[1]
|
Sampath, S., Khedr, A., Qamar, S., Tekin, A., Singh, R., Green, R. and Kashyap, R. (2021) Pandemics Throughot the History. Cureus, 13, E18136. https://doi.org/10.7759/cureus.18136
|
[2]
|
Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S.C. and Napoli Featutes, R.D. (2024) Evaluation and Treatment of Coronavirus (COVID-19), Treasure Island FL. StatPearls Publishing.
|
[3]
|
de Clercq, E. (2002) Strategies in the Design of Antiviral Drugs. Nature Reviews Drug Discovery, 1, 13-25. https://doi.org/10.1038/nrd703
|
[4]
|
Aquaro, S., Borrajo, A., Pellegrino, M. and Svicher, V. (2020) Mechanisms Underlying Antiretroviral Drugs in Different Cellular Reservoirs with Focus on Macrophages. Virulence, 11, 400-413. https://doi.org/10.1080/21505594.2020.1760443
|
[5]
|
Elion, G.B. (1982) Mechanism of Action and Selectivity of Acyclovir. The American Journal of Medicine, 73, 7-13. https://doi.org/10.1016/0002-9343(82)90055-9
|
[6]
|
Thakur, S., Sasi, S., Pillai, S.G., Nag, A., Shukla, D., Singhal, R., Phalke, S. and Velu, G.S.K. (2022) SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Frontiers in Medicine, 9, Article 815389. https://doi.org/10.3389/fmed.2022.815389
|
[7]
|
Li, Z., Chen, K., Rose, P. and Zhu, Y.Z. (2022) Natural Products in Drug Discovery and Development: Synthesis and Medicinal Perspective of Leonurine. Frontiers in Chemistry, 10, Article 1036329. https://doi.org/10.3389/fchem.2022.1036329
|
[8]
|
Chunduri, H., Crumpacker, C. and Sharma, P.L. (2011) Reverse Transcritase Mutation K65R Confers a Decreased Replication Capacity to HIV-1 in Comparison to K65R Due to a Decreased RT Processivity. Virology, 414, 34-41. https://doi.org/10.1016/j.virol.2011.03.007
|
[9]
|
Rumlova, M. and Ruml, T. (2018) In Viro Methods for Testing Antiviral Drugs. Biotechnology Advances, 36, 557-576. https://doi.org/10.1016/j.biotechadv.2017.12.016
|
[10]
|
Coen, D.M. and Whitley, R.J. (2011) Antiviral Drugs and Antiviral Drug Resistance. Current Opinion in Virology, 1, 545-547. https://doi.org/10.1016/j.coviro.2011.10.024
|
[11]
|
Goncalves, B.C., Barbosa, M.G., Olak, A.P.S., Terezo, N.B., Nishi, L., Watanabe, M.A., Marinello, P., Rechenchoski, D.Z., Rocha, S.P.D. and Faccin-Galhardi, L.C. (2021) Antiviral Therapies: Adavnces and Perspectives. Fundamental & Clinical Pharmacology, 35, 305-320. https://doi.org/10.1111/fcp.12609
|
[12]
|
Lo, A.O. and Wong, G.L. (2014) Current Developments in Nucleoside/Nucleotide Analogues for Hepatitis B. Expert Review of Gastroenterology & Hepatology, 8, 607-622. https://doi.org/10.1586/17474124.2014.909724
|
[13]
|
Strasfeld, L. and Chou, S. (2011) Antiviral Drug Resistance: Mechanisms and Clinical Implications. Infectious Disease Clinics of North America, 24, 413-437. https://doi.org/10.1016/j.idc.2010.01.001
|
[14]
|
Wohl, D.A., Yazdanpanah, Y., et al. (2019) Bictegravir Combined with Emtricitabine and Tenofovir Alafenamide versus Dolutegravir, Abacavir, and Lamivudine for Intial Treatment of HIV-1 Infection: Week 96 Results from a Ramdomised, Double-Blind, Multicentre, Phase 3, Non-Inferiority Trial. The Lancet HIV, 6, E355-E363. https://doi.org/10.1016/S2352-3018(19)30077-3
|
[15]
|
Darcis, G., Berkhout, B. and Pasternak, A.O. (2020) Differences in HIV Markers Between Infected Individuals Treated with Different ART Regimens: Implications for the Persistence of Viral Reservoirs. Viruses, 12, Article 489. https://doi.org/10.3390/v12050489
|
[16]
|
Wensing, A.M., Calvez, V., Ceccherini-Silberstein, F., Charpentier, C., Gunthard, H.F., Paredes, R., Shafer, R.W. and Richman, D.D. (2022) 2022 Update of the Drug Resistance Mutations in HIV-1. Topics in Antiviral Medicine, 30, 559-574.
