Further Development of the Fekete-Szegö | a 3 μ a 2 2 |-Functional Inequality for Classes of Analytic Functions Based on Differential Operators and Subclasses

Abstract

In mathematics, the Fekete-Szegö inequality is an inequality for the coefficients of univalent analytic functions found by Fekete and Szegö (1933), related to the Bieberbach conjecture. Finding similar estimates for other classes of functions is called the Fekete-Szegö problem. In this paper, I study to solve the Fekete-Szegö problem for | a 3 μ a 2 2 | -functional inequalities with μ is real or complex by the generalized linear differential operator. That is the main result in this paper.

Share and Cite:

An, L.V. (2024) Further Development of the Fekete-Szegö | a 3 -μ a 2 2 | -Functional Inequality for Classes of Analytic Functions Based on Differential Operators and Subclasses. Open Access Library Journal, 11, 1-11. doi: 10.4236/oalib.1112052.

1. Introduction

Suppose that M denote the class of all analytic f( z ) in the open unit disk

Ω:={ kz:| kz |<1,k\{ 0 } }.

With

M:={ g|g( kz ):=kz+ n=2 k a n z n ,g:Ω }

A typical problem in geometric function theory is to study a functional made up of com-binations of the coefficients of the original function. Usually, there is a parameter over which the extremal value of the functional is needed. The paper deals with one important functional of this type: the Fekete-Szegö functional. The classical Fekete-Szegö functional is defined by

Δ μ ( f )=| a 3 μ a 2 2 |,( 0<μ<1 )

and it is derived from the Fekete-Szegö inequality. The problem of maximizing the abso-lute value of the functional μ in subclasses of normalized functions is called the Fekete-Szegö problem. In 1933, Fekete and Szegö [1] found the maximum value of | a 3 μ a 2 2 | . as a function of the real parameters μ, for functions belonging to the class S. Since then, several researchers solved the Fekete-Szegö problem for various sublasses of the class of S and related subclasses of functions in A. The mathematicians who introduced the functional. M. Fekete and G. Szegö [1], were able to bound the classical functional in the class S by 1+2exp{ 2μ 1μ }0 .

Later Pfluger [2] used Jenkin’s method to show that this result holds for complex μ such that Re{ 2μ 1μ }0 . Keogh and Merkes [3] obtained the solution of

the Fekete-Szegö problem for the class of close-to-convex functions. Ma and Minda [4] [5] gave a complete answer to the Fekete-Szegö problem for the classes of strongly close-to-convex functions and strongly starlike functions. In the literature, there exists a large number of results about inequalities for Δ μ ( f ) corresponding to various subclasses of A (see, for instance, [1]-[26]).

Suppose E is a subfamily of M consisting of functions that are univalent in Ω. For functions f,hM , i.e. f,h is represented as:

f( kz ):=kz+ n=2 k a n z n (1)

and

h( lz ):=lz+ n=2 l b n z n (2)

I now define the Hadamard product of f( z ) and h( z ) as follows:

( fh )( z ):=z+ n=2 a n b n z n =( hf )( z ),zΩ (3)

Next I consider the linear operator L defined as follows

L( b,d ):MM:

L( b,d )×f( kz ):=G( b,d,z )f( kz )=zk+ n=2 ( b ) n1 ( d ) n1 k z n ,zΩ. (4)

In there

b,d\{ 1,2,3, } .

G( b,d,z )=z+ n=2 ( b ) n1 ( d ) n1 z n ,zΩ.

( η ) n is the Pochhammer symbols defined, η and in terms of the Euler Γ-function, by

( η ) n = Γ( η+n ) Γ( η ) ={ 1 ifn=0, η( η+1 )( η+n1 ) ifn * , (5)

The aim of this paper is to present Lemma 4 to construct an analytic D-function inequality for the Fekete-Szego problem using a different approach.

The paper is organized as follows:

In section preliminaries I remind some basic notations in [6]-[26] such as The generalized linear operator, the linear multiplier differential operator D m ( η,ϕ )f , subclass Q( m,η,ϕ,α,b,d ) .

Section: 3 Stability | a 3 μ a 2 2 | -functional inequalities for complex parameter μ .

Section: 4 Stability | a 3 μ a 2 2 | -functional inequalities for real parameter μ .

