Development of the Additive-Quadratic η-Function Inequality with 3k-Variables Based on a General Quadratic Function Variables on a Complex Banach Spaces

Abstract

In this article, I study the establishment of the quadratic-additive η-function inequality with 3k-variables on the homogeneous complex Banach space and prove the quadratic-additive η-function equation related to the additive and quadratic η-functional inequalities in (α12)-homogeneous Banach complex space.

Share and Cite:

An, L.V. (2023) Development of the Additive-Quadratic η-Function Inequality with 3k-Variables Based on a General Quadratic Function Variables on a Complex Banach Spaces. Open Access Library Journal, 10, 1-24. doi: 10.4236/oalib.1110777.

1. Introduction

Let X and Y be normed spaces on the same field K , and f : X Y . I use the notations X , Y as the normals on X and the normals on Y , respectively. In this paper, I investigate some additive-quadratic η-functional inequalities in ( α 1 , α 2 ) -homogeneous complex Banach spaces.

In fact, when X is a α 1 -homogeneous real or complex normed spaces X and that Y is a α 2 -homogeneous real or complex Banach spaces Y

I solve and prove the Hyers-Ulam-Rassias type stability of two following additive-quadratic η-functional inequalities.

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y h ( η ) ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y (1)

and when I change the role of the function inequality (1.1), I continue to prove the following function inequality.

2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y h ( η ) ( f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) ) Y (2)

based on following Generalized Quadratic functional equations with 2k-variable.

f ( i = 1 k x i + i = 1 k y i ) + f ( i = 1 k x i i = 1 k y i ) = 2 i = 1 k f ( x i ) + 2 k = 1 k f ( y i ) (3)

The Hyers-Ulam stability was the first investigated for the functional equation of Ulam in [1] concerning the stability of group homomorphisms.

The Hyers [2] gave the first affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers’ Theorem was generalized by Aoki [3] additive mappings and by Rassias [4] for linear mappings considering an unbounded Cauchy difference. A ageneralization of the Rassias theorem was obtained by Găvruta [5] with replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The Hyers-Ulam stability for functional inequalities has been investigated such as Gilányi [6] showed that is if satisfies the functional inequality.

2 f ( x ) + 2 f ( y ) f ( x y ) f ( x + y ) (4)

Then f satisfies the Jordan-von Newman functional equation.

2 f ( x ) + 2 f ( y ) = f ( x + y ) + f ( x y ) (5)

Gilányi [7] and Fechner [8] proved the Hyers-Ulam stability of the functional inequality (4).

Next Chookil [9] and [10] proved the of additive β-functional inequalities in non-Archimedean Banach spaces and in complex Banach spaces, and Harin Leea [11] [12] [13] proved the Hyers-Ulam stability of additive β-functional inequalities in ρ-homogeneous F space.

Recently, the author has studied the additive-quadratic functional inequalities of mathematicians around the world, on spaces complex Banach spaces, non-Archimedan Banach spaces or additive β-functional inequalities in p-homogeneous F-space.... See [14] - [19] .

So in this paper, I solve and prove the Hyers-Ulam stability for two additive-quadratic η-functional inequalities (1)-(2), i.e. the additive-quadratic η-functional inequalities with 3k-variables. Under suitable assumptions on spaces X and Y, I will prove that the mappings satisfy the additive-quadratic η-functional inequalities (1) or (2). Thus, the results in this paper are a generalization of those in [14] - [20] for additive-quadratic η-functional inequalities with 3k-variables.

In this paper, I have constructed a general quadratic linear functional inequality to improve the classical linear linear inequality. This problem I think is one outstanding development for the mathematics industry modern studies in the field of functional equations in particular and mathematics in general. I would like to express my gratitude to the senior mathematicians [1] - [24] who have inspired today’s mathematics researchers.

The paper is organized as follows: In section preliminariers, I remind a basic property such as I only redefine the solution definition of the equations of the additive function, the equations of the quadratic function and F * -space.

Section 3: Constructing solution to the quadratic η-functional inequalities (1) in ( α 1 , α 2 ) -homogeneous complex Banach spaces.

Section 4: Constructing solution to the quadratic η-functional inequalities (2) in ( α 1 , α 2 ) -homogeneous complex Banach spaces.

Section 5: Constructing solution to the additive η-functional inequalities (1) in ( α 1 , α 2 ) -homogeneous complex Banach spaces.

Section 6: Constructing solution to the additive η-functional inequalities (2) in ( α 1 , α 2 ) -homogeneous complex Banach spaces.

2. Preliminaries

2.1. F -Spaces

Let X be a (complex) linear space. A nonnegative valued function is an F-norm if it satisfies the following conditions:

1. x = 0 if and only if x = 0 ;

2. λ x = x for all x X and all λ with | λ | = 1 ;

3. x + y x + y for all x , y X ;

4. λ n x 0 , λ n 0 ;

5. λ n x 0 , x n 0 .

Then ( X , ) is called an F * -space. An F-space is a complete F * -space. An F-norm is called β-homgeneous ( β > 0 ) if t x = | t | β x for all x X and for all t and ( X , ) is called α-homogeneous F-space.

