[1]
|
Duan, C., Liao, H., Wang, K. and Ren, Y. (2023) The Research Hotspots and Trends of Volatile Organic Compound Emissions from Anthropogenic and Natural Sources: A Systematic Quantitative Review. Environmental Research, 216, Article ID: 114386. https://doi.org/10.1016/j.envres.2022.114386
|
[2]
|
David, E. and Niculescu, V. (2021) Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. International Journal of Environmental Research and Public Health, 18, Article 13147. https://doi.org/10.3390/ijerph182413147
|
[3]
|
Nair, A.T., Senthilnathan, J. and Nagendra, S.M.S. (2019) Emerging Perspectives on VOC Emissions from Landfill Sites: Impact on Tropospheric Chemistry and Local Air Quality. Process Safety and Environmental Protection, 121, 143-154. https://doi.org/10.1016/j.psep.2018.10.026
|
[4]
|
Ubando, A.T., Africa, A.D.M., Maniquiz-Redillas, M.C., Culaba, A.B. and Chen, W. (2021) Reduction of Particulate Matter and Volatile Organic Compounds in Biorefineries: A State-Of-The-Art Review. Journal of Hazardous Materials, 403, Article ID: 123955. https://doi.org/10.1016/j.jhazmat.2020.123955
|
[5]
|
Carpenter, P.C., Ciccioli, P., Goldstein, A., Hamilton, J.F., Hoffmann, T., Lewis, A. C., Williams, J., et al. (2007) Volatile Organic Compounds in the Atmosphere. Blackwell.
|
[6]
|
Kamal, M.S., Razzak, S.A. and Hossain, M.M. (2016) Catalytic Oxidation of Volatile Organic Compounds (VOCs)—A Review. Atmospheric Environment, 140, 117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031
|
[7]
|
Arı, A., Ertürk Arı, P., Yeni̇soy-Karakaş, S. and Gaga, E.O. (2020) Source Characterization and Risk Assessment of Occupational Exposure to Volatile Organic Compounds (VOCs) in a Barbecue Restaurant. Building and Environment, 174, Article ID: 106791. https://doi.org/10.1016/j.buildenv.2020.106791
|
[8]
|
Mu, X., Ding, H., Pan, W., Zhou, Q., Du, W., Qiu, K., et al. (2021) Research Progress in Catalytic Oxidation of Volatile Organic Compound Acetone. Journal of Environmental Chemical Engineering, 9, Article ID: 105650. https://doi.org/10.1016/j.jece.2021.105650
|
[9]
|
He, X., Che, X., Gao, S., Chen, X., Pan, M., Jiang, M., et al. (2022) Volatile Organic Compounds Emission Inventory of Organic Chemical Raw Material Industry. Atmospheric Pollution Research, 13, Article ID: 101276. https://doi.org/10.1016/j.apr.2021.101276
|
[10]
|
Zheng, Y., Zhao, Q., Shan, C., Lu, S., Su, Y., Han, R., et al. (2020) Enhanced Acetone Oxidation over the CeO2/Co3O4 Catalyst Derived from Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 12, 28139-28147. https://doi.org/10.1021/acsami.0c04904
|
[11]
|
Morales-Torres, S., Carrasco-Marín, F., Pérez-Cadenas, A. and Maldonado-Hódar, F. (2015) Coupling Noble Metals and Carbon Supports in the Development of Combustion Catalysts for the Abatement of BTX Compounds in Air Streams. Catalysts, 5, 774-799. https://doi.org/10.3390/catal5020774
|
[12]
|
Guo, Y., Wen, M., Li, G. and An, T. (2021) Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Nanoparticles Catalysts: A Critical Review. Applied Catalysis B: Environmental, 281, Article ID: 119447. https://doi.org/10.1016/j.apcatb.2020.119447
|
[13]
|
Ray, C. and Pal, T. (2017) Retracted Article: Recent Advances of Metal-Metal Oxide Nanocomposites and Their Tailored Nanostructures in Numerous Catalytic Applications. Journal of Materials Chemistry A, 5, 9465-9487. https://doi.org/10.1039/c7ta02116j
|
[14]
|