2. Preliminaries

Definition 1. The linear multiplier differential operator D m ( η,ϕ )f was defined as follows:

  • D 0 ( η,ϕ )f( z )=f( z ),

  • D 1 ( η,ϕ )f( z )=D( η,ϕ )f( z )=αϕ z 2 ( f( z ) ) +( αϕ )z ( f( z ) ) +( 1α+ϕ )zf( z ),

  • D 2 ( η,ϕ )f( z )=D( η,ϕ )( D 1 ( η,ϕ )f( z ) ),

  • D m ( η,ϕ )f( kz )=D( η,ϕ )( D m1 ( η,ϕ )f( kz ) ),

In there ηϕ and m

From the definition I lead to consequence

Corollary 1. If fM then the linear multiplier differential operator D m ( η,ϕ )f identified as

D m ( η,ϕ )f( kz )=kz+ n=2 [ 1+( ηϕn+ηϕ )( n1 ) ] m a n k z n .

Definition 2. The generalized linear operator

L( m,η,ϕ,b,d ):MM

L( m,η,ϕ,b,d )×f( kz ):=G( b,d,z ) D m ( η,ϕ )f( kz ) =zk+ n=2 G n m ( η,ϕ ) ( b ) n1 ( d ) n1 k a n z n ,zΩ

In there G n m ( η,ϕ )= [ 1+( ηϕn+ηϕ )( n1 ) ] m , ηϕ0 , m and b,d1,2,3, .

Definition 3. Suppose that b,d be a nonzero complex numbers with b,d1,2,3, , αϕ and μ , 0ηβ and m . Let 0<η1 . A function fM is given by the following form

f( kz )=kz+ i=2 k a i z i

is said to belong to subclass fQ( m,η,ϕ,α,b,d ) if:

| arg( z ( L( m,η,ϕ,b,d )f( kz ) ) L( m,η,ϕ,b,d )f( kz ) ) |< π 2 α,zΩ. (6)

Note: This class includes a variety of well-known subclasses of M .

For example,

M 1 ( 0,η,ϕ,b,b )={ zM:| arg( z f ( z ) f( z ) ) |< π 2 α,zΩ }

M 1 ( 0,η,ϕ,2,1 )={ fM:| arg( 1+ z f ( z ) f ( z ) ) |< π 2 α,zΩ }

3. Stability | a 3 μ a 2 2 | -Functional Inequalities for Complex Parameter μ

Let be the class of all analytic functions

:={ q( z )|q( z )=1+ c 1 n z+ c 2 n z 2 +,zΩ,n * Req( z )>0 }

3.1. Condition for Existence of | a 3 μ a 2 2 | -Functional Inequalities

Lemma 1. If

q( z )=1+ c 1 n z+ c 2 n z 2 +,j,n * and q( z ) .(7)

Then

1) | c j n |2,j1 ,

2) | c 2 n c 1 2 2 n 2 |2 | c 1 | 2 2 n 2 .

Lemma 2. Suppose that b, d be a nonzero complex numbers with b,d1,2,3, , αϕ and μ , 0ηβ and m . If fA( m,η,ϕ,α,b,d ) of the form:

f( kz )=kz+ i=2 k a i z i (8)

Then

i/| a 2 | 2α| d | k G 2 m ( η,ϕ )| b | (9)

ii/| a 3 |{ ( 2k+1 ) α 2 | d || d+1 | k 3 G 2 m ( η,ϕ )| b || b+1 | ifα 1 2k+α , α| d || d+1 | k 3 G 3 m ( η,ϕ )| b || b+1 | ifα 1 2k+α ,

Proof. we put F( z )=L( m,β,ϕ,b,d )f( z )=kz+k λ 2 z 2 +k λ 3 z 3 + . Since

F( x )= F ( kz ) F( kz ) = ( q( z ) ) α ,q (10)

on the other hand

z( k+k λ 2 z+k λ 3 z 2 + ) kz+k λ 2 z 2 +k λ 3 z 3 + = ( 1+ c 1 k z+ c 2 k z 2 + ) α (11)

which implies the equality

kz+k λ 2 z 2 +k λ 3 z 3 + =kz+( α c 1 +k λ 2 )z+( α c 2 + α( α1 ) 2k c 1 2 +α λ 1 +k λ 3 ) z 3