|
[17]
|
Milovanovic, M., Arsennijevic, A., Milovanovic, J., Kanjevac, T. and Arsenijevic, N. (2017) Nanoparticles in Antiviral Therapy. Antimicrobial Nanoarchitectronics, 2017, 383-410. https://doi.org/10.1016/B978-0-323-52733-0.00014-8
|
[18]
|
Crumpacker, C.S. (1992) Mechanism of Action of Foscarnet against Viral Polymerases. The American Journal of Medicine, 92, S3-S7. https://doi.org/10.1016/0002-9343(92)90329-A
|
[19]
|
Jamrozik, E. and Selgelid, M.J. (2020) Drug-Resistant Infection: Causes, Consequences and Responses. In: Jamrozik, E. and Selgelid, M., Eds., Ethics and Drug Resistance: Collective Resposibility for Global Public Health Ethics Analysis, Springer, 3-18.
|
[20]
|
Jyoti, T., Shrayance, D., Zeeshan, F. and Saif, H. (2014) Multidrug Resistance: An Emerging Crisis. Interdisciplinary Perspectives on Infectious Diseases, 2014, Article 541340.
|
[21]
|
Rhouma, M., Madec, J.-Y. and Laxminarayan, R. (2023) Colistin: from the Shadows to a One Health Approach for Addressing Anitmicrobial Resistance. International Journal of Antimicrobial Agents, 61, Article 106713. https://doi.org/10.1016/j.ijantimicag.2023.106713
|
[22]
|
Kanafani, Z.A. and Perfect, J.R. (2008) Resistance to Antifungal Agents: Mechanisms and Clinical Impact. Clinical Infectious Diseases, 46, 120-128.
|
[23]
|
Bielicki, J., Boonkasidecha, S., et al. (2022) Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet, 399, 629-655.
|
[24]
|
WHO (2022) Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022.
|
[25]
|
Us Department of Health and Human Services (2022) Covid-19: Us Impact on Antimicrobial Resistance.
|
[26]
|
Hazelhurst, L. and Hacker, M. (2009) Drug Resistance. In: Hacker, M., Messer, W. and Bachmann, K., Eds., Pharmacology: Principles and Practice, Academic Press, 371-385. https://doi.org/10.1016/B978-0-12-369521-5.00015-4
|
[27]
|
Leoni, M.C., Ustianowski, A., Farooq, H. and Arends, J.E. (2018) HIV, HCV and HBV: A Review of Parallels and Differences. Infectious Diseases and Therapy, 7, 407-419. https://doi.org/10.1007/s40121-018-0210-5
|
[28]
|
Strasfeld, L. and Chou, S. (2010) Antiviral Drug Resistance: Mechanisms and Clinical Implications. Infectious Disease Clinics of North America, 24, 413-437. https://doi.org/10.1016/j.idc.2010.01.001
|
[29]
|
Blackard, J.T. and Sherman, K.E. (2021) Drug Abuse and Their Impact on Viral Pathogenesis. Viruses, 13, Article 2387. https://doi.org/10.3390/v13122387
|
[30]
|
Nijhuis, M., van Maarseveen, N.M. and Boucher, C.A.B. Antiviral Resistance and Impact on Viral Replication Capacity: Evolution of Viruses under Antiviral Pressure Occurs in Three Phases. Handbook of Experimental Pharmacology, 189, 299-320. https://doi.org/10.1007/978-3-540-79086-0_11
|
[31]
|
Perichon, B., Courvalin, P. and Stratton, C.W. (2019) Antibiotic Resistance. In: Schaechter, M., Ed., Encyclopedia of Microbiology. Academic Press, 127-139.
