[1]
|
Centonze, G., Natalini, D., Piccolantonio, A., Salemme, V., Morellato, A., Arina, P., Riganti, C. and Defilippi, P. (2022) Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Frontiers in Oncology, 12, Article 906670. https://doi.org/10.3389/fonc.2022.906670
|
[2]
|
Tran, N.N.B., Bui, A.T.A., Jaramillo-Martinez, V., Weber, J., Zhang, Q. and Urbatsch, I.L. (2023) Lipid Environment Determines the Drug-Stimulated ATPase Activity of P-Glycoprotein. Frontiers in Molecular Biosciences, 10, Article 1141081. https://doi.org/10.3389/fmolb.2023.1141081
|
[3]
|
Garcia-Ruiz, C., De la Rosa, C.L., Ribas, V. and Fernandez-Checha, J.C. (2021) Mitochondrial Cholesterol and Cancer. Seminars in Cancer Biology, 73, 76-85. https://doi.org/10.1016/j.semcancer.2020.07.014
|
[4]
|
Wu, J., Kong, F., Pan, Q., Du, Y., Ye, J., Zheng, F., Li, H. and Zhou, J. (2017) Autophagy Protects against Cholesterol-Induced Apoptosis in Pancreatic β-Cells. Biochemical and Biophysical Research Communications, 482, 678-685. https://doi.org/10.1016/j.bbrc.2016.11.093
|
[5]
|
Nazih, H. and Bard, J.M. (2020) Cholesterol, Oxysterols and LXRs in Breast Cancer Pathophysiology. International Journal of Molecular Sciences, 21, Article 1356. https://doi.org/10.3390/ijms21041356
|
[6]
|
Kloudova-Spalenkova, A., Holy, P. and Soucek, P. (2020) Oxysterols in Cancer Management: From Therapy to Biomarkers. British Journal of Pharmacology, 178, 3235-3247. https://doi.org/10.1111/bph.15273
|
[7]
|
De Freitas, F.A., Levy, D., Zarrouk, A., Lizard, G. and Bydlowski, S.P. (2021) Impact of Oxysterols on Cell Death, Proliferation, and Differentiation Induction: Current Status. Cells, 20, Article 2301. https://doi.org/10.3390/cells10092301
|
[8]
|
Levy, D., De Melo, T.C., Oliveira, B.A., Paz, J.L., De Freitas, F.A., Reichert, C.O., Rodrigues, A.R. and Bydlowski, S.P. (2019) 7-Ketocholesterol and Cholestane-Triol Increase Expression of SMO and LXRα Signaling Pathways in a Human Breast Cancer Cell Line. Biochemistry and Biophysics Reports, 19, Article ID: 100604. https://doi.org/10.1016/j.bbrep.2018.12.008
|
[9]
|
Lizard, G., Deckert, V., Dubrez, L., Moisant, M., Gambert, P. and Lagrost, L. (1996) Induction of Apoptosis in Endothelial Cells Treated with Cholesterol Oxides. American Journal of Pathology, 148, 1625-1638.