Equating the coefficients of both sides we get

λ 2 = α c 1 k , λ 3 = α 2 ( c 2 k α c 1 2 2k )+ 2k+1 4 k 2 α 2 c 1 2 (12)

Therefore, according to (12) we have

F( z )=φ( b,d,z )× D m ( η,ϕ )f( zk )=kz+ n=2 G n m ( η,ϕ ) ( b ) n1 ( d ) n1 k a n z n

kz+ n=2 G n m ( η,ϕ ) Γ( b+n1 )Γ( d ) Γ( d+n1 )Γ( b ) k a n z n (13)

Thus we have

α c 1 k = G 2 m ( η,ϕ ) Γ( b+1 )Γ( d ) Γ( d+1 )Γ( b ) k a 2 = G 2 m ( η,ϕ ) b d k a 2 (14)

a 2 = αd c 1 k 2 b G 2 m ( η,ϕ ) (15)

From Lemma 1, We have

| a 2 | 2α| d | k| b | G 2 m ( η,ϕ ) (16)

From (12) and (13), we get

α 2 ( c 2 k α c 1 2 2k )+ 2k+1 4 k 2 α 2 c 1 2 = G 3 m ( η,ϕ ) Γ( b+2 )Γ( d ) Γ( d+2 )Γ( b ) k a 3 = G 3 m ( η,ϕ ) b( b+1 ) d( d+1 ) k a 3 (17)

So, We obtain

a 3 = α 2k d( d+1 ) G 3 m ( η,ϕ )b( b+1 ) ( α 2 ( c 2 k α c 1 2 2k )+ 2k+1 4 k 2 α 2 c 1 2 ) (18)

| a 3 | α 2k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | { 2 | c 1 | 2 2 k 2 ++ 2k+1 2 k 2 α| c 1 2 | } (19)

| a 3 | α 4 k 3 | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | { 4 k 2 | c 1 | 2 +2( 2k+1 )α | c 1 | 2 } (20)

3.2. Construct the of | a 3 μ a 2 2 | -Function Inequality

Theorem 1. Suppose that a, c be a complex parameters such that b,d1,2,3, , αϕ and μ , 0ηβ and m . If fA( m,η,ϕ,α,b,d ) , α( 0,1 ) and μ is a complex parameter, then

| a 3 μ a 2 2 | α k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | max{ ( 4 k 2 1 ) G 2 2m ( η,ϕ )| b || ( d+1 )| + |αQ( G,μ,b,d ) | 4 k 2 G 2 m ( η,ϕ )| b || ( d+1 ) | } (21)

In there

Q( G,μ,b,d )=( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 )+4kμ G 3 m ( η,ϕ )d( b+1 ) (22)

Proof. We have

a 3 μ a 2 2 = d( d+1 ) G 3 m ( η,ϕ )b( b+1 ) ( α 2 k 2 ( c 2 α c 1 2 2k )+ 2k+1 4 k 3 α 2 c 1 2 )μ α 2 d 2 c 1 2 k 2 b 2 G 2 2m ( η,ϕ ) = α 2k d( d+1 ) G 3 m ( η,ϕ )b( b+1 ) ( c 2 k c 1 2 2k )+ 2k+1 4 k 3 α 2 c 1 2 d( d+1 ) G 3 m ( η,ϕ )b( b+1 ) μ α 2 d 2 c 1 2 k 2 b 2 G 2 2m ( η,ϕ ) = α 2k d( d+1 ) G 3 m ( η,ϕ )b( b+1 ) ( c 2 k α c 1 2 2k ) + α 2 d[ ( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )d( b+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ ) b 2 ( b+1 ) c 1 2 (23)

Thus, we get

| a 3 μ a 2 2 | α 2k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | | c 2 k c 1 2 2k | + α 2 | d || ( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )d( b+1 ) | 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (24)

By Lemma 3.1 we have

| a 3 μ a 2 2 | α 2k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | | 2 | c 1 2 | 2k | + α 2 | d || ( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )d( b+1 ) | 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (25)

So, I get

| a 3 μ a 2 2 | α k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | | c 1 2 | 4 k 3 | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | + α 2 | d || ( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )d( b+1 ) | 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (26)

