[1]
|
Nadel, J., Athanasiadou, R., Lemetre, C., Wijetunga, N.A., Ó Broin, P., Sato, H., et al. (2015) RNA: DNA Hybrids in the Human Genome Have Distinctive Nucleotide Characteristics, Chromatin Composition, and Transcriptional Relationships. Epigenetics & Chromatin, 8, Article No. 46. https://doi.org/10.1186/s13072-015-0040-6
|
[2]
|
Vanova, V., Mitrevska, K., Milosavljevic, V., Hynek, D., Richtera, L. and Adam, V. (2021) Peptide-Based Electrochemical Biosensors Utilized for Protein Detection. Biosensors and Bioelectronics, 180, Article ID: 113087. https://doi.org/10.1016/j.bios.2021.113087
|
[3]
|
Zheng, C., Wang, K., Zheng, W., Cheng, Y., Li, T., Cao, B., et al. (2021) Rapid Developments in Lateral Flow Immunoassay for Nucleic Acid Detection. The Analyst, 146, 1514-1528. https://doi.org/10.1039/d0an02150d
|
[4]
|
Lockley, A.K. and Bardsley, R.G. (2000) DNA-Based Methods for Food Authentication. Trends in Food Science & Technology, 11, 67-77. https://doi.org/10.1016/s0924-2244(00)00049-2
|
[5]
|
Kesmen, Z., Gulluce, A., Sahin, F. and Yetim, H. (2009) Identification of Meat Species by Taq-Man-Based Real-Time PCR Assay. Meat Science, 82, 444-449. https://doi.org/10.1016/j.meatsci.2009.02.019
|
[6]
|
Hellberg, R.S.R. and Morrissey, M.T. (2011) Advances in DNA-Based Techniques for the Detection of Seafood Species Substitution on the Commercial Market. JALA: Journal of the Association for Laboratory Automation, 16, 308-321. https://doi.org/10.1016/j.jala.2010.07.004
|
[7]
|
Srisomwat, C., Yakoh, A., Chuaypen, N., Tangkijvanich, P., Vilaivan, T. and Chailapakul, O. (2020) Amplification-Free DNA Sensor for the One-Step Detection of the Hepatitis B Virus Using an Automated Paper-Based Lateral Flow Electrochemical Device. Analytical Chemistry, 93, 2879-2887. https://doi.org/10.1021/acs.analchem.0c04283
|
[8]
|
Lin, C., Hwang, D., Chiu, N., Weng, L., Liu, H., Mu, J., et al. (2020) Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. International Journal of Environmental Research and Public Health, 17, Article 564. https://doi.org/10.3390/ijerph17020564
|
[9]
|
Lee, S.H., Yu, J., Hwang, G., Kim, S., Kim, H.S., Ye, S., et al. (2017) CUT-PCR: Crispr-Mediated, Ultrasensitive Detection of Target DNA Using PCR. Oncogene, 36, 6823-6829. https://doi.org/10.1038/onc.2017.281
|
[10]
|
Liu, H., Chang, S., Chen, S., Du, Y., Wang, H., Wang, C., et al. (2022) Highly Sensitive and Rapid Detection of SARS-CoV-2 via a Portable CRISPR-Cas13a-Based Lateral Flow Assay. Journal of Medical Virology, 94, 5858-5866. https://doi.org/10.1002/jmv.28096
|
[11]
|
Qiu, X., Xu, S., Liu, X., Han, L., Zhao, B., Che, Y., et al. (2022) A Crispr-Based Nucleic Acid Detection Platform (CRISPR-CPA): Application for Detection of Nocardia Farcinica. Journal of Applied Microbiology, 132, 3685-3693. https://doi.org/10.1111/jam.15424
|
[12]
|
Zhang, X., He, X., Zhang, Y., Chen, L., Pan, Z., Huang, Y., et al. (2023) A New Method for the Detection of Mycobacterium Tuberculosis Based on the CRISPR/Cas System. BMC Infectious Diseases, 23, Article No. 680. https://doi.org/10.1186/s12879-023-08656-4
|
[13]
|
Wang, Y., Liu, L., Liu, X., Wu, K., Zhu, X., Ma, L., et al. (2022) An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter Pylori. Journal of Personalized Medicine, 12, Article 2082. https://doi.org/10.3390/jpm12122082
|
[14]
|
Kowalczyk, A. (2020) Trends and Perspectives in DNA Biosensors as Diagnostic Devices. Current Opinion in Electrochemistry, 23, 36-41. https://doi.org/10.1016/j.coelec.2020.03.003
|
[15]
|