Gong, J. (2011) Structure and Surface Chemistry of Gold-Based Model Catalysts. Chemical Reviews, 112, 2987-3054. https://doi.org/10.1021/cr200041p
|
[15]
|
Ding, C., Dong, F. and Tang, Z. (2020) Research Progress on Catalysts for the Electrocatalytic Oxidation of Methanol. ChemistrySelect, 5, 13318-13340. https://doi.org/10.1002/slct.202003365
|
[16]
|
Jia, H., Xing, Y., Zhang, L., Zhang, W., Wang, J., Zhang, H., et al. (2023) Progress of Catalytic Oxidation of Typical Chlorined Volatile Organic Compounds (CVOCs): A Review. Science of the Total Environment, 865, Article ID: 161063. https://doi.org/10.1016/j.scitotenv.2022.161063
|
[17]
|
Yusuf, A., Snape, C., He, J., Xu, H., Liu, C., et al. (2017) Advances on Transition Metal Oxides Catalysts for Formaldehyde Oxidation: A Review. Catalysis Reviews, 59, 189-233. https://doi.org/10.1016/j.apcatb.2020.119447
|
[18]
|
Tang, W., Liu, G., Li, D., Liu, H., Wu, X., Han, N., et al. (2015) Design and Synthesis of Porous Non-Noble Metal Oxides for Catalytic Removal of VOCs. Science China Chemistry, 58, 1359-1366. https://doi.org/10.1007/s11426-015-5469-8
|
[19]
|
Azalim, S., Franco, M., Brahmi, R., Giraudon, J. and Lamonier, J. (2011) Removal of Oxygenated Volatile Organic Compounds by Catalytic Oxidation over Zr-Ce-Mn Catalysts. Journal of Hazardous Materials, 188, 422-427. https://doi.org/10.1016/j.jhazmat.2011.01.135
|
[20]
|
Solsona, B., Garcia, T., Aylón, E., Dejoz, A.M., Vázquez, I., Agouram, S., et al. (2011) Promoting the Activity and Selectivity of High Surface Area Ni-Ce-O Mixed Oxides by Gold Deposition for VOC Catalytic Combustion. Chemical Engineering Journal, 175, 271-278. https://doi.org/10.1016/j.cej.2011.09.104
|
[21]
|
Chen, X., Carabineiro, S.A.C., Bastos, S.S.T., Tavares, P.B., Órfão, J.J.M., Pereira, M.F.R., et al. (2013) Exotemplated Copper, Cobalt, Iron, Lanthanum and Nickel Oxides for Catalytic Oxidation of Ethyl Acetate. Journal of Environmental Chemical Engineering, 1, 795-804. https://doi.org/10.1016/j.jece.2013.07.019
|
[22]
|
Ziaei-Azad, H., Khodadadi, A., Esmaeilnejad-Ahranjani, P. and Mortazavi, Y. (2011) Effects of Pd on Enhancement of Oxidation Activity of LaBO3 (B= Mn, Fe, Co and Ni) Pervoskite Catalysts for Pollution Abatement from Natural Gas Fueled Vehicles. Applied Catalysis B: Environmental, 102, 62-70. https://doi.org/10.1016/j.apcatb.2010.11.025
|
[23]
|
Hussain, I., Tanimu, G., Ahmed, S., Aniz, C.U., Alasiri, H. and Alhooshani, K. (2023) A Review of the Indispensable Role of Oxygen Vacancies for Enhanced CO2 Methanation Activity over CeO2-Based Catalysts: Uncovering, Influencing, and Tuning Strategies. International Journal of Hydrogen Energy, 48, 24663-24696. https://doi.org/10.1016/j.ijhydene.2022.08.086
|
[24]
|
Islam, A., Taufiq-Yap, Y.H., Chan, E., Moniruzzaman, M., Islam, S. and Nabi, M.N. (2014) Advances in Solid-Catalytic and Non-Catalytic Technologies for Biodiesel Production. Energy Conversion and Management, 88, 1200-1218. https://doi.org/10.1016/j.enconman.2014.04.037
|
[25]
|
Zhao, Z., Ma, S., Gao, B., Bi, F., Qiao, R., Yang, Y., et al. (2023) A Systematic Review of Intermediates and Their Characterization Methods in VOCs Degradation by Different Catalytic Technologies. Separation and Purification Technology, 314, Article ID: 123510. https://doi.org/10.1016/j.seppur.2023.123510
|
[26]
|
Guo, Z., Liu, B., Zhang, Q., Deng, W., Wang, Y. and Yang, Y. (2014) Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry. Chemical Society Reviews, 43, 3480-3524.
