Brain Communications, 5, fcad277. https://doi.org/10.1093/braincomms/fcad277
|
[23]
|
Zhang, T., Liao, Q., Zhang, D., Zhang, C., Yan, J., Ngetich, R., et al. (2021) Predicting MCI to AD Conversation Using Integrated sMRI and rs-Fmri: Machine Learning and Graph Theory Approach. Frontiers in Aging Neuroscience, 13, Article 688926. https://doi.org/10.3389/fnagi.2021.688926
|
[24]
|
Rao, B., Wang, S., Yu, M., Chen, L., Miao, G., Zhou, X., et al. (2022) Suboptimal States and Frontoparietal Network-Centered Incomplete Compensation Revealed by Dynamic Functional Network Connectivity in Patients with Post-Stroke Cognitive Impairment. Frontiers in Aging Neuroscience, 14, Article 893297. https://doi.org/10.3389/fnagi.2022.893297
|
[25]
|
Xu, M., Qian, L., Wang, S., Cai, H., Sun, Y., Thakor, N., et al. (2023) Brain Network Analysis Reveals Convergent and Divergent Aberrations between Mild Stroke Patients with Cortical and Subcortical Infarcts during Cognitive Task Performing. Frontiers in Aging Neuroscience, 15, Article 1193292. https://doi.org/10.3389/fnagi.2023.1193292
|
[26]
|
Yan, C., Wang, X., Zuo, X. and Zang, Y. (2016) DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics, 14, 339-351. https://doi.org/10.1007/s12021-016-9299-4
|
[27]
|
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002) Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15, 273-289. https://doi.org/10.1006/nimg.2001.0978
|
[28]
|
Yu, M., Dai, Z., Tang, X., Wang, X., Zhang, X., Sha, W., et al. (2017) Convergence and Divergence of Brain Network Dysfunction in Deficit and Non-Deficit Schizophrenia. Schizophrenia Bulletin, 43, 1315-1328. https://doi.org/10.1093/schbul/sbx014
|
[29]
|
Fornito, A., Zalesky, A. and Breakspear, M. (2013) Graph Analysis of the Human Connectome: Promise, Progress, and Pitfalls. NeuroImage, 80, 426-444. https://doi.org/10.1016/j.neuroimage.2013.04.087
|
[30]
|
Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of ‘Small-World’ Networks. Nature, 393, 440-442. https://doi.org/10.1038/30918
|
[31]
|
Humphries, M.D., Gurney, K. and Prescott, T.J. (2005) The Brainstem Reticular Formation Is a Small-World, Not Scale-Free, Network. Proceedings of the Royal Society B: Biological Sciences, 273, 503-511. https://doi.org/10.1098/rspb.2005.3354
|
[32]
|
Wang, Z., Yuan, Y., Bai, F., You, J. and Zhang, Z. (2016) Altered Topological Patterns of Brain Networks in Remitted Late-Onset Depression. The Journal of Clinical Psychiatry, 77, 123-130. https://doi.org/10.4088/jcp.14m09344
|
[33]
|
Tao, Y., Ficek, B., Rapp, B. and Tsapkini, K. (2020) Different Patterns of Functional Network Reorganization across the Variants of Primary Progressive Aphasia: A Graph-Theoretic Analysis. Neurobiology of Aging, 96, 184-196. https://doi.org/10.1016/j.neurobiolaging.2020.09.007
|
[34]
|
He, S., Liu, Z., Xu, Z., Duan, R., Yuan, L., Xiao, C., et al. (2020) Brain Functional Network in Chronic Asymptomatic Carotid Artery Stenosis and Occlusion: Changes and Compensation. Neural Plasticity, 2020, 1-11. https://doi.org/10.1155/2020/9345602
|
[35]
|
Bahrami, N., Seibert, T.M., Karunamuni, R., Bartsch, H., Krishnan, A., Farid, N., et al. (2017) Altered Network Topology in Patients with Primary Brain Tumors after Fractionated Radiotherapy. Brain Connectivity, 7, 299-308. https://doi.org/10.1089/brain.2017.0494