Singh, A., Sharma, A., Ahmed, A., Sundramoorthy, A.K., Furukawa, H., Arya, S., et al. (2021) Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors, 11, Article 336. https://doi.org/10.3390/bios11090336
|
[16]
|
Dai, Y., Somoza, R.A., Wang, L., Welter, J.F., Li, Y., Caplan, A.I., et al. (2019) Exploring the Trans‐cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angewandte Chemie International Edition, 58, 17399-17405. https://doi.org/10.1002/anie.201910772
|
[17]
|
Thévenot, D.R., Toth, K., Durst, R.A. and Wilson, G.S. (2001) Electrochemical Biosensors: Recommended Definitions and Classification1international Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (electroanalytical Chemistry).1. Biosensors and Bioelectronics, 16, 121-131. https://doi.org/10.1016/s0956-5663(01)00115-4
|
[18]
|
Alhadrami, H.A. (2017) Biosensors: Classifications, Medical Applications, and Future Prospective. Biotechnology and Applied Biochemistry, 65, 497-508. https://doi.org/10.1002/bab.1621
|
[19]
|
Kim, J., Campbell, A.S., de Ávila, B.E. and Wang, J. (2019) Wearable Biosensors for Healthcare Monitoring. Nature Biotechnology, 37, 389-406. https://doi.org/10.1038/s41587-019-0045-y
|
[20]
|
Cesewski, E. and Johnson, B.N. (2020) Electrochemical Biosensors for Pathogen Detection. Biosensors and Bioelectronics, 159, Article ID: 112214. https://doi.org/10.1016/j.bios.2020.112214
|
[21]
|
Kabay, G., DeCastro, J., Altay, A., Smith, K., Lu, H., Capossela, A.M., et al. (2022) Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Advanced Materials, 34, Article ID: 2201085. https://doi.org/10.1002/adma.202201085
|
[22]
|
Zein, M.I.H.L., Hardianto, A., Irkham, I., Zakiyyah, S.N., Devi, M.J., Manan, N.S.A., et al. (2023) Recent Development of Electrochemical and Optical Aptasensors for Detection of Antibiotics in Food Monitoring Applications. Journal of Food Composition and Analysis, 124, Article ID: 105644. https://doi.org/10.1016/j.jfca.2023.105644
|
[23]
|
Magar, H.S., Hassan, R.Y.A. and Mulchandani, A. (2021) Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors, 21, Article 6578. https://doi.org/10.3390/s21196578
|
[24]
|
Peng, Y., Pan, Y., Sun, Z., Li, J., Yi, Y., Yang, J., et al. (2021) An Electrochemical Biosensor for Sensitive Analysis of the SARS-CoV-2 RNA. Biosensors and Bioelectronics, 186, Article ID: 113309. https://doi.org/10.1016/j.bios.2021.113309
|
[25]
|
Faria, H.A.M. and Zucolotto, V. (2019) Label-Free Electrochemical DNA Biosensor for Zika Virus Identification. Biosensors and Bioelectronics, 131, 149-155. https://doi.org/10.1016/j.bios.2019.02.018
|
[26]
|
He, Y., Cheng, L., Yang, Y., Chen, P., Qiu, B., Guo, L., et al. (2020) Label-Free Homogeneous Electrochemical Biosensor for HPV DNA Based on Entropy-Driven Target Recycling and Hyperbranched Rolling Circle Amplification. Sensors and Actuators B: Chemical, 320, Article ID: 128407. https://doi.org/10.1016/j.snb.2020.128407
|
[27]
|
Liu, Y., Cao, Y., Wang, T., Dong, Q., Li, J. and Niu, C. (2019) Detection of 12 Common Food-Borne Bacterial Pathogens by TaqMan Real-Time PCR Using a Single Set of Reaction Conditions. Frontiers in Microbiology, 10, Article 222. https://doi.org/10.3389/fmicb.2019.00222
|
[28]
|
Abdulbari, H.A. and Basheer, E.A.M. (2017) Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. ChemBioEng Reviews, 4, 92-105. https://doi.org/10.1002/cben.201600009
|
[29]
|
Wang, C., Xia, K., Wang, H., Liang, X., Yin, Z. and Zhang, Y. (2018) Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 31, Article ID: 1801072. https://doi.org/10.1002/adma.201801072