|
[32]
|
Duyne, R.V., Kuo, L.S., Pham, P., Fujii, K. and Freed, E.O. (2019) Mutations in the HIV-1 Envelope Glycoprotein Can Broadly Rescue Blocks at Multiple Steps in the Virus Replication Cycle. Proceedings of the National Academy of Sciences of the United States of America, 116, 9040-9049. https://doi.org/10.1073/pnas.1820333116
|
[33]
|
Smyk, J.M., Szydlowska, N., Szulc, W. and Majewska, A. (2022) Evolution of Influenza Viruses—Drug Resistance, Treatment Options, and Prospects. International Journal of Molecular Sciences, 23, Article 12244. https://doi.org/10.3390/ijms232012244
|
[34]
|
Sanjuan, R. and Domingo-Calap, P. (2016) Mechanism of Viral Mutation. Cellular and Molecular Life Sciences, 73, 4433-4448. https://doi.org/10.1007/s00018-016-2299-6
|
[35]
|
Kabra, R., Chauhan, N., Kumar, A., Ingale, P. and Singh, S. (2019) Efflux Pumps and Antimicrobial Resistnace: Paradoxical Components in Systems Genomics. Progress in Biophysics and Molecular Biology, 141, 15-24. https://doi.org/10.1016/j.pbiomolbio.2018.07.008
|
[36]
|
Laughlin, C., Schleif, A. and Heilman, C.A. (2015) Addressing Viral Resistnace through Vaccines. Future Virology, 10, 1011-1022. https://doi.org/10.2217/fvl.15.53
|
[37]
|
Webster, D., Li, D., Bastien, N., Garceau, R. and Hatchette, T.F. (2011) Oseltamivir-Resistant Pandemic H1N1 Influenza. Canadian Medical Association journal, 183, E420-E422. https://doi.org/10.1503/cmaj.100313
|
[38]
|
Ianesvski, A., Ahmad, S., Anunnitipat, K., Oksenych, V., Zusinaite, E., Tenson, T., Bjoras, M. and Kainov, D.E. (2022) Seven Classes of Antiviral Agents. Cellular and Molecular Life Sciences, 79, Article No. 605. https://doi.org/10.1007/s00018-022-04635-1
|
[39]
|
Zhu, L. and Chen, L. (2019) Progress in Research on Paclitaxel and Tumor Immunotherapy. Cellular & Molecular Biology Letters, 24, Article No. 40. https://doi.org/10.1186/s11658-019-0164-y
|
[40]
|
Newman, D.J. and Cragg, G.M. (2020) Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83, 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
|
[41]
|
Patick, A.K., Brothers, M.A., et al. (2005) In Vitro Antiviral Activity and Single-Dose Pharmacokinetics in Humans of a Novel, Orally Bioavalable Inhibitor of Human Rhinovirus 3C Protease. Antimicro, Agents Chemother, 49, 2267-2275. https://doi.org/10.1128/AAC.49.6.2267-2275.2005
|
[42]
|
Anasir, M.I., Zarif, F. and Poh, C.L. (2021) Antivirals Blocking Entry of Enteroviruses and Therapeutic Potential. Journal of Biomedical Science, 28, Article No. 10. https://doi.org/10.1186/s12929-021-00708-8
|
[43]
|
Maginnis, M.S. (2018) Virus-Receptor Interactions: The Key to Cellular Invasion. Journal of Molecular Biology, 430, 2590-2611. https://doi.org/10.1016/j.jmb.2018.06.024
|
[44]
|
White, J.M. and Whittaker, G.R. (2016) Fusion of Enveloped Viruses in Endosomes. Traffic, 17, 593-614. https://doi.org/10.1111/tra.12389
|
[45]
|
Jaafar, Z.A. and Kieft, J.S. (2019) Viral RNA Structure-Based Strategies to Manipulate Translation. Nature Reviews Microbiology, 17, 110-123. https://doi.org/10.1038/s41579-018-0117-x
|
[46]
|
Ma, Y., Frutos-Beltran, E., et al. (2021) Medicinal Chemistry Strategies for Discovering Antivirals Effective against Drug-Resistant Viruses. Chemical Society Reviews journal, 50, 4514-4540. https://doi.org/10.1039/D0CS01084G