|
[10]
|
O’Callaghan, Y.C., Woods J.A. and O’Brien, N.M. (2001) Comparative Study of the Cytotoxicity and Apoptosis-Inducing Potential of Commonly Occurring Oxysterols. Cell Biology and Toxicology, 17, 127-137. https://doi.org/10.1023/A:1010914306375
|
[11]
|
Nury, T., Zarrouk, A., Yammine, A., Mackrill, J.J., Vejux, A. and Lizard, G. (2020) Oxiapoptophagy: A Type of Cell Death Induced by Some Oxysterols. British Journal of Pharmacology, 178, 3115-3123. https://doi.org/10.1111/bph.15173
|
[12]
|
Jaouadi, O., Limam, I., Abdelkarim, M., Berred, E., Chahbi, A., Caillot, M., Sola, B. and Aissa-Fennira, F.B. (2021) 5,6-Epoxycholesterol Isomers Induce Oxiapoptophagy in Myeloma Cells. Cancers, 13, Article 3747. https://doi.org/10.3390/cancers13153747
|
[13]
|
Poirot, M. and Silvente-Poirot, S. (2018) The Tumour-Supressor Cholesterol Metabolite, Dendrogenin A, Is a New Class of LXR Modulator Activating Lethal Autophagy in Cancers. Biochemical Pharmacology, 153, 75-81. https://doi.org/10.1016/j.bcp.2018.01.046
|
[14]
|
Brahami, F., Vejux, A., Sghaier, R., Zarrouk, A., Nury, T., Meddeb, W., Rezig, L., Namsi, A., Sassi, K., Yammine, A., Badreddine, I., Vervandier-Fasseur, D., Madani, K., Boulekbache-Makhlouf, L., Nasser, B. and Lizard, G. (2019) Prevention of 7-Ketocholesterol-Induced Side Effects by Natural Compounds. Critical Reviews in Food Science and Nutrition, 59, 3179-3198. https://doi.org/10.1080/10408398.2018.1491828
|
[15]
|
Zarrouk, A., Nury, T., Samadi, M., O’Callaghan, Y., Hammami, M., O’Brien, N.M., Lizard, G. and Mackrill, J.J. (2015) Effects of Cholesterol Oxides on Cell Death Induction and Calcium Increase in Human Neuronal Cells (SK-N-BE) and Evaluation of the Protective Effects of Docosahexaenoic Acid (DHA; C22:6n-3). Steroids, 99, 238-247. https://doi.org/10.1016/j.steroids.2015.01.018
|
[16]
|
Roussi, S., Gosse, F., Aoude-Werner, D., Zhang, X., Marchioni, E., Geoffroy, P., Miesch, M. and Raul, F. (2007) Mitochondrial Perturbation, Oxidative Stress and Lysosomal Destabilization Are Involved in 7β-Hydroxycholesterol and 7β-Hydroxycholesterol Triggered Apoptosis in Human Colon Cancer Cells. Comparative Study, 12, 87-96. https://doi.org/10.1007/s10495-006-0485-y
|
[17]
|
Sghaier, R., Zarrouk, A., Nury, T., Badreddine, L., O’Brien, N., Mackrill, J.J., Vejux, A., Samadi, M., Nasser, B., Caccia, C., Leoni, V., Moreau, T., Cherkaoui-Malki, M., Masmoudi, A.S. and Lizard, G. (2019) Biotin Attenuation of Oxidative Stress, Mitochondrial Dysfunction, Lipid Metabolism Alteration and 7β-Hydroxycholesterol-Induced Cell Death in 158N Murine Oligodendrocytes. Free Radical Research, 53, 535-561. https://doi.org/10.1080/10715762.2019.1612891
|
[18]
|
Sghaier, R., Nury, T., Leoni, V., Caccia, C., De Barros, J.P.P., Cherif, A., Vejux, A., Moreau, T., Limem, K., Samadi, M., Mackrill, J.J. Masmoudi, A.S., Lizard, G. and Zarrouk, A. (2019) Dimethyl Fumarate and Monomethyl Fumarate Attenuate Oxidative Stress and Mitochondrial Alterations Leading to Oxiapoptophagy in 158 Murine Oligodendrocytes Treated with 7β-Hydroxycholesterol. Journal of Steroid Biochemistry and Molecular Biology, 194, Article ID: 105432. https://doi.org/10.1016/j.jsbmb.2019.105432
|
[19]
|
Williams, W.R. (2020) Tumour Initiation, Store-Operated Calcium Entry (SOCE) and Apoptosis: Cyclic Nucleotide Dependence. General Physiology and Biophysics, 39, 419-435. https://doi.org/10.4149/gpb_2020020