|
[30]
|
Lozano Untiveros, K., da Silva, E.G., de Abreu, F.C., da Silva-Júnior, E.F., de Araújo-Junior, J.X., Mendoça de Aquino, T., et al. (2019) An Electrochemical Biosensor Based on Hairpin-DNA Modified Gold Electrode for Detection of DNA Damage by a Hybrid Cancer Drug Intercalation. Biosensors and Bioelectronics, 133, 160-168. https://doi.org/10.1016/j.bios.2019.02.071
|
[31]
|
Khater, M., de la Escosura-Muñiz, A., Quesada-González, D. and Merkoçi, A. (2019) Electrochemical Detection of Plant Virus Using Gold Nanoparticle-Modified Electrodes. Analytica Chimica Acta, 1046, 123-131. https://doi.org/10.1016/j.aca.2018.09.031
|
[32]
|
Yu, H., Pu, Q., Weng, Z., Zhou, X., Li, J., Yang, Y., et al. (2021) DNAzyme Based Three-Way Junction Assay for Antibody-Free Detection of Locus-Specific N6-Methyladenosine Modifications. Biosensors and Bioelectronics, 194, Article ID: 113625. https://doi.org/10.1016/j.bios.2021.113625
|
[33]
|
Deng, L., zhou, S., Dong, J., Liu, Y., Huang, Z., Sun, H., et al. (2023) Crispr/cas12a and Primer-Assisted Rolling Circle Amplification Integrated Ultra-Sensitive Dual-Signal Sensing Platform for EGFR 19 Detection. Analytica Chimica Acta, 1279, Article ID: 341755. https://doi.org/10.1016/j.aca.2023.341755
|
[34]
|
Hoffman, A.S. and Hubbell, J.A. (2013) Surface-Immobilized Biomolecules. In: Ratner, B.D., et al., Eds., Biomaterials Science, Elsevier, 339-349. https://doi.org/10.1016/b978-0-08-087780-8.00032-2
|
[35]
|
Zhang, D., Yan, Y., Que, H., Yang, T., Cheng, X., Ding, S., et al. (2020) CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sensors, 5, 557-562. https://doi.org/10.1021/acssensors.9b02461
|
[36]
|
Lee, Y., Choi, J., Han, H., Park, S., Park, S.Y., Park, C., et al. (2021) Fabrication of Ultrasensitive Electrochemical Biosensor for Dengue Fever Viral RNA Based on Crispr/cpf1 Reaction. Sensors and Actuators B: Chemical, 326, Article ID: 128677. https://doi.org/10.1016/j.snb.2020.128677
|
[37]
|
Qing, M., Chen, S.L., Sun, Z., Fan, Y., Luo, H.Q. and Li, N.B. (2021) Universal and Programmable Rolling Circle Amplification-CRISPR/Cas12a-Mediated Immobilization-Free Electrochemical Biosensor. Analytical Chemistry, 93, 7499-7507. https://doi.org/10.1021/acs.analchem.1c00805
|
[38]
|
Globyte, V., Lee, S.H., Bae, T., Kim, J. and Joo, C. (2018) Crispr/Cas9 Searches for a Protospacer Adjacent Motif by Lateral Diffusion. The EMBO Journal, 38, e99466. https://doi.org/10.15252/embj.201899466
|
[39]
|
Uygun, Z.O., Yeniay, L. and Gi̇rgi̇n Sağın, F. (2020) CRISPR-dCas9 Powered Impedimetric Biosensor for Label-Free Detection of Circulating Tumor DNAs. Analytica Chimica Acta, 1121, 35-41. https://doi.org/10.1016/j.aca.2020.04.009
|
[40]
|
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia Coli, and Identification of the Gene Product. Journal of Bacteriology, 169, 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
|
[41]
|
Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V. and van der Oost, J. (2016) Diverse Evolutionary Roots and Mechanistic Variations of the CRISPR-Cas Systems. Science, 353, aad5147. https://doi.org/10.1126/science.aad5147
|
[42]
|
Chaudhuri, A., Halder, K. and Datta, A. (2022) Classification of CRISPR/Cas System and Its Application in Tomato Breeding. Theoretical and Applied Genetics, 135, 367-387. https://doi.org/10.1007/s00122-021-03984-y
|
[43]
|
Shi, Y., Fu, X., Yin, Y., Peng, F., Yin, X., Ke, G., et al. (2021) CRISPR-Cas12a System for Biosensing and Gene Regulation. Chemistry—An Asian Journal, 16, 857-867. https://doi.org/10.1002/asia.202100043
