[1]
|
Yanai, M. and Wu, G.X. (2006) Effects of Tibetan Plateau. In: Wang, B., Ed., The Asian Monsoon, Springer.
|
[2]
|
Smith, E.A. and Shi, L. (1995) Reducing Discrepancies in Atmospheric Heat Budget of Tibetan Plateau by Satellite-Based Estimates of Radiative Cooling and Cloud-Radiation Feedback. Meteorology and Atmospheric Physics, 56, 229-260. https://doi.org/10.1007/bf01030139
|
[3]
|
Yeh, T. (1950) The Circulation of the High Troposphere over China in the Winter of 1945-46. Tellus A: Dynamic Meteorology and Oceanography, 2, 173-183. https://doi.org/10.3402/tellusa.v2i3.8548
|
[4]
|
Li, D., Yang, K., Tang, W., Li, X., Zhou, X. and Guo, D. (2020) Characterizing Precipitation in High Altitudes of the Western Tibetan Plateau with a Focus on Major Glacier Areas. International Journal of Climatology, 40, 5114-5127. https://doi.org/10.1002/joc.6509
|
[5]
|
Wei, Z.G., Hang, R.H. and Dong, W.J. (2003) Interannual and Interdecadal Variations of Air Temperature and Precipitation over the Tibetan Plateau (in Chinese). Chinese Journal of Atmospheric Sciences, 27, 157-170.
|
[6]
|
Zhou, J., Wen, J., Wang, X., Jia, D. and Chen, J. (2016) Analysis of the Qinghai-Xizang Plateau Monsoon Evolution and Its Linkages with Soil Moisture. Remote Sensing, 8, 493.
|
[7]
|
Ma, Y. (2009) Recent Advances on the Study of Land-Atmospheric Interaction on the Tibetan Plateau. Geophysical Research Abstracts, 11, EGU2009-1674.
|
[8]
|
Wu, G., Guan, Y., Liu, Y., Yan, J. and Mao, J. (2011) Air-Sea Interaction and Formation of the Asian Summer Monsoon Onset Vortex over the Bay of Bengal. Climate Dynamics, 38, 261-279. https://doi.org/10.1007/s00382-010-0978-9
|
[9]
|
Wu, G., Liu, Y., He, B., Bao, Q., Duan, A. and Jin, F. (2012) Thermal Controls on the Asian Summer Monsoon. Scientific Reports, 2, Article No. 404. https://doi.org/10.1038/srep00404
|
[10]
|
Duan, A.M. and Wu, G.X. (2005) Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns over Subtropical Asia. Climate Dynamics, 24, 793-807. https://doi.org/10.1007/s00382-004-0488-8
|
[11]
|
Yanai, M., Li, C. and Song, Z. (1992) Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon. Journal of the Meteorological Society of Japan. Ser. II, 70, 319-351. https://doi.org/10.2151/jmsj1965.70.1b_319
|
[12]
|
Han, Y., Fang, X., Zhao, T., Bai, H., Kang, S. and Song, L. (2009) Suppression of Precipitation by Dust Particles Originated in the Tibetan Plateau. Atmospheric Environment, 43, 568-574. https://doi.org/10.1016/j.atmosenv.2008.10.018
|
[13]
|
Duan, A. and Wu, G. (2008) Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part I: Observations. Journal of Climate, 21, 3149-3164. https://doi.org/10.1175/2007jcli1912.1
|
[14]
|
Kang, S., Xu, Y., You, Q., Flügel, W., Pepin, N. and Yao, T. (2010) Review of Climate and Cryospheric Change in the Tibetan Plateau. Environmental Research Letters, 5, Article 015101. https://doi.org/10.1088/1748-9326/5/1/015101
|
[15]
|
Wang, B., Bao, Q., Hoskins, B., Wu, G. and Liu, Y. (2008) Tibetan Plateau Warming and Precipitation Changes in East Asia. Geophysical Research Letters, 35, L14702. https://doi.org/10.1029/2008gl034330
|
[16]
|
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D.R., Wang, N., et al. (2009) Black Soot and the Survival of Tibetan Glaciers. Proceedings of the National Academy of Sciences, 106, 22114-22118. https://doi.org/10.1073/pnas.0910444106
|
[17]
|
Yao, T., Pu, J., Lu, A., Wang, Y. and Yu, W. (2007) Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions. Arctic, Antarctic, and Alpine Research, 39, 642-650. https://doi.org/10.1657/1523-0430(07-510)[yao]2.0.co;2
|
[18]
|
Song, J. and Xie, X. (2024) Assessment of Extreme Temperature in the Qinghai-Xizang Plateau and Surrounding Areas. Open Access Library, 11, 1-13. https://doi.org/10.4236/oalib.1111866