|
[20]
|
Honorat, M., Terreux, R., Falson, P., Di Petro, A., Dumontet, C. and Payen, L. (2013) Localization of Putative Binding Sites for Cyclic Guanosine Monophosphate and the Anti-Cancer Drug 5-Fluoro-2’-Deoxyuridine-5’-Monophosphate on ABCC11 in Silico Models. BMC Structural Biology, 13, Article No. 7. https://doi.org/10.1186/1472-6807-13-7
|
[21]
|
Stehle, D., Barresi, M., Schulz, J. and Feil, R. (2023) Heterogeneity of cGMP Signalling in Tumour Cells and the Tumour Microenvironment: Challenges and Chances for Cancer Pharmacology. Journal of Pharmacology & Therapeutics, 242, Article ID: 108337. https://doi.org/10.1016/j.pharmthera.2023.108337
|
[22]
|
Williams, W.R. (2021) Cyclic Nucleotide Structural Differentiation of Compounds Modulating Apoptosis and Drug Resistance. Journal of Biosciences and Medicines, 9, 10-28. https://doi.org/10.4236/jbm.2021.98002
|
[23]
|
Kilanczyk, E., Ruminkiewicz, D., Banales, J.M., Milkiewicz, P. and Milkiewicz, M. (2022) DHEA Protects Human Cholangiocytes and Hepatocytes against Apoptosis and Oxidative Stress. Cells, 11, Article 1038. https://doi.org/10.3390/cells11061038
|
[24]
|
Ding, X., Yu, L., Ge, C. and Ma, H. (2017) Protective Effect of DHEA on Hydrogen Peroxide-Induced Oxidative Damage and Apoptosis in Primary Rat Leydig Cells. Oncotarget, 8, 16158-16169. https://doi.org/10.18632/oncotarget.15300
|
[25]
|
McCormick, D.L., Johnson, W.D., Kozub, N.M., Rao, K.V.N., Lubet, R.A., Steele, V.E. and Bosland, M.C. (2007) Chemoprevention of Rat Prostate Carcinogenesis by Dietary 16α-Fluoro5-Androsten-17-One (Fluasterone), a Minimally Androgenic Analog of Dehydroepiandrosterone. Carcinogenesis, 28, 398-403. https://doi.org/10.1093/carcin/bgl141
|
[26]
|
Vurusaner, B., Gargiulo, S., Testa, G., Gamba, P., Leonarduzzi, G., Poli, G. and Basaga, H. (2018) The Role of Autophagy in Survival Response Induced by 27-Hydroxycholesterol in Human Promonocytic Cells. Redox Biology, 17, 400-410. https://doi.org/10.1016/j.redox.2018.05.010
|
[27]
|
Woo, S.Y., Lee, H., Park, S.M., Choi, H.S., Kim, J., Kwon, M., Sohn, J., Nam, J.H., Kim, H.S., Song, P., Baryawno, N., Kim, Y.H., Kim, K. and Lee, D. (2022) Role of Reactive Oxygen Species in Regulating 27-Hydroxycholesterol-Induced Apoptosis of Haematopoietic Progenitor Cells and Myeloid Cell Lines. Cell Death and Diseases, 13, Article No. 916. https://doi.org/10.1038/s41419-022-05360-0
|
[28]
|
Warns, J., Marwarha, G., Freking, N. and Ghribi, O. (2018) 27-Hydroxycholesterol Decreases Cell Proliferation in Colon Cancer Cell Lines. Biochimie, 153, 171-180. https://doi.org/10.1016/j.biochi.2018.07.006
|
[29]
|
Raza, S., Meyer, M., Schommer, J., Hammer, K.D.P., Guo, B. and Ghribi, O. (2016) 27-Hydroxycholesterol Stimulates Cell Proliferation and Resistance to Docetaxel-Induced Apoptosis in Prostate Epithelial Cells. Medical Oncology, 33, Article No. 12. https://doi.org/10.1007/s12032-015-0725-5
|
[30]
|
Chuu, C.P. and Lin, H.P. (2010) Antiproliferative Effect of LXR Agonists T0901317 and 22(R)-Hydroxycholesterol on Multiple Human Cancer Cell Lines. Anticancer Research, 30, 3643-3648.
|
[31]
|
Roz, A.E., Bard, J.M., Huvelin, J.M. and Nazih, H. (2012) LXR Agonists and ABCG1-Dependent Cholesterol Efflux in MCF-7 Breast Cancer Cells: Relation to Proliferation and Apoptosis. Anticancer Research, 32, 3007-3013.