|
[44]
|
He, Q., Yu, D., Bao, M., Korensky, G., Chen, J., Shin, M., et al. (2020) High-Throughput and All-Solution Phase African Swine Fever Virus (ASFV) Detection Using Crispr-Cas12a and Fluorescence Based Point-Of-Care System. Biosensors and Bioelectronics, 154, Article ID: 112068. https://doi.org/10.1016/j.bios.2020.112068
|
[45]
|
Zakiyyah, S.N., Ibrahim, A.U., Babiker, M.S., Gaffar, S., Ozsoz, M., Zein, M.I.H.L., et al. (2022) Detection of Tropical Diseases Caused by Mosquitoes Using CRISPR-Based Biosensors. Tropical Medicine and Infectious Disease, 7, Article 309. https://doi.org/10.3390/tropicalmed7100309
|
[46]
|
Srivastava, S., Upadhyay, D.J. and Srivastava, A. (2020) Next-generation Molecular Diagnostics Development by CRISPR/Cas Tool: Rapid Detection and Surveillance of Viral Disease Outbreaks. Frontiers in Molecular Biosciences, 7, Article 582499. https://doi.org/10.3389/fmolb.2020.582499
|
[47]
|
Thompson, D. and Lei, Y. (2020) Mini Review: Recent Progress in RT-LAMP Enabled COVID-19 Detection. Sensors and Actuators Reports, 2, Article ID: 100017. https://doi.org/10.1016/j.snr.2020.100017
|
[48]
|
Patsali, P., Kleanthous, M. and Lederer, C.W. (2019) Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Molecular Diagnosis & Therapy, 23, 187-200. https://doi.org/10.1007/s40291-019-00391-4
|
[49]
|
Zhang, X. (2022) Development of Crispr-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes, 13, Article 2007. https://doi.org/10.3390/genes13112007
|
[50]
|
Wu, L., Wang, X., Wu, C., Cao, X., Tang, T., Huang, H., et al. (2022) Ultrasensitive SARS-CoV-2 Diagnosis by Crispr-Based Screen-Printed Carbon Electrode. Analytica Chimica Acta, 1221, Article ID: 340120. https://doi.org/10.1016/j.aca.2022.340120
|
[51]
|
Liu, N., Liu, R. and Zhang, J. (2022) CRISPR-Cas12a-Mediated Label-Free Electrochemical Aptamer-Based Sensor for SARS-CoV-2 Antigen Detection. Bioelectrochemistry, 146, Article ID: 108105. https://doi.org/10.1016/j.bioelechem.2022.108105
|
[52]
|
Chen, H., Li, Z., Chen, J., Yu, H., Zhou, W., Shen, F., et al. (2022) CRISPR/Cas12a-based Electrochemical Biosensor for Highly Sensitive Detection of cTnI. Bioelectrochemistry, 146, Article ID: 108167. https://doi.org/10.1016/j.bioelechem.2022.108167
|
[53]
|
Huang, L., Yuan, N., Guo, W., Zhang, Y. and Zhang, W. (2023) An Electrochemical Biosensor for the Highly Sensitive Detection of Staphylococcus aureus Based on SRCA-CRISPR/Cas12a. Talanta, 252, Article ID: 123821. https://doi.org/10.1016/j.talanta.2022.123821
|
[54]
|
Li, F., Ye, Q., Chen, M., Zhou, B., Zhang, J., Pang, R., et al. (2021) An Ultrasensitive CRISPR/Cas12a Based Electrochemical Biosensor for Listeria Monocytogenes Detection. Biosensors and Bioelectronics, 179, Article ID: 113073. https://doi.org/10.1016/j.bios.2021.113073
|
[55]
|
Cui, J., Luo, Q., Wei, C., Deng, X., Liang, H., Wei, J., et al. (2024) Electrochemical Biosensing for E.coli Detection Based on Triple Helix DNA Inhibition of CRISPR/Cas12a Cleavage Activity. Analytica Chimica Acta, 1285, Article ID: 342028. https://doi.org/10.1016/j.aca.2023.342028
|
[56]
|
He, Y., Jia, F., Sun, Y., Fang, W., Li, Y., Chen, J., et al. (2022) An Electrochemical Sensing Method Based on CRISPR/Cas12a System and Hairpin DNA Probe for Rapid and Sensitive Detection of Salmonella Typhimurium. Sensors and Actuators B: Chemical, 369, Article ID: 132301. https://doi.org/10.1016/j.snb.2022.132301
|
[57]
|