|
[36]
|
Wang, J., Chen, Y., Liang, H., Niedermayer, G., Chen, H., Li, Y., et al. (2019) The Role of Disturbed Small-World Networks in Patients with White Matter Lesions and Cognitive Impairment Revealed by Resting State Function Magnetic Resonance Images (rs-fMRI). Medical Science Monitor, 25, 341-356. https://doi.org/10.12659/msm.913396
|
[37]
|
Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H. and Laurienti, P.J. (2011) The Ubiquity of Small-World Networks. Brain Connect, 1, 367-375. https://doi.org/10.1089/brain.2011.0038
|
[38]
|
Bullmore, E.T. and Bassett, D.S. (2011) Brain Graphs: Graphical Models of the Human Brain Connectome. Annual Review of Clinical Psychology, 7, 113-140. https://doi.org/10.1146/annurev-clinpsy-040510-143934
|
[39]
|
Wang, Q., Su, T., Zhou, Y., Chou, K., Chen, I., Jiang, T., et al. (2012) Anatomical Insights into Disrupted Small-World Networks in Schizophrenia. NeuroImage, 59, 1085-1093. https://doi.org/10.1016/j.neuroimage.2011.09.035
|
[40]
|
Zhu, Y., Bai, L., Liang, P., Kang, S., Gao, H. and Yang, H. (2016) Disrupted Brain Connectivity Networks in Acute Ischemic Stroke Patients. Brain Imaging and Behavior, 11, 444-453. https://doi.org/10.1007/s11682-016-9525-6
|
[41]
|
Shi, M., Liu, S., Chen, H., Geng, W., Yin, X., Chen, Y., et al. (2020) Disrupted Brain Functional Network Topology in Unilateral Acute Brainstem Ischemic Stroke. Brain Imaging and Behavior, 15, 444-452. https://doi.org/10.1007/s11682-020-00353-z
|
[42]
|
Xu, J., Chen, F., Lei, D., Zhan, W., Sun, X., Suo, X., et al. (2018) Disrupted Functional Network Topology in Children and Adolescents with Post-Traumatic Stress Disorder. Frontiers in Neuroscience, 12, Article 709. https://doi.org/10.3389/fnins.2018.00709
|
[43]
|
Siegel, J.S., Seitzman, B.A., Ramsey, L.E., Ortega, M., Gordon, E.M., Dosenbach, N.U.F., et al. (2018) Re-Emergence of Modular Brain Networks in Stroke Recovery. Cortex, 101, 44-59. https://doi.org/10.1016/j.cortex.2017.12.019
|
[44]
|
Yu, Y., Zhou, X., Wang, H., Hu, X., Zhu, X., Xu, L., et al. (2015) Small-World Brain Network and Dynamic Functional Distribution in Patients with Subcortical Vascular Cognitive Impairment. PLOS ONE, 10, e0131893. https://doi.org/10.1371/journal.pone.0131893
|
[45]
|
Liu, Y., Yang, K., Hu, X., Xiao, C., Rao, J., Li, Z., et al. (2020) Altered Rich-Club Organization and Regional Topology Are Associated with Cognitive Decline in Patients with Frontal and Temporal Gliomas. Frontiers in Human Neuroscience, 14, Article 23. https://doi.org/10.3389/fnhum.2020.00023
|
[46]
|
Zuo, X., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., et al. (2011) Network Centrality in the Human Functional Connectome. Cerebral Cortex, 22, 1862-1875. https://doi.org/10.1093/cercor/bhr269
|
[47]
|
Rubinov, M. and Sporns, O. (2010) Complex Network Measures of Brain Connectivity: Uses and Interpretations. NeuroImage, 52, 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
|
[48]
|
Zhu, Y., Lu, T., Xie, C., Wang, Q., Wang, Y., Cao, X., et al. (2020) Functional Disorganization of Small-World Brain Networks in Patients with Ischemic Leukoaraiosis. Frontiers in Aging Neuroscience, 12, Article 203. https://doi.org/10.3389/fnagi.2020.00203
|
[49]
|