So

| a 3 μ a 2 2 | α k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( b+1 ) | + α| d |[ α| ( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )| d || ( b+1 ) | | G 2 2m ( η,ϕ )b( d+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (27)

Next by (22), I get

| a 3 μ a 2 2 | α k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( d+1 ) | + α| d |[ α| Q( G,μ,b,d ) |μ G 2 2m ( η,ϕ )| d || ( b+1 ) | ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (28)

Case 1: If

| Q( G,μ,b,d ) |μ G 2 2m ( η,ϕ )| d || ( b+1 ) |

Then from (28) I got the result

| a 3 μ a 2 2 | α k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( d+1 ) | (29)

Case 2: If

| Q( G,μ,b,d ) |μ G 2 2m ( η,ϕ )| d || ( b+1 ) |

| a 3 μ a 2 2 | α k | d || ( d+1 ) | G 3 m ( η,ϕ )| b || ( d+1 ) | + α| d |[ α| Q( G,μ,b,d ) | G 2 2m ( η,ϕ )| d || ( b+1 ) | ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | = 4 k 2 G 2 2m α| b || d || d+1 |+| d |[ | α 2 Q( G,μ,b,d ) |α G 2 2m ( η,ϕ )| d || ( b+1 ) | ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | = ( 4 k 2 +1 ) G 2 2m α| b || d || d+1 |+| d |[ | α 2 Q( G,μ,b,d ) | ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | (30)

4. Construct the of | a 3 μ a 2 2 | -Function Inequality for Real Parmerte μ

Theorem 2. Suppose that d,b( 0, ) , α( 0,1 ] , αϕ0 and m . If fA( m,η,ϕ,α,b,d ) , and fM then for μ we have.

| x 3 μ a 2 2 | { α 2 ( 2k+1 )d( d+1 ) G 2 2m ( η,ϕ )4kμd( b+1 ) G 3 m ( η,ϕ ) G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) ifμ ( α( 2k+1 ) )b( d+1 ) G 2 2m ( η,ϕ ) 4kαd( b+1 ) G 3 m ( η,ϕ ) , αd( d+1 ) G 3 m ( η,ϕ ) b 2 ( b+1 ) if ( α( 2k+1 )1 )d( d+1 ) G 2 2m ( η,ϕ ) 4kαd G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) μ ( α( 2k+1 )+1 )d( d+1 ) G 2 2m ( η,ϕ ) 4kαd G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) , αd( 4kμ+1 )d( b+1 ) G 3 m ( η,ϕ )( 2k+1 )b( d+1 ) G 2 2m ( η,ϕ ) G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) if ( α( 2k+1 )1 )d( d+1 ) G 2 2m ( η,ϕ ) 4kαd G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) ,

Proof. To prove Theorem 3.4 I consider the following cases:

Case 1:

Suppose that

( α( 2k+1 )1 )d( d+1 ) G 2 2m ( η,ϕ ) 4kαd G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) μ

From (27) I have

| a 3 μ a 2 2 | α k d( d+1 ) G 3 m ( η,ϕ )b( b+1 ) + αd[ ( α( 2k+1 )1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )d( b+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (31)

By lemma 1 with | c 1 2 |2 I get

| a 3 μ a 2 2 | α k d( d+1 ) G 3 m ( η,ϕ )| b || ( b+1 ) | + αd[ ( α( 2k+1 )1 ) G 2 2m ( η,ϕ )b( d+1 )4kμ G 3 m ( η,ϕ )d( b+1 ) ] k G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | (32)

Now I prove the case 2

Case 2:

( α( 2k+1 )1 )b( d+1 ) G 2 2m ( η,ϕ ) 4kαd G 3 m ( η,ϕ ) G 2 2m ( η,ϕ ) b 2 ( b+1 ) μ

(31) I have

| a 3 μ a 2 2 | α k d( d+1 ) G 3 m ( η,ϕ )| b || ( b+1 ) | + αd[ 4kμα G 3 m d( b+1 )( α( 2k+1 )1 ) G 2 2m ( η,ϕ )b( d+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | α k d( d+1 ) G 3 m ( η,ϕ )| b || ( b+1 ) | (33)

Next I prove the case 3

Case 3:

μ ( 2k+1 )b( d+1 ) G 2 2m ( η,ϕ ) 4kαd G 3 m ( η,ϕ )

in this case I put

Q( G,μ,b,d )=4kμ G 3 m ( η,ϕ )d( b+1 )( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 ) (34)

Next from (27) I have

| a 3 μ a 2 2 | α k d( d+1 ) G 3 m ( η,ϕ )| b || ( b+1 ) | + αd[ 4kμα G 3 m d( b+1 )( α( 2k+1 )1 ) G 2 2m ( η,ϕ )b( d+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | (35)

Next continue to apply Lemma 1, I get

| a 3 μ a 2 2 | α 2 d[ 4kμ G 3 m d( b+1 )( 2k+1 ) G 2 2m ( η,ϕ )b( d+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | (36)

Case 4: Continue to apply the above inequality, I have

μ ( 2k+1 )b( d+1 ) G 2 2m ( η,ϕ ) 4kαd( b+1 ) G 3 m ( η,ϕ )

Form (35), I have

| a 3 μ a 2 2 | α k d( d+1 ) G 3 m ( η,ϕ )| b || ( b+1 ) | + αd[ 4kμα G 3 m d( b+1 )( α( 2k+1 )1 ) G 2 2m ( η,ϕ )b( d+1 ) ] 4 k 3 G 2 2m ( η,ϕ ) G 3 m ( η,ϕ )| b 2 || ( b+1 ) | | c 1 2 | α k d( d+1 ) G 3 m ( η,ϕ )| b || ( b+1 ) | (37)

So the complete theorem 4.1 proves.

Corollary 2. Suppose that d,b( 0, ) , α( 0,1 ] , αϕ0 and m , μ and

0<α ( 2k+1 )b( d+1 ) G 2 2m ( η,ϕ ) 4kαd( b+1 ) G 3 m ( η,ϕ ) . (38)

If fA( m,η,ϕ,α,b,d ) ,

f:U

f( kz )=kz+ i=2 k k a i z i (39)

then

| a 3 | | a 3 | αd( d+1 ) 4kαb( b+1 ) G 3 m ( η,ϕ ) (40)

5. Conclusion

In this article, I have presented Lemma 1 to prove the existence of functional inequalities involving complex and real parameters (of the | a 3 μ a 2 2 | -functional inequalities for complex parameter μ and | a 3 μ a 2 2 | -functional inequalities for real parameter μ ).