Wang, C., Zhang, Y., Liu, S., Yin, Y., Fan, G., Shen, Y., et al. (2023) Allosteric Probe-Triggered Isothermal Amplification to Activate CRISPR/Cas12a for Sensitive Electrochemiluminescence Detection of Salmonella. Food Chemistry, 425, Article ID: 136382. https://doi.org/10.1016/j.foodchem.2023.136382
|
[58]
|
Fu, X., Sun, J., Yu, B., Ye, Y., Sheng, L., Ji, J., et al. (2024) Investigating Enzyme Kinetics and Fluorescence Sensing Strategy of CRISPR/Cas12a for Foodborne Pathogenic Bacteria. Analytica Chimica Acta, 1290, Article ID: 342203. https://doi.org/10.1016/j.aca.2024.342203
|
[59]
|
Gu, X., Tang, Q., Kang, X., Ji, H., Shi, X., Shi, L., et al. (2024) A Portable Crispr-Cas12a Triggered Photothermal Biosensor for Sensitive and Visual Detection of Staphylococcus aureus and Listeria Monocytogenes. Talanta, 271, Article ID: 125678. https://doi.org/10.1016/j.talanta.2024.125678
|
[60]
|
Wu, J., Huang, Y., Ding, X., Kang, L., Wang, X., Li, D., et al. (2023) CPA-Cas12a-Based Lateral Flow Strip for Portable Assay of Methicillin-Resistant Staphylococcus aureus in Clinical Sample. Journal of Nanobiotechnology, 21, Article No. 234. https://doi.org/10.1186/s12951-023-02002-1
|
[61]
|
Cao, X., Chang, Y., Tao, C., Chen, S., Lin, Q., Ling, C., et al. (2023) Cas12a/Guide RNA-Based Platforms for Rapidly and Accurately Identifying Staphylococcus aureus and Methicillin-Resistant S. aureus. Microbiology Spectrum, 11, e04870-22. https://doi.org/10.1128/spectrum.04870-22
|
[62]
|
Li, Y., Shi, Z., Hu, A., Cui, J., Yang, K., Liu, Y., et al. (2022) Rapid One-Tube RPA-CRISPR/Cas12 Detection Platform for Methicillin-Resistant Staphylococcus aureus. Diagnostics, 12, Article 829. https://doi.org/10.3390/diagnostics12040829
|
[63]
|
Liu, Y., Liu, H., Yu, G., Sun, W., Aizaz, M., Yang, G., et al. (2023) One-Tube RPA-CRISPR Cas12a/Cas13a Rapid Detection of Methicillin-Resistant Staphylococcus aureus. Analytica Chimica Acta, 1278, Article ID: 341757. https://doi.org/10.1016/j.aca.2023.341757
|
[64]
|
Sun, X., Wang, Y., Zhang, L., Liu, S., Zhang, M., Wang, J., et al. (2020) CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157: H7 Detection Based on a Metal-Organic Framework Platform. Analytical Chemistry, 92, 3032-3041. https://doi.org/10.1021/acs.analchem.9b04162
|
[65]
|
Zhu, L., Liang, Z., Xu, Y., Chen, Z., Wang, J. and Zhou, L. (2023) Ultrasensitive and Rapid Visual Detection of Escherichia Coli O157:H7 Based on RAA-CRISPR/Cas12a System. Biosensors, 13, Article 659. https://doi.org/10.3390/bios13060659
|
[66]
|
Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., et al. (2020) An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosensors and Bioelectronics, 159, Article ID: 112143. https://doi.org/10.1016/j.bios.2020.112143
|
[67]
|
Wang, Y., Ke, Y., Liu, W., Sun, Y. and Ding, X. (2020) A One-Pot Toolbox Based on Cas12a/crRNA Enables Rapid Foodborne Pathogen Detection at Attomolar Level. ACS Sensors, 5, 1427-1435. https://doi.org/10.1021/acssensors.0c00320
|
[68]
|
Xia, X., Ma, B., Zhang, T., Lu, Y., Khan, M.R., Hu, Y., et al. (2021) G-Quadruplex-probing CRISPR-Cas12 Assay for Label-Free Analysis of Foodborne Pathogens and Their Colonization in Vivo. ACS Sensors, 6, 3295-3302. https://doi.org/10.1021/acssensors.1c01061
|
[69]
|
Zhang, H., Yao, S., Sheng, R., Wang, J., Li, H., Fu, Y., et al. (2022) A Cascade Amplification Strategy for Ultrasensitive Salmonella Typhimurium Detection Based on DNA Walker Coupling with CRISPR-Cas12a. Journal of Colloid and Interface Science, 625, 257-263. https://doi.org/10.1016/j.jcis.2022.06.027
|