|
[19]
|
Shichang, K., Wake, C.P., Dahe, Q., Mayewski, P.A. and Tandong, Y. (2000) Monsoon and Dust Signals Recorded in Dasuopu Glacier, Tibetan Plateau. Journal of Glaciology, 46, 222-226. https://doi.org/10.3189/172756500781832864
|
[20]
|
Lau, K.-M. and Kim, M.K. (2006) Observational Relationships between Aerosol and Asian Monsoon Rainfall, and Circulation. Geophysical Research Letters, 33, L21810. https://doi.org/10.1029/2006gl027546
|
[21]
|
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., et al. (2019) Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 100, 423-444. https://doi.org/10.1175/bams-d-17-0057.1
|
[22]
|
You, Q., Fraedrich, K., Min, J., Kang, S., Zhu, X., Pepin, N., et al. (2013) Observed Surface Wind Speed in the Tibetan Plateau since 1980 and Its Physical Causes. International Journal of Climatology, 34, 1873-1882. https://doi.org/10.1002/joc.3807
|
[23]
|
Fang, X., Han, Y., Ma, J., Song, L., Yang, S. and Zhang, X. (2004) Dust Storms and Loess Accumulation on the Tibetan Plateau: A Case Study of Dust Event on 4 March 2003 in Lhasa. Chinese Science Bulletin, 49, 953-960. https://doi.org/10.1007/bf03184018
|
[24]
|
Forster, P. et al. (2007) Radiative Forcing of Climate Change, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, 129-234.
|
[25]
|
Han, Y., Fang, X., Kang, S., Wang, H. and Kang, F. (2008) Shifts of Dust Source Regions over Central Asia and the Tibetan Plateau: Connections with the Arctic Oscillation and the Westerly Jet. Atmospheric Environment, 42, 2358-2368. https://doi.org/10.1016/j.atmosenv.2007.12.025
|
[26]
|
Zhang, X.Y., Arimoto, R., Cao, J.J., An, Z.S. and Wang, D. (2001) Atmospheric Dust Aerosol over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 106, 18471-18476. https://doi.org/10.1029/2000jd900672
|
[27]
|
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., et al. (2007) Summer Dust Aerosols Detected from CALIPSO over the Tibetan Plateau. Geophysical Research Letters, 34, L18805. https://doi.org/10.1029/2007gl029938
|
[28]
|
Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., et al. (2008) Airborne Dust Distributions over the Tibetan Plateau and Surrounding Areas Derived from the First Year of CALIPSO Lidar Observations. Atmospheric Chemistry and Physics, 8, 5045-5060. https://doi.org/10.5194/acp-8-5045-2008
|
[29]
|
Liu, Y., Sato, Y., Jia, R., Xie, Y., Huang, J. and Nakajima, T. (2015) Modeling Study on the Transport of Summer Dust and Anthropogenic Aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics, 15, 12581-12594. https://doi.org/10.5194/acp-15-12581-2015
|
[30]
|
Xia, X., Wang, P., Wang, Y., Li, Z., Xin, J., Liu, J., et al. (2008) Aerosol Optical Depth over the Tibetan Plateau and Its Relation to Aerosols over the Taklimakan Desert. Geophysical Research Letters, 35, L16804. https://doi.org/10.1029/2008gl034981
|
[31]
|
Chen, S., Huang, J., Zhao, C., Qian, Y., Leung, L.R. and Yang, B. (2013) Modeling the Transport and Radiative Forcing of Taklimakan Dust over the Tibetan Plateau: A Case Study in the Summer of 2006. Journal of Geophysical Research: Atmospheres, 118, 797-812. https://doi.org/10.1002/jgrd.50122
|
[32]
|
Xu, C., Ma, Y., Yang, K. and You, C. (2018) Tibetan Plateau Impacts on Global Dust Transport in the Upper Troposphere. Journal of Climate, 31, 4745-4756. https://doi.org/10.1175/jcli-d-17-0313.1
|
[33]
|
Middleton, N.J. (1986) A Geography of Dust Storms in South-West Asia. Journal of Climatology, 6, 183-196. https://doi.org/10.1002/joc.3370060207
|
[34]
|
Jia, R., Liu, Y., Chen, B., Zhang, Z. and Huang, J. (2015) Source and Transportation of Summer Dust over the Tibetan Plateau. Atmospheric Environment, 123, 210-219. https://doi.org/10.1016/j.atmosenv.2015.10.038