Conflicts of Interest

The author declares no conflicts of interest.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] Fekete, M. and Szegö, G. (1933) Eine Bemerkung Über Ungerade Schlichte Funktionen. Journal of the London Mathematical Society, 1, 85-89.
https://doi.org/10.1112/jlms/s1-8.2.85
[2] Pfluger, A. (1986) The Fekete—Szegö Inequality for Complex Parameters. Complex Variables, Theory and Application: An International Journal, 7, 149-160.
https://doi.org/10.1080/17476938608814195
[3] Keogh, F.R. and Merkes, E.P. (1969) A Coefficient Inequality for Certain Classes of Analytic Functions. Proceedings of the American Mathematical Society, 20, 8-12.
https://doi.org/10.1090/s0002-9939-1969-0232926-9
[4] Ma, W. and Minda, D. (1991) An Internal Geometric Characterization of Strongly Starlike Functions. Annales Universitatis Mariae Curie-Sklodowska, Sectio A, 45, 89-97.
[5] Ma, W. and Minda, D. (1997) Coefficient Inequalities for Strongly Close-To-Convex Functions. Journal of Mathematical Analysis and Applications, 205, 537-553.
https://doi.org/10.1006/jmaa.1997.5234
[6] Carlson, B.C. and Shaffer, D.B. (1984) Starlike and Prestarlike Hypergeometric Functions. SIAM Journal on Mathematical Analysis, 15, 737-745.
https://doi.org/10.1137/0515057
[7] Ruscheweyh, S. (1975) New Criteria for Univalent Functions. Proceedings of the American Mathematical Society, 49, 109-115.
https://doi.org/10.1090/s0002-9939-1975-0367176-1
[8] Dziok, J. (1999) Classes of Functions Defined by Certain Differential-Integral Operators. Journal of Computational and Applied Mathematics, 105, 245-255.
https://doi.org/10.1016/s0377-0427(99)00014-x
[9] Lashin, A.Y. (2003) Starlike and Convex Functions of Complex Order Involving a Certain Linear Operator. Indian Journal of Pure and Applied Mathematics, 34, 1101-1108.
[10] Ravichandran, V. and Kumar, S.S. (2004) On a Class of Analytic Functions Involving Carlson-Shaffer Linear Operator. Rivista di Matematica della Università di Parma, 7, 35-48.
[11] Srivastava, H.M. and Owa, S. (1992) Current Topics in Analytic Function Theory. World Scientific Publishing.
https://doi.org/10.1142/1628
[12] Raducanu, D. and Orhan, H. (2010) Subclasses of Analytic Functions Defined by a Generalized Differential Operator. International Journal of Mathematical Analysis, 4, 1-15.
[13] Abdel-Gawad, H.R. and Thomas, D.K. (1992) The Fekete-Szegő Problem for Strongly Close-To-Convex Functions. Proceedings of the American Mathematical Society, 114, 345-349.
https://doi.org/10.1090/s0002-9939-1992-1065939-0
[14] Çağlar, M., Deniz, E. and Orhan, H. (2011) Coefficient Bounds for a Subclass of Starlike Functions of Complex Order. Applied Mathematics and Computation, 218, 693-698.
https://doi.org/10.1016/j.amc.2011.01.085
[15] Darus, M. and Akbarally, A. (2004) Coefficient Estimates for Ruscheweyh Derivatives. International Journal of Mathematics and Mathematical Sciences, 2004, 1937-1942.
https://doi.org/10.1155/s0161171204309051
[16] Deniz, E. and Orhan, H. (2010) The Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions. Kyungpook Mathematical Journal, 50, 37-47.
https://doi.org/10.5666/kmj.2010.50.1.037
[17] Deniz, E., Çağlar, M. and Orhan, H. (2012) The Fekete-Szegö Problem for a Class of Analytic Functions Defined by Dziok-Srivastava Operator. Kodai Mathematical Journal, 35, 439-462.
https://doi.org/10.2996/kmj/1352985448
[18] Frasin, B. and Darus, M. (2003) On Fekete-Szego Problem Using Hadamard Product. The International Journal of Mathematics and Mathematical Sciences, 12, 1289-1295.
[19] Goel, R.M. and Mehrok, B.S. (1991) A Coefficient Inequality for Certain Classes of Analytic Functions. Tamkang Journal of Mathematics, 22, 153-163.
https://doi.org/10.5556/j.tkjm.22.1991.4588
[20] Keogh, F.R. and Merkes, E.P. (1969) A Coefficient Inequality for Certain Classes of Analytic Functions. Proceedings of the American Mathematical Society, 20, 8-12.
https://doi.org/10.1090/s0002-9939-1969-0232926-9
[21] Orhan, H. and Kamali, M. (2003) On the Fekete-Szegö Problem. Applied Mathematics and Computation, 144, 181-186.
https://doi.org/10.1016/s0096-3003(02)00426-5
[22] Orhan, H. and Răducanu, D. (2009) Fekete-Szegö Problem for Strongly Starlike Functions Associated with Generalized Hypergeometric Functions. Mathematical and Computer Modelling, 50, 430-438.
https://doi.org/10.1016/j.mcm.2009.04.014
[23] Orhan, H., Yagmur, N. and Deniz, E. (2011) Coefficient Inequality for a Generalized Subclass of Analytic Functions. Bulletin of the Transilvania University of Brasov. Series III, 4, 51-57.
[24] Orhan, H., Deniz, E. and Çağlar, M. (2012) Fekete-Szegö Problem for Certain Subclasses of Analytic Functions. Demonstratio Mathematica, 45, 835-846.
https://doi.org/10.1515/dema-2013-0423
[25] Srivastava, H.M., Mishra, A.K. and Das, M.K. (2001) The Fekete-Szegö-Problem for a Subclass of Close-to-Convex Functions. Complex Variables, Theory and Application: An International Journal, 44, 145-163.
https://doi.org/10.1080/17476930108815351
[26] Văn An, L. (2023) The Fekete-Szego Problem of Analytic Functions Based on the Deferential Opertor and Certain Subclasses. Journal of Advances in Mathematics, 22, 40-52.
https://doi.org/10.24297/jam.v22i.9499

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.