Fransson, P. and Marrelec, G. (2008) The Precuneus/Posterior Cingulate Cortex Plays a Pivotal Role in the Default Mode Network: Evidence from a Partial Correlation Network Analysis. NeuroImage, 42, 1178-1184. https://doi.org/10.1016/j.neuroimage.2008.05.059
|
[50]
|
Zhang, J., Zhang, Y., Wang, L., Sang, L., Yang, J., Yan, R., et al. (2017) Disrupted Structural and Functional Connectivity Networks in Ischemic Stroke Patients. Neuroscience, 364, 212-225. https://doi.org/10.1016/j.neuroscience.2017.09.009
|
[51]
|
Li, Q., Liu, J., Wang, W., Wang, Y., Li, W., Chen, J., et al. (2018) Disrupted Coupling of Large-Scale Networks Is Associated with Relapse Behaviour in Heroin-Dependent Men. Journal of Psychiatry & Neuroscience, 43, 48-57. https://doi.org/10.1503/jpn.170011
|
[52]
|
Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., et al. (2007) Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. The Journal of Neuroscience, 27, 2349-2356. https://doi.org/10.1523/jneurosci.5587-06.2007
|
[53]
|
Zhang, H., Liu, J. and Zhang, Q. (2014) Neural Representations for the Generation of Inventive Conceptions Inspired by Adaptive Feature Optimization of Biological Species. Cortex, 50, 162-173. https://doi.org/10.1016/j.cortex.2013.01.015
|
[54]
|
Putcha, D., Brickhouse, M., Touroutoglou, A., Collins, J.A., Quimby, M., Wong, B., et al. (2019) Visual Cognition in Non-Amnestic Alzheimer’s Disease: Relations to Tau, Amyloid, and Cortical Atrophy. NeuroImage: Clinical, 23, Article 101889. https://doi.org/10.1016/j.nicl.2019.101889
|
[55]
|
Mijalkov, M., Kakaei, E., Pereira, J.B., Westman, E. and Volpe, G. (2017) BRAPH: A Graph Theory Software for the Analysis of Brain Connectivity. PLOS ONE, 12, e178798.
|
[56]
|
Baldassano, C., Beck, D.M. and Fei-Fei, L. (2013) Differential Connectivity within the Parahippocampal Place Area. NeuroImage, 75, 228-237. https://doi.org/10.1016/j.neuroimage.2013.02.073
|
[57]
|
Weiner, K.S. and Zilles, K. (2016) The Anatomical and Functional Specialization of the Fusiform Gyrus. Neuropsychologia, 83, 48-62. https://doi.org/10.1016/j.neuropsychologia.2015.06.033
|
[58]
|
Sang, L., Chen, L., Wang, L., Zhang, J., Zhang, Y., Li, P., et al. (2018) Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients. Frontiers in Neurology, 9, Article 94. https://doi.org/10.3389/fneur.2018.00094
|
[59]
|
Cabioglu, M.T. (2016) Acupuncture Practices and Brain Waves. Open Access Library, 3, 1-4. https://doi.org/10.4236/oalib.1102639
|
[60]
|
Wu, W., Song, C., Yang, Y., Hu, Y. and Lin, H. (2024) Acupuncture for Cognitive Impairment after Stroke: A Systematic Review and Meta-Analysis. Heliyon, 10, e30522. https://doi.org/10.1016/j.heliyon.2024.e30522
|
[61]
|
Wang, Z., Sun, Z., Zhang, M., Xiong, K. and Zhou, F. (2022) Systematic Review and Meta-Analysis of Acupuncture in the Treatment of Cognitive Impairment after Stroke. Medicine, 101, e30461. https://doi.org/10.1097/md.0000000000030461
|
[62]
|
Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. (2008) Parcellation-Dependent Small-World Brain Functional Networks: A Resting-State fMRI Study. Human Brain Mapping, 30, 1511-1523. https://doi.org/10.1002/hbm.20623
|
[63]
|
Du, Y., Zhang, L., Liu, W., Rao, C., Li, B., Nan, X., et al. (2020) Effect of Acupuncture Treatment on Post-Stroke Cognitive Impairment. Medicine, 99, e23803. https://doi.org/10.1097/md.0000000000023803
|