|
[35]
|
Hu, Z., Huang, J., Zhao, C., Jin, Q., Ma, Y. and Yang, B. (2020) Modeling Dust Sources, Transport, and Radiative Effects at Different Altitudes over the Tibetan Plateau. Atmospheric Chemistry and Physics, 20, 1507-1529. https://doi.org/10.5194/acp-20-1507-2020
|
[36]
|
Jia, R., Luo, M., Liu, Y., Zhu, Q., Hua, S., Wu, C., et al. (2019) Anthropogenic Aerosol Pollution over the Eastern Slope of the Tibetan Plateau. Advances in Atmospheric Sciences, 36, 847-862. https://doi.org/10.1007/s00376-019-8212-0
|
[37]
|
Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., et al. (2009) Taklimakan Dust Aerosol Radiative Heating Derived from CALIPSO Observations Using the Fu-Liou Radiation Model with CERES Constraints. Atmospheric Chemistry and Physics, 9, 4011-4021. https://doi.org/10.5194/acp-9-4011-2009
|
[38]
|
Liu, Y., Huang, J., Wang, T., Li, J., Yan, H. and He, Y. (2022) Aerosol-Cloud Interactions over the Tibetan Plateau: An Overview. Earth-Science Reviews, 234, Article 104216. https://doi.org/10.1016/j.earscirev.2022.104216
|
[39]
|
Liu, Y., Hua, S., Jia, R. and Huang, J. (2019) Effect of Aerosols on the Ice Cloud Properties over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124, 9594-9608. https://doi.org/10.1029/2019jd030463
|
[40]
|
Liu, Y., Zhu, Q., Huang, J., Hua, S. and Jia, R. (2019) Impact of Dust-Polluted Convective Clouds over the Tibetan Plateau on Downstream Precipitation. Atmospheric Environment, 209, 67-77. https://doi.org/10.1016/j.atmosenv.2019.04.001
|
[41]
|
Jia, R., Liu, Y., Hua, S., Zhu, Q. and Shao, T. (2018) Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product. Journal of Meteorological Research, 32, 707-722. https://doi.org/10.1007/s13351-018-8060-3
|
[42]
|
Kuhlmann, J. and Quaas, J. (2010) How Can Aerosols Affect the Asian Summer Monsoon? Assessment during Three Consecutive Pre-Monsoon Seasons from CALIPSO Satellite Data. Atmospheric Chemistry and Physics, 10, 4673-4688. https://doi.org/10.5194/acp-10-4673-2010
|
[43]
|
Lau, W.K.M., Kim, M., Kim, K. and Lee, W. (2010) Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols. Environmental Research Letters, 5, Article 025204. https://doi.org/10.1088/1748-9326/5/2/025204
|
[44]
|
Lau, W. and Kim, K. (2018) Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas-Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis. Atmosphere, 9, Article 438. https://doi.org/10.3390/atmos9110438
|
[45]
|
Shen, J., Xie, X., Cheng, X. and Liu, X. (2020) Effects of Dust-in-Snow Forcing over the Tibetan Plateau on the East Asian Dust Cycle during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 542, Article 109442. https://doi.org/10.1016/j.palaeo.2019.109442
|
[46]
|
Huang, J., Wang, T., Wang, W., Li, Z. and Yan, H. (2014) Climate Effects of Dust Aerosols over East Asian Arid and Semiarid Regions. Journal of Geophysical Research: Atmospheres, 119, 11398-11416. https://doi.org/10.1002/2014jd021796
|
[47]
|
Sun, H., Liu, X. and Pan, Z. (2017) Direct Radiative Effects of Dust Aerosols Emitted from the Tibetan Plateau on the East Asian Summer Monsoon—A Regional Climate Model Simulation. Atmospheric Chemistry and Physics, 17, 13731-13745. https://doi.org/10.5194/acp-17-13731-2017
|
[48]
|
Li, H. and Wang, C. (2022) Impact of Dust Radiation Effect on Simulations of Temperature and Wind—A Case Study in Taklimakan Desert. Atmospheric Research, 273, 106163. https://doi.org/10.1016/j.atmosres.2022.106163
|
[49]
|
Li, S., Huang, G. and Hu, Z.J. (2003) Analysis of Ice Nuclei in Atmosphere in Henan County in Upper Reaches of Huanghe River. Journal of Applied Meteorological Sci-ence, 14, 41-48.