|
[47]
|
Yeshi, K., Crayn, D., Ritmejeryte, E. and Wangchuk, P. (2022) Plant Secondary Metabolites Produced in Response to Abiotic Stress Has Potential Application in Pharmaceutical Product Development. Molecules, 27, Article 313. https://doi.org/10.3390/molecules27010313
|
[48]
|
Dhamija, N. and Mangla, A. (2022) Plant Secondary Metabolites in Antiviral Applications. In: Sharma, A.K. and Sharma, A., Eds., Plant Secondary Metabolites, Springer, 459-482. https://doi.org/10.1007/978-981-16-4779-6_15
|
[49]
|
Moradi, M.-T., Karimi, A., Rafiean-Kopaei, M. and Fotouhi, F. (2017) In Vitro Antoviral Effects of Peganum harmala Seed Extract and Its Total Alkaloids against Influenza Virus. Microbial Pathogenesis, 110, 42-49. https://doi.org/10.1016/j.micpath.2017.06.014
|
[50]
|
Macedo, N.R.P.V., Ribeiro, M.S., et al. (2012) Caulerpin as a Potential Anitivral Drug against Herpes Simplex Virus Type 1. Revista Brasileira de Farmacognosia, 22, 861-867. https://doi.org/10.1590/S0102-695X2012005000072
|
[51]
|
Chan-Zapata, I., Borges-Agaez, R. and Ayora-Talavera, G. (2023) Quinones as Promising Compounds against Respiratory Viruses. Molecules, 28, Article 1981. https://doi.org/10.3390/molecules28041981
|
[52]
|
Cetina-Montejo, L., Ayora-Talavera, G. and Borges-Argaez, R. (2019) Zeylanone Epoxide Isolated from Diospyros Anisandra Stem Bark Inhibits Inflenza Virus in Vitro. Archives of Virology, 164, 1543-1552. https://doi.org/10.1007/s00705-019-04223-y
|
[53]
|
Liu, X., Zhang, X., Li, J., Zhou, H., Carr, M.J., Xing, W., Zhang, Z. and Shi, W. (2019) Effect of Acetylshikonin on the Infection and Replication of Coxsackievirus A16 in Vitro and in Vivo. Journal of Natural Products, 8, 1089-1097. https://doi.org/10.1021/acs.jnatprod.8b00735
|
[54]
|
Guo, Y., Ma, A., Wang, X., Yang, C., Li, G. and Qiu, F. (2022) Research Progress on the Antiviral Activities of Natural Products and Their Derivatives: Structure-Activty Relationships. Frontiers in Chemistry, 10, Article 1005360. https://doi.org/10.3389/fchem.2022.1005360
|
[55]
|
Hirouchi, T., Ota, S., et al. (2021) A Case of COVID-19 Pneumonia Successfully Treated with Favipiravir (Avigan) in Which Serum SARS-CoV-2RNA Detected by LAMP Method Was Clinically Useful. Journal of Infection and Chemotherapy, 27, 379-383. https://doi.org/10.1016/j.jiac.2020.10.011
|
[56]
|
Shohan, M., Nashibi, R., Mahmoudian-Sani, M.-R., Abolnezhadian, F., Ghafourian, M., Alavi, S.M., Sharhani, A. and Khodadadi, A. (2022) The Therapeutic Efficacy of Qyercetin in Combination with Anitivral Drugs in Hospitalised COVID-19 Patients: A Ramdomized Controlled Trial. European Journal of Pharmacology, 914, Article 174615. https://doi.org/10.1016/j.ejphar.2021.174615
|
[57]
|
Lani, R., Hassandarvish, P., et al. (2016) Antiviral Activity of Selected Flavonoids against Chikungunya Virus. Antiviral Research, 133, 50-61. https://doi.org/10.1016/j.antiviral.2016.07.009
|
[58]
|
Meneguzzo, F., Ciriminna, R., Zabini, F. and Pagliaro, M. (2020) Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes, 8, Article 549. https://doi.org/10.3390/pr8050549
|
[59]
|
Zhang, J.H., Liu, W.J. and Li, H.M. (2018) Advances in Activities of Terpenoids in Medicinal Plants. World Science and Technology—Modernization of Traditional Chinese Medicine, 20, 419-430.