|
[27]
|
Zhao, R., Wang, H., Zhao, D., Liu, R., Liu, S., Fu, J., et al. (2022) Review on Catalytic Oxidation of VOCs at Ambient Temperature. International Journal of Molecular Sciences, 23, Article 13739. https://doi.org/10.3390/ijms232213739
|
[28]
|
Bratan, V., Vasile, A., Chesler, P. and Hornoiu, C. (2022) Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts, 12, Article 1134. https://doi.org/10.3390/catal12101134
|
[29]
|
Chu, S., Wang, E., Feng, F., Zhang, C., Jiang, J., Zhang, Q., et al. (2022) A Review of Noble Metal Catalysts for Catalytic Removal of VOCs. Catalysts, 12, Article 1543. https://doi.org/10.3390/catal12121543
|
[30]
|
Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S., et al. (2013) Selective Catalytic Oxidation of Ammonia to Nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al Mixed Metal Oxides Doped with Noble Metals. Applied Catalysis B: Environmental, 130, 152-162. https://doi.org/10.1016/j.apcatb.2012.11.004
|
[31]
|
Ferrandon, M., Ferrand, B., Björnbom, E., Klingstedt, F., Neyestanaki, A.K., Karhu, H., et al. (2001) Copper Oxide-Platinum/Alumina Catalysts for Volatile Organic Compound and Carbon Monoxide Oxidation: Synergetic Effect of Cerium and Lanthanum. Journal of Catalysis, 202, 354-366. https://doi.org/10.1006/jcat.2001.3303
|
[32]
|
Dai, Y., Li, K., Zhao, J., Ren, J. and Quan, Y. (2024) Catalytic Combustion of Toluene over Cerium Modified CuMn/Al2O3/cordierite Monolithic Catalyst. Journal of Fuel Chemistry and Technology, 52, 55-64. https://doi.org/10.1016/s1872-5813(23)60381-0
|
[33]
|
Ganesh, I. (2013) A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. International Materials Reviews, 58, 63-112. https://doi.org/10.1179/1743280412y.0000000001
|
[34]
|
Braga, A.H., de Oliveira, D.C., Taschin, A.R., Santos, J.B.O., Gallo, J.M.R. and C. Bueno, J.M. (2021) Steam Reforming of Ethanol Using Ni-Co Catalysts Supported on MgAl2O4: Structural Study and Catalytic Properties at Different Temperatures. ACS Catalysis, 11, 2047-2061. https://doi.org/10.1021/acscatal.0c03351
|
[35]
|
Prasad, R. and Singh, P. (2012) A Review on CO Oxidation over Copper Chromite Catalyst. Catalysis Reviews, 54, 224-279. https://doi.org/10.1080/01614940.2012.648494
|
[36]
|
Gaálová, J. and Topka, P. (2021) Gold and Ceria as Catalysts for VOC Abatement: A Review. Catalysts, 11, Article 789. https://doi.org/10.3390/catal11070789
|
[37]
|
Jiang, B., Ning, H., Xie, K., Wang, Z. and Zuo, S. (2024) Sulfur-Tolerant Mechanism in Catalytic Combustion of Toluene over Co/5Mg-γ-Al2O3 Catalyst: Dual Functions of MgO. Applied Catalysis A: General, 670, Article ID: 119554. https://doi.org/10.1016/j.apcata.2023.119554
|
[38]
|
He, X., Dong, F., Han, W., Tang, Z. and Ding, Y. (2024) Recent Advances and Future Challenges in the Catalytic Combustion of Light Hydrocarbon VOCs. Journal of Materials Chemistry A, 12, 7470-7507. https://doi.org/10.1039/d3ta07590g