|
[32]
|
Jusakul, A., Loilome, W., Namwat, N., Techasen, A., Kuver, R., Ioannou, G.N., Savard, C., Haigh, W.G. and Yongvanit, P. (2013) Anti-Apoptotic Phenotypes of Cholestan-3β,5α,6β-Triol-Resistant Human Cholangiocytes: Characteristics to the Genesis of Cholangiocarcinoma. Journal of Steroid Biochemistry and Molecular Biology, 138, 368-375. https://doi.org/10.1016/j.jsbmb.2013.08.004
|
[33]
|
Attanzio, A., Frazzitta, A., Cilla, A., Livrea, M.A., Tesoriere, L. and Allegra, M. (2019) 7-Keto-Cholesterol-3β,5α,6β-Triol Induce Eryptosis through Distinct Pathways Leading to NADPH Oxidase and Nitric Oxide Synthetase Activation. Cell Physiology and Biochemistry, 53, 933-947. https://doi.org/10.33594/000000186
|
[34]
|
You, J.S., Lim, H., Seo, J.Y., Kang, K.R., Kim, D.K., Oh, J.S., Seo, Y.S., Lee, G.J., Kim, J.S., Kim, H.J., Yu, S.K. and Kim, J.S. (2021) 25-Hydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell Line. Molecules, 27, Article 199. https://doi.org/10.3390/molecules27010199
|
[35]
|
Ou, Z.J., Chen, J., Dai, W.P., Liu, X., Yang, Y.K., Li, Y., Lin, Z.B., Wang, T.T., Wu, Y.Y., Su, D.H., Cheng, T., Wang, Z.P., Tao, J. and Ou, J.S. (2016) 25-Hydroxycholesterol Impairs Endothelial Function and Vasodilation by Uncoupling and Inhibiting Endothelial Nitric Oxide Synthase. American Journal of Physiology Endocrinology and Metabolism, 311, E781-E790. https://doi.org/10.1152/ajpendo.00218.2016
|
[36]
|
Tawa, M. and Okamura, T. (2016) Soluble Guanylate Cyclase Redox State under Oxidative Stress Conditions in Isolated Monkey Coronary Arteries. Pharmacology Research Perspectives, 16, e00261. https://doi.org/10.1002/prp2.261
|
[37]
|
Riveron-Negrete, L. and Fernadez-Mejia, C. (2017) Pharmacological Effects of Biotin in Animals. Mini Reviews in Medicinal Chemistry, 17, 529-540. https://doi.org/10.2174/1389557516666160923132611
|
[38]
|
Yamagata, K. (2017) Docosahexaenoic Acid Regulates Vascular Endothelial Cell Function and Prevents Cardiovascular Disease. Lipids in Health and Disease, 16, Article No. 118. https://doi.org/10.1186/s12944-017-0514-6
|
[39]
|
Massaro, M., Martinelli, R., Gatta, V., Scoditti, E., Pellegrino, M., Carluccio, M.A., Calabriso, N., Buonoomo, T., Stuppia, L, Storelli, C. and De Caterina, R. (2015) Transcriptome-Based Identification of New Anti-Anti-Inflammatory and Vasodilating Properties of the n-3 Fatty Acid Docosahexaenoic Acid in Vascular Endothelial Cell under Proinflammatory Conditions. PLOS ONE, 10, e0129652. https://doi.org/10.1371/journal.pone.0129652
|
[40]
|
Barsony, J. and Marx, S.J. (1991) Rapid Accumulation of Cyclic GMP Near Activated Vitamin D Receptors. Proceedings of the National Academy of Sciences of the United States of America, 88, 1436-1440. https://doi.org/10.1073/pnas.88.4.1436
|
[41]
|
Negri, M., Gentile, A., De Angelis, C., Monto, T., Patalano, R., Colao, A., Pivonello, R. and Pivonello, C. (2020) Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients, 12, Article 1798. https://doi.org/10.3390/nu12061798
|
[42]
|
Fathi, F.Z.M., Sadek, K.M., Khafaga, A.F., Al Senosy, A.W., Ghoniem, H.A., Fayez, S. and Zeweil, M.F. (2022) Vitamin D Regulates Insulin and Ameliorates Apoptosis and Oxidative Stress in Pancreatic Tissues of Rats with Streptozotocin-Induced Diabetes. Environmental Science and Pollution Research, 29, 90219-90229. https://doi.org/10.1007/s11356-022-22064-2