|
[60]
|
Wohlfarth, C. and Efferth, V. (2009) Natural Products as Promising Drug Candidates for the Treatment of Hepatitis B and C. Acta Pharmacologica Sinica, 30, 25-30. https://doi.org/10.1038/aps.2008.5
|
[61]
|
Si, L.L., Meng, K., et al. (2018) Triterpenoids Manipulate a Broad Range of Virus-Host Fusion via Wrapping the HR2 Domain Prevalent in Viral Envelopes. Science Advances, 4, Eaau8408. https://doi.org/10.1126/sciadv.aau8408
|
[62]
|
Kong, L., Li, S., Liao, Q., Zhang, Y., Sun, R., Zhu, X., Zhang, Q., Wang, J., Wu, X., Fang, X. and Zhu, Y. (2013) Oleanolic Acid and Ursolic Acid: Novel Hepatitis C Virus Antivirals That Inhibit NS5B Activity. Antiviral Research, 98, 44-53. https://doi.org/10.1016/j.antiviral.2013.02.003
|
[63]
|
Liu, S.S., Jiang, J.X., et al. (2019) A New Antiviral 14-Nordrimane Sesquiterpenoid from an Endophytic Fungus Phoma Sp. Phytochemistry Letters, 29, 75-78. https://doi.org/10.1016/j.phytol.2018.11.005
|
[64]
|
Yao, X., Ling, Y., Guo, S., Wu, W., He, S. and Zhang, Q. (2018) Tatanan A from Acorus calamus L Root Inhibited Dengue Virus Proliferation and Infections. Phytomedicine, 42, 258-267. https://doi.org/10.1016/j.phymed.2018.03.018
|
[65]
|
Oh, E.-G., Kim, K.-L., et al. (2013) Antiviral Activity of Green Tea Catechins against Feline Calicivirus as Surrogate for Norovirus. Food Science and Biotechnology, 22, 593-598. https://doi.org/10.1007/s10068-013-0119-4
|
[66]
|
Sarowska, J., Wojnicz, D., Jama-Kmiecik, A., Frej-Madrzak, M. and Choroszy-Krol, I. (2021) Antiviral Potential of Plants against Noroviruses. Molecules, 26, Article 4669. https://doi.org/10.3390/molecules26154669
|
[67]
|
Lee, M.H., Lee, B.-H., Jung, J.-Y., Cheon, D.-S., Kim, K.-T. and Choi, C. (2011) Antiviral Effect of Korean Red Ginseng Extract and Ginsenosides on Murine Norovirus and Feline Calicivirus as Surrogates for Human Norovirus. Journal of Ginseng Research, 35, 429-435. https://doi.org/10.5142/jgr.2011.35.4.429
|
[68]
|
Shen, J., Wang, G.F. and Zuo, J.P. (2018) Caffeic Acid Inhibits HCV Replication via Induction of IFNα Antiviral Response Through P62-Mediated Keap1/Nrf2 Signaling Pathway. Antiviral Research, 154, 166-173. https://doi.org/10.1016/j.antiviral.2018.04.008
|
[69]
|
Ogawa, M., Shirasago, Y., Ando, S., Shimojima, M., Saijo, M. and Fukasawa, M. (2018) Caffeic Acid, a Coffee-Related Organic Acid, Inhibits Infection by Severe Fever with Thrombocytopenia Syndrome Virus in Vitro. Journal of Infection and Chemotherapy, 24, 597-601. https://doi.org/10.1016/j.jiac.2018.03.005
|
[70]
|
Weng, J.R., Lin, C.S., Lai, H.C., Lin, Y.P., Wang, C.Y. and Tsai, Y.C. (2019) Antiviral Activity of Sambucus Formosana Nakai Ethanol Extract and Related Phenolic Acid Constituents against Human Coronavirus NL63. Virus Research, 273, Article 197767. https://doi.org/10.1016/j.virusres.2019.197767
|
[71]
|
Elizaquivel, P., Azizkhani, M., Aznar, R. and Sanchez, G. (2013) The Effect of Essential Oils on Norovirus Surrogates. Food Control, 32, 275-278. https://doi.org/10.1016/j.foodcont.2012.11.031
|
[72]
|
Gilling, D.H., Kitajima, M., Torrey, J.R. and Bright, K.R. (2014) Antiviral Efficacy and Mechanisms of Action of Oregano Essential Oil and Its Primary Component Carvacrol against Murine norovirus. Journal of Applied Microbiology, 116, 1149-1163. https://doi.org/10.1111/jam.12453
|
[73]
|
Wang, W., Wang, S.-X. and Guan, H.-S. (2012) The Antviral Activities and Mechanisms of Marine Polysaccharide: An Overview. Marine Drugs, 10, 2795-2816. https://doi.org/10.3390/md10122795
|
[74]
|
Ahmadi, A., Moghadamtousi, S.Z., Abubakar, S. and Zandi, K. (2015) Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review. BioMed Research International, 2015, Article 825203. https://doi.org/10.1155/2015/825203
|
[75]
|
Se-Kwon, K., Thanh-Sang, V. and Dai-Hung, N. (2011) Potential Application of Marine Algae as Antiviral Agents in Medicinal Foods. In: Kim, S.-K., Ed., Advances in Food and Nutrition Research, Academic Press, 245-254.