|
[39]
|
Liu, R., Wu, H., Shi, J., Xu, X., Zhao, D., Ng, Y.H., et al. (2022) Recent Progress on Catalysts for Catalytic Oxidation of Volatile Organic Compounds: A Review. Catalysis Science & Technology, 12, 6945-6991. https://doi.org/10.1039/d2cy01181f
|
[40]
|
Castaño, M.H., Molina, R. and Moreno, S. (2015) Catalytic Oxidation of VOCs on MnMgAlOx Mixed Oxides Obtained by Auto-Combustion. Journal of Molecular Catalysis A: Chemical, 398, 358-367. https://doi.org/10.1016/j.molcata.2015.01.001
|
[41]
|
Castaño, M.H., Molina, R. and Moreno, S. (2017) Effect of Mg and Al on Manganese Oxides as Catalysts for VOC Oxidation. Molecular Catalysis, 443, 117-124. https://doi.org/10.1016/j.mcat.2017.09.015
|
[42]
|
El Assal, Z. (2018) Synthesis and Characterization of Catalysts for the Total Oxidation of Chlorinated Volatile Organic Compounds.
|
[43]
|
Ansari, M.B., Min, B., Mo, Y. and Park, S. (2011) CO2 Activation and Promotional Effect in the Oxidation of Cyclic Olefins over Mesoporous Carbon Nitrides. Green Chemistry, 13, Article 1416. https://doi.org/10.1039/c0gc00951b
|
[44]
|
Ottenbacher, R.V., Talsi, E.P. and Bryliakov, K.P. (2020) Recent Progress in Catalytic Oxygenation of Aromatic C-H Groups with the Environmentally Benign Oxidants H2O2 and O2. Applied Organometallic Chemistry, 34, e5900. https://doi.org/10.1002/aoc.5900
|
[45]
|
Goti, A. and Cardona, F. (n.d.) Hydrogen Peroxide in Green Oxidation Reactions: Recent Catalytic Processes. In: Tundo, P. and Esposito, V., Eds., Green Chemical Reactions, Springer, 191-212. https://doi.org/10.1007/978-1-4020-8457-7_9
|
[46]
|
Dumitriu, E., Guimon, C., Cordoneanu, A., Casenave, S., Hulea, T., Chelaru, C., et al. (2001) Heterogeneous Sulfoxidation of Thioethers by Hydrogen Peroxide over Layered Double Hydroxides as Catalysts. Catalysis Today, 66, 529-534. https://doi.org/10.1016/s0920-5861(00)00627-1
|
[47]
|
Heravi, M., Ghalavand, N. and Hashemi, E. (2020) Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview. Chemistry, 2, 101-178. https://doi.org/10.3390/chemistry2010010
|
[48]
|
Yi, Y., Wang, L., Li, G. and Guo, H. (2016) A Review on Research Progress in the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen: Noble-Metal Catalytic Method, Fuel-Cell Method and Plasma Method. Catalysis Science & Technology, 6, 1593-1610. https://doi.org/10.1039/c5cy01567g
|
[49]
|
Miller, K.K., Shancita, I., Bhattacharia, S.K. and Pantoya, M.L. (2021) Surface Modifications of Plasma Treated Aluminum Particles and Direct Evidence for Altered Reactivity. Materials & Design, 210, Article ID: 110119. https://doi.org/10.1016/j.matdes.2021.110119
|
[50]
|