|
[50]
|
Liu, Y., Zhu, Q., Hua, S., Alam, K., Dai, T. and Cheng, Y. (2020) Tibetan Plateau Driven Impact of Taklimakan Dust on Northern Rainfall. Atmospheric Environment, 234, Article 117583. https://doi.org/10.1016/j.atmosenv.2020.117583
|
[51]
|
Meehl, G.A., Arblaster, J.M. and Collins, W.D. (2008) Effects of Black Carbon Aerosols on the Indian Monsoon. Journal of Climate, 21, 2869-2882. https://doi.org/10.1175/2007jcli1777.1
|
[52]
|
Lau, K.M., Kim, M.K. and Kim, K.M. (2006) Asian Summer Monsoon Anomalies Induced by Aerosol Direct Forcing: The Role of the Tibetan Plateau. Climate Dynamics, 26, 855-864. https://doi.org/10.1007/s00382-006-0114-z
|
[53]
|
Zhang, D.D., Jim, C.Y., Peart, M.R. and Shi, C. (2003) Rapid Changes of Precipitation Ph in Qinghai Province, the Northeastern Tibetan Plateau. Science of the Total Environment, 305, 241-248. https://doi.org/10.1016/s0048-9697(02)00464-3
|
[54]
|
D’Errico, M., Cagnazzo, C., Fogli, P.G., Lau, W.K.M., von Hardenberg, J., Fierli, F., et al. (2015) Indian Monsoon and the Elevated-Heat-Pump Mechanism in a Coupled Aerosol-Climate Model. Journal of Geophysical Research: Atmospheres, 120, 8712-8723. https://doi.org/10.1002/2015jd023346
|
[55]
|
Nigam, S. and Bollasina, M. (2010) “Elevated Heat Pump” Hypothesis for the Aerosol-Monsoon Hydroclimate Link: “Grounded” in Observations? Journal of Geophysical Research: Atmospheres, 115, D16201. https://doi.org/10.1029/2009jd013800
|
[56]
|
Ma, Y., Zhong, L., Wang, B., Ma, W., Chen, X. and Li, M. (2011) Determination of Land Surface Heat Fluxes over Heterogeneous Landscape of the Tibetan Plateau by Using the MODIS and in Situ Data. Atmospheric Chemistry and Physics, 11, 10461-10469. https://doi.org/10.5194/acp-11-10461-2011
|
[57]
|
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., et al. (2018) Black Carbon and Mineral Dust in Snow Cover on the Tibetan Plateau. The Cryosphere, 12, 413-431. https://doi.org/10.5194/tc-12-413-2018
|
[58]
|
Qian, Y., Yasunari, T.J., Doherty, S.J., Flanner, M.G., Lau, W.K.M., Ming, J., et al. (2014) Light-Absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact. Advances in Atmospheric Sciences, 32, 64-91. https://doi.org/10.1007/s00376-014-0010-0
|
[59]
|
Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M., Li, C., et al. (2017) Light-Absorbing Impurities Enhance Glacier Albedo Reduction in the Southeastern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122, 6915-6933. https://doi.org/10.1002/2016jd026397
|
[60]
|
Ramanathan, V. and Carmichael, G. (2008) Global and Regional Climate Changes Due to Black Carbon. Nature Geoscience, 1, 221-227. https://doi.org/10.1038/ngeo156
|
[61]
|