|
[76]
|
Liyanage, N.M., Nagahawatta, D.P., et al. (2023) Sulfated Polysaccharides from Seaweeds: A Promising Strategy for Combating Viral Diseases—A Review. Marine Drugs, 21, Article 461. https://doi.org/10.3390/md21090461
|
[77]
|
Abka-Khajouei, R., Tounsi, L., Shahabi, N., Patel, A.K., Abdelkafi, S. and Michaud, P. (2022) Structure, Properties and Applications of Alginates. Marine Drugs, 20, Article 364. https://doi.org/10.3390/md20060364
|
[78]
|
Besednova, N.N., Zvyagintseva, T.N., Kuznetsova, T.A., Makarenkova, I.D., Smolina, T.P., Fedyanina, L.N., Kryzhanovsky, S.P. and Zaporozhets, T.S. (2019) Marine Algae Metabolites as Promising Therapeutics for the Prevention and Treatment of HIV/AIDS. Metabolites, 9, Article 87. https://doi.org/10.3390/metabo9050087
|
[79]
|
Aguilar-Briseno, J.A., Cruz-Suarez, L.E., et al. (2015) Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds Both Inhibit Viral Attachment/Entry and Cell-Cell Fusion in NDV Infection. Marine Drugs, 13, 697-712. https://doi.org/10.3390/md13020697
|
[80]
|
Pagarete, A., Ramos, A.S., Puntervoll, P., Allen, M.J. and Verdelho, V. (2021) Antiviral Potential of Algal Metabolites—A Comprehensive Review. Marine Drugs, 19, Article 94. https://doi.org/10.3390/md19020094
|
[81]
|
Wei, Q., Fu, G., Wang, K., Yang, Q., Zhao, J., Wang, Y., Ji, K. and Song, S. (2022) Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals, 15, Article 581. https://doi.org/10.3390/ph15050581
|
[82]
|
Mader, J., Gallo, A., Schommartz, T., Handke, W., Nagel, C.-H., Gunther, P., Brune, W. and Reich, K. (2016) Calcium Spirulan Derived from Spirulina platensis Inhibits Herpes Simplex Virus 1 Attachment to Himan Keratinocytes and Protects against Herpes Labialis. Journal of Allergy and Clinical Immunology, 137, 197-203. https://doi.org/10.1016/j.jaci.2015.07.027
|
[83]
|
Kanekiyo, K., Lee, J.B., et al. (2005) Isolation of an Antiviral Polysaccharide, Nostoflan, from a Terrestrial Cyanobacterium, Nostoc flagelliforme. Journal of Natural Products, 68, 1037-1041. https://doi.org/10.1021/np050056c
|
[84]
|
Mizuno, H., Tomotsune, K., et al. (2020) Exopolysaccahrides from Streptococcus thermophilus ST538 Modulate the Antiviral Immune Response in Porcine Intestinal Epithaliocytes. Frontiers in Microbiology, 11, Article 894. https://doi.org/10.3389/fmicb.2020.00894
|
[85]
|
Lee, S.M., Kim, S.M., et al. (2010) Macromolecules Isolated from Phellinus pini Fruiting Body: Chemical Characterization and Antiviral Activity. Macromolecular Research, 18, 602-609. https://doi.org/10.1007/s13233-010-0615-9
|
[86]
|
Eo, S.K., Kim, Y.S., Lee, C.K. and Han, S.S. (2000) Possible Mode of Antiviral Activity of Acidic Protein Bound Polysaccharide Isolated from Ganoderma lucidum on Herpes Simplex Viruses. Journal of Ethnopharmacology, 72, 475-481. https://doi.org/10.1016/S0378-8741(00)00266-X
|
[87]
|