Du, L., Li, P., Gao, W., Ding, X., Jiao, W. and Liu, Y. (2021) Enhancement Degradation of Formaldehyde by MgO/γ-Al2O3 Catalyzed O3/H2O2 in a Rotating Packed Bed. Journal of the Taiwan Institute of Chemical Engineers, 118, 29-37. https://doi.org/10.1016/j.jtice.2021.01.011
|
[51]
|
Romero C., L., Moreno, M.S., Galetti, A.E. and Barroso, M.N. (2022) Ni-Co Bimetallic Catalysts for Hydrogen Production by Steam Reforming Ethanol. Topics in Catalysis, 65, 1427-1439. https://doi.org/10.1007/s11244-022-01632-3
|
[52]
|
Wang, Z., Liu, Q., Yu, J., Wu, T. and Wang, G. (2003) Surface Structure and Catalytic Behavior of Silica-Supported Copper Catalysts Prepared by Impregnation and Sol-Gel Methods. Applied Catalysis A: General, 239, 87-94. https://doi.org/10.1016/s0926-860x(02)00421-0
|
[53]
|
Li, Z., Wang, H., Wu, X., Ye, Q., Xu, X., Li, B., et al. (2017) Novel Synthesis and Shape-Dependent Catalytic Performance of Cu-Mn Oxides for CO Oxidation. Applied Surface Science, 403, 335-341. https://doi.org/10.1016/j.apsusc.2017.01.169
|
[54]
|
Deshmane, V.G. and Adewuyi, Y.G. (2013) Mesoporous Nanocrystalline Sulfated Zirconia Synthesis and Its Application for FFA Esterification in Oils. Applied Catalysis A: General, 462, 196-206. https://doi.org/10.1016/j.apcata.2013.05.005
|
[55]
|
Yang, C. and Wöll, C. (2017) IR Spectroscopy Applied to Metal Oxide Surfaces: Adsorbate Vibrations and Beyond. Advances in Physics: X, 2, 373-408. https://doi.org/10.1080/23746149.2017.1296372
|
[56]
|
Warmuz, K. and Madej, D. (2021) Effect of the Particle Size on the Reactivity of MgO-Al2O3 Hydrating Mixtures: A Long-Term Kinetic Investigation of Hydrotalcite Synthesis. Applied Clay Science, 211, Article ID: 106196. https://doi.org/10.1016/j.clay.2021.106196
|
[57]
|
Zhang, M., Zhao, L., Xu, H., Wu, W. and Dong, H. (2022) Study on the Thermal Decomposition Mechanism of Mg(NO3)2∙6H2O from the Perspective of Resource Utilization of Magnesium Slag. Environmental Technology, 45, 751-761. https://doi.org/10.1080/09593330.2022.2121182
|
[58]
|
Bdewi, S.F., Abdullah, O.G., Aziz, B.K. and Mutar, A.A.R. (2015) Synthesis, Structural and Optical Characterization of MgO Nanocrystalline Embedded in PVA Matrix. Journal of Inorganic and Organometallic Polymers and Materials, 26, 326-334. https://doi.org/10.1007/s10904-015-0321-3
|
[59]
|
Noori, A.J. and Kareem, F.A. (2019) The Effect of Magnesium Oxide Nanoparticles on the Antibacterial and Antibiofilm Properties of Glass-Ionomer Cement. Heliyon, 5, e02568. https://doi.org/10.1016/j.heliyon.2019.e02568
|
[60]
|
Miceli, M., Frontera, P., Macario, A. and Malara, A. (2021) Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 11, Article 591. https://doi.org/10.3390/catal11050591
|
[61]
|
Sheldon, R.A., Wallau, M., Arends, I.W.C.E. and Schuchardt, U. (1998) Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers’ Stones or Trojan Horses? Accounts of Chemical Research, 31, 485-493. https://doi.org/10.1021/ar9700163
|