Zhang, R., Wang, H., Qian, Y., Rasch, P.J., Easter, R.C., Ma, P.-L., et al. (2015) Quantifying Sources, Transport, Deposition, and Radiative Forcing of Black Carbon over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 15, 6205-6223. https://doi.org/10.5194/acp-15-6205-2015
|
[62]
|
Ji, Z. (2016) Modeling Black Carbon and Its Potential Radiative Effects over the Tibetan Plateau. Advances in Climate Change Research, 7, 139-144. https://doi.org/10.1016/j.accre.2016.10.002
|
[63]
|
Qu, B., Ming, J., Kang, S.-C., Zhang, G.-S., Li, Y.-W., Li, C.-D., et al. (2014) The Decreasing Albedo of the Zhadang Glacier on Western Nyainqentanglha and the Role of Light-Absorbing Impurities. Atmospheric Chemistry and Physics, 14, 11117-11128. https://doi.org/10.5194/acp-14-11117-2014
|
[64]
|
Wang, T., Tang, J., Sun, M., Liu, X., Huang, Y., Huang, J., et al. (2021) Identifying a Transport Mechanism of Dust Aerosols over South Asia to the Tibetan Plateau: A Case Study. Science of the Total Environment, 758, Article 143714. https://doi.org/10.1016/j.scitotenv.2020.143714
|
[65]
|
Fujita, K. (2002) Impact of Dust on Glacier Mass Balance of the Tibetan Plateau. Journal of Arid Land Studies, 11, 355-360.
|
[66]
|
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., et al. (2012) Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2, 663-667. https://doi.org/10.1038/nclimate1580
|
[67]
|
Cheng, G. and Wu, T. (2007) Responses of Permafrost to Climate Change and Their Environmental Significance, Qinghai-Tibet Plateau. Journal of Geophysical Research: Earth Surface, 112, F02S03. https://doi.org/10.1029/2006jf000631
|
[68]
|
Ménégoz, M., Krinner, G., Balkanski, Y., Boucher, O., Cozic, A., Lim, S., et al. (2014) Snow Cover Sensitivity to Black Carbon Deposition in the Himalayas: From Atmospheric and Ice Core Measurements to Regional Climate Simulations. Atmospheric Chemistry and Physics, 14, 4237-4249. https://doi.org/10.5194/acp-14-4237-2014
|
[69]
|
Xu, W., Ma, L., Ma, M., Zhang, H. and Yuan, W. (2017) Spatial-Temporal Variability of Snow Cover and Depth in the Qinghai-Tibetan Plateau. Journal of Climate, 30, 1521-1533. https://doi.org/10.1175/jcli-d-15-0732.1
|
[70]
|
Liu, X. and Yanai, M. (2002) Influence of Eurasian Spring Snow Cover on Asian Summer Rainfall. International Journal of Climatology, 22, 1075-1089. https://doi.org/10.1002/joc.784
|
[71]
|
Zhu, Y.X. and Ding, Y.H. (2007) Influences of Snow Cover over Tibetan Plateau on Weather and Climate: Advances and Problems. Meteorological Science and Tech-nology, 35, 1-8.
|
[72]
|
Bai, Y. and Feng, X. (1994) Introduction to Some Research Work on Snow Remote Sensing. Remote Sensing Technology and Application, 12, 59-65.