Ren, G., Xu, L., Lu, T. and Yin, J. (2018) Structural Characterization and Antiviral Activity of Lentinan from Lentinus edodes Mycelia against Infectious Hematopoietic Necrosis Virus. International Journal of Biological Macromolecules, 115, 1202-1210. https://doi.org/10.1016/j.ijbiomac.2018.04.132
|
[88]
|
Ohta, Y., Lee, J.-B., Hayashi, K., Fujita, A., Park, D.K. and Hayashi, T. (2007) In Vivo Anti-Influenza Virus Activity of an Immunomodulatory Acidic Polysaccharide Isolated from Cordyceps militaris Grown on Germinated Soybeans. Journal of Agricultural and Food Chemistry, 55, 10194-10199. https://doi.org/10.1021/jf0721287
|
[89]
|
Cardozo, F.T., Camelini, C.M., et al. (2011) Antiherpetic Activity of a Sulfated Polysaccharide from Agaricus brasiliensis Mycelia. Antiviral Research, 92, 108-114. https://doi.org/10.1016/j.antiviral.2011.07.009
|
[90]
|
Lopez-Tejedor, D., Claveria-Gimeno, R., Velazquez-Campoy, A., Abian, O. and Palomo, J.M. (2021) In Vitro Antiviral Activity of Tyrosinase from Mushroom Agaricus bisporus against Hepatitis C Virus. Pharmaceuticals, 14, Article 759. https://doi.org/10.3390/ph14080759
|
[91]
|
Kuroki, T., Lee, S., et al. (2018) Inhibition of Influenza Virus Infection by Lentinus edodes Mycelia Extract Through Its Direct Action and Immunopotentiating Activity. Frontiers in Microbiology, 9, Article 1164. https://doi.org/10.3389/fmicb.2018.01164
|
[92]
|
Zhang, Y., Zhang, G. and Ling, J. (2022) Medicinal Fungi with Antiviral Effect. Molecules, 14, 4457. https://doi.org/10.3390/molecules27144457
|
[93]
|
Ren, G., Xu, L., Lu, T. and Yin, J. (2018) Structural Characterization and Antiviral Activity of Lentinan from Lentinus edodes Mycelia against Infectios Hepatoietic Necrosis Virus. International Journal of Biological Macromolecules, 115, 1202-1210. https://doi.org/10.1016/j.ijbiomac.2018.04.132
|
[94]
|
Song, X., Yin, Z., et al. (2013) Antiviral Activity of Sulfated Chuanmingshen violaceum Polysaccharide against Newcastle Disease Virus. Journal of General Virology, 94, 2164-2174. https://doi.org/10.1099/vir.0.054270-0
|
[95]
|
Li, R., Qu, S., Qin, M., Huang, L., Huang, Y., Du, Y., Yu, Z., Fan, F., Sun, J., Li, Q. and So, K.-F. (2023) Immunomodolatory and Antiviral Effects of Lycium Barbarum Glycopeptide on Influenza a Virus Infection. Microbial Pathogenesis, 176, Article 106030. https://doi.org/10.1016/j.micpath.2023.106030
|
[96]
|
Lopes, N., Faccin-Galhardi, L.C., Espada, S.F., Pacheco, A.C., Ricardo, N.M.P.S., Linhares, R.E.C. and Nozawa, C. (2013) Sulfated Polysaccharide of Caesalpinia ferrea Inhibits Herpes Simplex Virus and Polivirus. International Journal of Biological Macromolecules, 60, 93-99. https://doi.org/10.1016/j.ijbiomac.2013.05.015
|
[97]
|
Liu, C., Chen, H., Chen, K., Gao, Y., Gao, S., Liu, X. and Li, J. (2013) Sulfated Modification Can Enhace Antiviral Activities of Achyranthes bidentata Polysaccharide against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Vitro. International Journal of Biological Macromolecules, 52, 21-24. https://doi.org/10.1016/j.ijbiomac.2012.09.020
|
[98]
|