|
[43]
|
Bhutia, S.K. (2022) Vitamin D in Autophagy Signaling for Health and Diseases: Insights on Potential Mechanisms and Future Perspectives. Journal of Nutritional Biochemistry, 99, Article ID: 108841. https://doi.org/10.1016/j.jnutbio.2021.108841
|
[44]
|
Pan, Z., Xie, Y., Bai, J., Lin, Q., Cui, X. and Zhang, N. (2018) Bufalin Suppresses Colorectal Cancer Cell Growth through Promoting Autophagy in vivo and in vitro. RSC Advances, 8, 38910-38918. https://doi.org/10.1039/C8RA06566G
|
[45]
|
Hohmann, N., Xia, N., Steinkamp-Fenske, K., Forstermann, U. and Huige, L. (2016) Estrogen Receptor Signaling and the P13K/Akt Pathway Are Involved in Betulinic Acid-Induced eNOS Activation. Molecules, 21, Article 973. https://doi.org/10.3390/molecules21080973
|
[46]
|
Nie, C., Zhou, J., Qin, X., Shi, X., Zeng, Q., Liu, J., Yan, S. and Zhang, L. (2016) Diosgenin-Induced Autophagy and Apoptosis in a Human Prostate Cancer Cell Line. Molecular Medicine Reports, 14, 4349-4359. https://doi.org/10.3892/mmr.2016.5750
|
[47]
|
Kosic, M., Paunovic, V., Ristic, B., Mircic, A., Bosnjak, M., Stevanovic, D., Kravic-Stevovic, T., Trajkovic, V. and Harhaji-Trajkovic, L. (2021) 3-Methyladenine Prevents Energy Stress-Induced Necrotic Death of Melanoma Cells through Autophagy-Independent Mechanisms. Journal of Pharmacological Sciences, 147, 156-167. https://doi.org/10.1016/j.jphs.2021.06.003
|
[48]
|
Sheng , Y., Sun, B., Guo, W.T., Zhang, Y.H., Liu, X., Xing, Y. and Dong, D.L. (2013) 3-Methyladenine Induces Cell Death and Its Interaction with Chemotherapeutic Drugs Is Independent of Autophagy. Biochemical Biophysics Research Communications, 432, 5-9. https://doi.org/10.1016/j.bbrc.2013.01.106
|
[49]
|
Georges, E., Lian, J. and Laberge, R. (2014) A Tamoxifen Derivative, N, N-Diethyl-2[4-(Phenylmethyl) Phenoxy] Ethanamine, Selectively Targets P-Glycoprotein-Positive Multidrug Resistant Chinese Hamster Cells. Biochemical Pharmacology, 90, 107-114. https://doi.org/10.1016/j.bcp.2014.04.017
|
[50]
|
Voisin, M., de Medina, P., Malingre, A., Dalenc, F., Huc-Claustre, E., Leignadier, J., Serhan, N., Soules, R., Segala, G., et al. (2017) Identification of a Tumor-Promoter Cholesterol Metabolite in Human Breast Cancers Acting through the Glucocorticoid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 114, E9346-E9355. https://doi.org/10.1073/pnas.1707965114
|
[51]
|
Noureddine, L.M., Tredan, O., Hussein, N., Badran, B., Le Romancer, M. and Poulard, C. (2021) Glucocorticoid Receptor: A Multifaceted Actor in Breast Cancer. International Journal of Molecular Sciences, 22, Article 4446. https://doi.org/10.3390/ijms22094446
|
[52]
|
Silvente-Poirot, S., Segala, G., Poirot, M.C. and Poirot, M. (2018) Ligand-Dependent Transcriptional Induction of Lethal Autophagy: A New Perspective for Cancer Treatment. Autophagy, 14, 555-557. https://doi.org/10.1080/15548627.2018.1425059
|
[53]
|
Butz, H. and Patocs, A. (2022) Mechanisms behind Context-Dependent Role of Glucocorticoids in Breast Cancer Progression. Cancer Metastasis Reviews, 41, 803-832. https://doi.org/10.1007/s10555-022-10047-1