|
[73]
|
Vernekar, A.D., Zhou, J. and Shukla, J. (1995) The Effect of Eurasian Snow Cover on the Indian Monsoon. Journal of Climate, 8, 248-266. https://doi.org/10.1175/1520-0442(1995)008<0248:teoesc>2.0.co;2
|
[74]
|
Yao, T., Thompson, L.G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., et al. (2012) Third Pole Environment (TPE). Environmental Development, 3, 52-64. https://doi.org/10.1016/j.envdev.2012.04.002
|
[75]
|
Zhao, H. and Moore, G.W.K. (2004) On the Relationship between Tibetan Snow Cover, the Tibetan Plateau Monsoon and the Indian Summer Monsoon. Geophysical Research Letters, 31, L14204. https://doi.org/10.1029/2004gl020040
|
[76]
|
Immerzeel, W.W., van Beek, L.P.H. and Bierkens, M.F.P. (2010) Climate Change Will Affect the Asian Water Towers. Science, 328, 1382-1385. https://doi.org/10.1126/science.1183188
|
[77]
|
Dong, Z., Brahney, J., Kang, S., Elser, J., Wei, T., Jiao, X., et al. (2020) Aeolian Dust Transport, Cycle and Influences in High-Elevation Cryosphere of the Tibetan Plateau Region: New Evidence from Alpine Snow and Ice. Earth-Science Reviews, 211, Article 103408. https://doi.org/10.1016/j.earscirev.2020.103408
|
[78]
|
Bäumler, R. (2001) Pedogenic Studies in Aeolian Deposits in the High Mountain Area of Eastern Nepal. Quaternary International, 76, 93-102. https://doi.org/10.1016/s1040-6182(00)00093-8
|
[79]
|
Feng, J., Hu, Z., Ju, J. and Lin, Y. (2014) The Dust Provenance and Transport Mechanism for the Chengdu Clay in the Sichuan Basin, China. Catena, 121, 68-80. https://doi.org/10.1016/j.catena.2014.04.018
|
[80]
|
Lehmkuhl, F., Klinge, M., Rees-Jones, J. and Rhodes, E.J. (2000) Late Quaternary Aeolian Sedimentation in Central and South-Eastern Tibet. Quaternary International, 68, 117-132. https://doi.org/10.1016/s1040-6182(00)00038-0
|
[81]
|
Lin, Y. and Feng, J. (2015) Aeolian Dust Contribution to the Formation of Alpine Soils at Amdo (Northern Tibetan Plateau). Geoderma, 259, 104-115. https://doi.org/10.1016/j.geoderma.2015.05.012
|
[82]
|
Caine, N. (1974) The Geomorphic Processes of the Alpine Environment. In: Ives, J.D., Barry, R.G., Eds., Arctic and Alpine Environments, Methuen, 721-748.
|
[83]
|
Thorn, C.E. and Darmody, R.G. (1980) Contemporary Eolian Sediments in the Alpine Zone, Colorado Front Range. Physical Geography, 1, 162-171. https://doi.org/10.1080/02723646.1980.10642197
|
[84]
|
Litaor, M.I. (1987) The Influence of Eolian Dust on the Genesis of Alpine Soils in the Front Range, Colorado. Soil Science Society of America Journal, 51, 142-147. https://doi.org/10.2136/sssaj1987.03615995005100010031x
|
[85]
|
Bockheim, J.G. and Koerner, D. (1997) Pedogenesis in Alpine Ecosystems of the Eastern Uinta Mountains, Utah, U.S.A. Arctic and Alpine Research, 29, 164-172. https://doi.org/10.2307/1552043
|
[86]
|
Caspari, T., Bäumler, R., Norbu, C., Tshering, K. and Baillie, I. (2009) Soil Formation in Phobjikha Valley, Central Bhutan with Special Regard to the Redistribution of Loessic Sediments. Journal of Asian Earth Sciences, 34, 403-417. https://doi.org/10.1016/j.jseaes.2008.07.002
|
[87]
|
Field, J.P., Belnap, J., Breshears, D.D., Neff, J.C., Okin, G.S., Whicker, J.J., et al. (2009) The Ecology of Dust. Frontiers in Ecology and the Environment, 8, 423-430. https://doi.org/10.1890/090050
|
[88]
|
Mahowald, N., Jickells, T.D., Baker, A.R., Artaxo, P., Benitez-Nelson, C.R., Bergametti, G., et al. (2008) Global Distribution of Atmospheric Phosphorus Sources, Concentrations and Deposition Rates, and Anthropogenic Impacts. Global Biogeochemical Cycles, 22, GB4026. https://doi.org/10.1029/2008gb003240
|
[89]
|