Yeh, Y.-C., Doan, L.H., Huang, Z.-Y., Chu, L.-W., Shi, T.-H., Lee, Y.-R., Wu, C.-T. Lin, C.-H. and Chiang, S.-T. (2021) Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) Suppress SARS-CoV-2 Entry and COVID Related Cytokine Storm in Vitro. Frontiers in Pharmacology, 12, Article 765553. https://doi.org/10.3389/fphar.2021.765553
|
[99]
|
Lee, C.-Y., Nguyen, A.T., et al. (2023) Repurposing Astragalus Polysaccharide PG2 for Inhibiting ACE2 and SARS-CoV-2 Spike Syncytial Formation and Anti-Inflammatory Effects. Viruses, 15, Article 641. https://doi.org/10.3390/v15030641
|
[100]
|
Illoghalu, U., Holmes, B., Kwatiwada, J. and Williams, L.L. (2019) Selected Plants Show Antiviral Effects against Murine norovirus Surrogate. Advances in Microbiology, 9, 372-384. https://doi.org/10.4236/aim.2019.94022
|
[101]
|
Bordon, K.C.F., Cologna, C.T., et al. (2020) From Animal Poisons and Venoms to Medicines: Acievements, Challenges and Perspectives in Drug Discovery. Frontiers in Pharmacology, 11, 1132-1161. https://doi.org/10.3389/fphar.2020.01132
|
[102]
|
Xia, Z., He, D., Wu, Y., Kwok, H.F. and Cao, Z. (2023) Scorpion Venom Peptides: Molecular Diversity, Structural Characteristics, and Therapeutic Use from Channelopathies to Viral Infections and Cnacers. Pharmacological Research, 197, Article 106978. https://doi.org/10.1016/j.phrs.2023.106978
|
[103]
|
Li, Q., Zhao, Z., et al. (2011) Virucidal Activity of a Scorpion Peptide Variant Mucroporin-M1 against Measles, SARS-CoV and Influenza H5N1 Viruses. Peptides, 32, 1518-1525. https://doi.org/10.1016/j.peptides.2011.05.015
|
[104]
|
Hong, W., Zhang, R., Di, Z., He, Y., Zhao, Z., Hu, J., Li, W. and Cao, Z. (2013) Design of Histidine-Rich Peptides with Enhanced Bioavailability and Inhibitory Activity against Hepatitis C Virus. Biomaterials, 34, 3511-3522. https://DOI.org/10.1016/j.biomaterials.2013.01.075
|
[105]
|
Zeng, Z., Zhang, R., et al. (2018) Histidine-Rich Modification of a Scorpion-Derived Peptide Improves Bioavailability and Inhibitory Activity against HSV-1. Theranostics, 8, 199-211. https://doi.org/10.7150/thno.21425
|
[106]
|
Huang, C.C., Stricher, F., Martin, L., Decker, J.M., Majeed, S. and Barthe, P.E.A. (2005) Scorpion-Toxin Mimics CD4 in Complex Human Immunodificiency Virus Gp 120 Crystal Structures, Molecular Mimicry, and Neutralization Breadth. Structure, 13, 755-768. https://doi.org/10.1016/j.str.2005.03.006
|
[107]
|
da Mata, E.C.G., Mourao, C.B.F., Rangel, M. and Schwartz, E.F. (2017) Antiviral Activity of Animal Venom Peptides and Related Compounds. Journal of Venonous Animals and Toxins Including Tropical Diseases, 23, Article No. 3. https://doi.org/10.1186/s40409-016-0089-0
|
[108]
|
Siniavin, A., Grinkina, S., Osipov, A., Starkov, V., Tsetlin, V. and Utkin, Y. (2022) Anti-HIV Activity of Snake Venom Phosphikinase A2s: Updates for New Enzymes and Different Virus Strains. International Journal of Molecular Science, 23, Article 1610. https://doi.org/10.3390/ijms23031610
|