|
[54]
|
Williams, W.R. (2022) Contributors to Cancer Susceptibility, Development and Treatment: Cyclic Nucleotides, Steroids and Autophagy Modulators. Journal of Biosciences and Medicines, 10, 65-86. https://doi.org/10.4236/jbm.2022.102008
|
[55]
|
Anh, N.H., Long, N.P., Kim, S.J., Min, J.E., Yoon, S.J., Kim, H.M., Yang, E., Hwang, E.S., Park, J.H., Hong. S.S. and Kwon, S.W. (2019) Steroidomics for the Prevention, Assessment, and Management of Cancers: A Systematic Review and Functional Analysis. Metabolites, 9, Article 199. https://doi.org/10.3390/metabo9100199
|
[56]
|
Africander, D. and Storbeck, K.H. (2018) Steroid Metabolism in Breast Cancer: Where Are We and What Are We Missing? Molecular and Cellular Endocrinology, 466, 86-97. https://doi.org/10.1016/j.mce.2017.05.016
|
[57]
|
Houghton, L.C., Howland, R.E., Wei, Y., Ma, X., Kehm, R.D., Chung, W.K., Genkinger, J.M., Santella, R.M., Hartmann, M.F., Wudy, S.A. and Terry, M.B. (2021) The Steroid Metabolome and Breast Cancer Risk in Women with a Family History of Breast Cancer: The Novel Role of Adrenal Androgens and Glucocorticoids. Cancer Epidemiology Biomarkers Prevention, 30, 89-96. https://doi.org/10.1158/1055-9965.EPI-20-0471
|
[58]
|
Kashgari, F.K., Ravna, A., Sager, G., Lysa, R., Enyedy, I. and Dietrichs, E.S. (2020) Identification and Experimental Confirmation of Novel cGMP Efflux Inhibitors by Virtual Ligand Screening of Vardenafil-Analogues. Biomedicine & Pharmacotherapy, 126, Article ID: 110109. https://doi.org/10.1016/j.biopha.2020.110109
|
[59]
|
Suganya, N., Mani, K.P., Sireesh, D., Rajaguru, P., Vairamani, M., Suresh, T., Suzuki, T., Chatterjee, S. and Ramkumar, K.M. (2018) Establishment of Pancreatic Microenvironment Model of ER Stress: Quercetin Attenuates β-Cell Apoptosis by Invoking Nitric Oxide-cGMP Signaling in Endothelial Cells. Journal of Nutritional Biochemistry, 55, 142-156. https://doi.org/10.1016/j.jnutbio.2017.12.012
|
[60]
|
Jeong, S.O., Son, Y., Lee, J.H., Choi, S.W., Kim, H.K., Cheong, Y.K., Chung, H.T. and Pae, H.O. (2017) Both Nitric Oxide and Nitrite Prevent Homocysteine-Independent Endoplasmic Reticulum Distress and Subsequent Apoptosis Via cGMP-Dependent Pathway in Neuronal Cells. Biochemistry and Biophysics Research Communications, 493, 164-169. https://doi.org/10.1016/j.bbrc.2017.09.054
|
[61]
|
Gao, W., Wang, Y., Yu, S., Wang, Z., Ma, T., Chan, A.M.L., Chiu, P.K.F., Ng, C.F., Wu, D. and Chan, F.L. (2022) Endothelial Nitric Oxide Synthetase (eNOS)-NO Signaling Axis Functions to Promote the Growth of Prostate Cancer Stem-Like Cells. Stem Cell Research, 13, Article No. 188. https://doi.org/10.1186/s13287-022-02864-6
|
[62]
|
Sokanovic, S.J., Baburski, A.Z., Kojic, Z., Medar, M.L.J., Andric, S.A. and Kostic, T.S. (2021) Ageing-Related Increase of cGMP Disrupts Mitochondrial Homeostasis in Leydig Cells. The Journal of Gerontology Biological Sciences and Medical Sciences, 76, 177-186. https://doi.org/10.1093/gerona/glaa132
|
[63]
|
Ben-Jonathan, N., Borcherding, D.C. and Hugo, E.R. (2022) Dopamine Receptors in Breast Cancer: Prevalence, Signaling, and Therapeutic Applications. Critical Reviews in Oncogenesis, 27, 51-71. https://doi.org/10.1615/CritRevOncog.2022043641
|