Yu, H., Chin, M., Bian, H., Yuan, T., Prospero, J.M., Omar, A.H., et al. (2015) Quantification of Trans-Atlantic Dust Transport from Seven-Year (2007-2013) Record of CALIPSO Lidar Measurements. Remote Sensing of Environment, 159, 232-249. https://doi.org/10.1016/j.rse.2014.12.010
|
[90]
|
Lawrence, C.R., Neff, J.C. and Farmer, G.L. (2011) The Accretion of Aeolian Dust in Soils of the San Juan Mountains, Colorado, USA. Journal of Geophysical Research: Earth Surface, 116, F02013. https://doi.org/10.1029/2010jf001899
|
[91]
|
Ridgwell, A.J. (2002) Dust in the Earth System: The Biogeochemical Linking of Land, Air and Sea. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360, 2905-2924. https://doi.org/10.1098/rsta.2002.1096
|
[92]
|
Baumann, F., He, J., Schmidt, K., Kühn, P. and Scholten, T. (2009) Pedogenesis, Permafrost, and Soil Moisture as Controlling Factors for Soil Nitrogen and Carbon Contents across the Tibetan Plateau. Global Change Biology, 15, 3001-3017. https://doi.org/10.1111/j.1365-2486.2009.01953.x
|
[93]
|
Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., et al. (1994) Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils. Global Biogeochemical Cycles, 8, 279-293. https://doi.org/10.1029/94gb00993
|
[94]
|
Christensen, B.T. (2001) Physical Fractionation of Soil and Structural and Functional Complexity in Organic Matter Turnover. European Journal of Soil Science, 52, 345-353. https://doi.org/10.1046/j.1365-2389.2001.00417.x
|
[95]
|
Wang, W., Wang, Q. and Lu, Z. (2009) Soil Organic Carbon and Nitrogen Content of Density Fractions and Effect of Meadow Degradation to Soil Carbon and Nitrogen of Fractions in Alpine Kobresia Meadow. Science in China Series D: Earth Sciences, 52, 660-668. https://doi.org/10.1007/s11430-009-0056-5
|
[96]
|
Wang, T., Chen, Y., Gan, Z., Han, Y., Li, J. and Huang, J. (2020) Assessment of Dominating Aerosol Properties and Their Long-Term Trend in the Pan-Third Pole Region: A Study with 10-Year Multi-Sensor Measurements. Atmospheric Environment, 239, Article 117738. https://doi.org/10.1016/j.atmosenv.2020.117738
|
[97]
|
Ramanathan, V., Ramana, M.V., Roberts, G., Kim, D., Corrigan, C., Chung, C., et al. (2007) Warming Trends in Asia Amplified by Brown Cloud Solar Absorption. Nature, 448, 575-578. https://doi.org/10.1038/nature06019
|
[98]
|
Lüthi, Z.L., Škerlak, B., Lauer, A., Mues, A., Rupakheti, M., et al. (2015) Atmospheric Brown Clouds Reach the Tibetan Plateau by Crossing the Himalayas. Atmospheric Chemistry and Physics, 15, 6007-6021. https://doi.org/10.5194/acp-15-6007-2015
|
[99]
|
Feng, X., Mao, R., Gong, D., Zhao, C., Wu, C., Zhao, C., et al. (2020) Increased Dust Aerosols in the High Troposphere over the Tibetan Plateau from 1990s to 2000s. Journal of Geophysical Research: Atmospheres, 125, e2020JD032807. https://doi.org/10.1029/2020jd032807
|
[100]
|
Ruan, X., Yang, Y., Galy, A., Fang, X., Jin, Z., Zhang, F., et al. (2019) Evidence for Early (≥12.7 Ma) Eolian Dust Impact on River Chemistry in the Northeastern Tibetan Plateau. Earth and Planetary Science Letters, 515, 79-89. https://doi.org/10.1016/j.epsl.2019.03.022
|
[101]
|
Jin, Z., You, C., Yu, J., Wu, L., Zhang, F. and Liu, H. (2011) Seasonal Contributions of Catchment Weathering and Eolian Dust to River Water Chemistry, Northeastern Tibetan Plateau: Chemical and Sr Isotopic Constraints. Journal of Geophysical Research, 116, F04006. https://doi.org/10.1029/2011jf002002
|
[102]
|
Yu, Y. and Ginoux, P. (2022) Enhanced Dust Emission Following Large Wildfires Due to Vegetation Disturbance. Nature Geoscience, 15, 878-884. https://doi.org/10.1038/s41561-022-01046-6
|