2.2. Solutions of the Inequalities

The functional equation: f ( x + y ) + f ( x y ) = 2 f ( x ) + 2 f ( y ) is called the qudratic equation. In particular, every solution of the quadratic equation is said to be a quadratic mapping.

The functional equation: f ( x + y ) = f ( x ) + f ( y ) is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The functional equation: f ( x + y 2 ) = 1 2 f ( x ) + 1 2 f ( y ) is called the Jensen equation. In particular, every solution of the Jensen equation is said to be a Jensen mapping.

The functional equation: f ( x + y 2 ) + f ( x y 2 ) = 1 2 f ( x ) + 1 2 f ( y ) is called the Jensen type qudratic equation. In particular, every solution of the quadratic equation is said to be a Jensen type quadratic mapping.

D = { φ : : g ( η ) = η , | g ( η ) | = | η | 1 2 } (6)

Note: With k is a positive integer and h A α 1 , α 2 + , α 1 , α 2 1 .

3. Constructing Solution to the η-Functional Inequalities (2) in ( α 1 , α 2 ) -Homogeneous Complex Banach Spaces

Now, I first study the solutions of (1). Note that for these inequalities, when X is a α 1 -homogeneous real or complex normed spaces X and that Y is a α 2 -homogeneous real or complex Banach spaces Y . Under this setting, I can show that the mapping satisfying (1) is quadratic. These results are given in the following.

Lemma 1 Let f : X Y be an even mapping satilies:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y (7)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X if and only if f : X Y is quadratic.

Proof. Assume that f : X Y satisfies (7).

I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 0, ,0,0, ,0,0, ,0 ) in (7), I have: ( 4 k 2 ) f ( 0 ) Y η f ( 0 ) Y 0 therefore, ( | 4 k 2 | α 2 | η | α 2 ) f ( 0 ) Y 0

So f ( 0 ) = 0 .

Next replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( k x , , k x , k x , , k x , x , , x ) in (7), I have.

Thus f ( 2 k x ) 4 k f ( x ) Y 0

f ( x 2 k ) = 1 4 k f ( x ) (8)

for all x X .

From (7) and (8) I infer that:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y = | η | α 2 | 2 k | α 2 f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y (9)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X and so, f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) = 2 j = 1 k f ( x j + y j 2 k ) + 2 j = 1 k f ( z j ) for all x 1 , , x k , y 1 , , y k , z 1 , , z k X , as I expected. The couverse is obviously true. □

Corollary 1 Let f : X Y be an even mapping satilies:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) = η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) (10)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X if and only if f : X Y is quadratic.

Note! The functional Equation (10) is called an quadratic η-functional equation.

Theorem 2 Assume for r > 2 α 2 α 1 , θ be nonngative real number, and suppose f : X Y be an even mapping such that:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y + θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r ) (11)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X . Then there exists a unique quadratic mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 1 r ( 4 k ) α 2 θ x X r (12)

for all x X .

Proof. Assume that f : X Y satisfies (11).

I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 0, ,0,0, ,0,0, ,0 ) in (11), I have: ( 4 k 2 ) f ( 0 ) Y 2 η f ( 0 ) Y 0 therefore, ( | 4 k 2 | α 2 | 2 η | α 2 ) f ( 0 ) Y 0

So f ( 0 ) = 0 .

Next replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( k x , , k x , k x , , k x , x , , x ) in (11) I have:

f ( 2 x ) 4 k f ( x ) Y ( 2 k α 1 r + 1 + 1 ) θ x X r (13)

for all x X . Thus,

f ( x ) 4 k f ( x 2 k ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 1 r θ x X r (14)

for all x X .

( 4 k ) l f ( x ( 2 k ) l ) ( 4 k ) m f ( x ( 2 k ) m ) Y j = 1 m 1 ( 4 k ) j f ( x ( 2 k ) j ) ( 4 k ) j + 1 f ( x ( 2 k ) j + 1 ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 1 r θ j = 1 m 1 ( 4 k ) α 2 j ( 2 k ) α 1 r j x X r (15)

for all nonnegative integers p, l with p > l and all x X . It follows from (15) that the sequence { ( 4 k ) n f ( x ( 2 k ) n ) } is a cauchy sequence for all x X . Since Y is complete, the sequence { ( 4 k ) n f ( x ( 2 k ) n ) } coverges.

So one can define the mapping ϕ : X Y by, ϕ ( x ) : = lim n ( 4 k ) n f ( x ( 2 k ) n ) for all x X . Moreover, letting l = 0 and passing the limit m in (15), I get (12).

Form f : X Y is even, the mapping ϕ : X Y is even.

It follows from (11) that:

ϕ ( j = 1 k x j + y j 2 k + j = 1 k z j ) + ϕ ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k ϕ ( x j + y j 2 k ) j = 1 k ϕ ( z j ) j = 1 k ϕ ( z j ) Y = lim n ( 4 k ) α 2 n f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k + 1 ( 2 k ) n j = 1 k z j ) + f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k 1 ( 2 k ) n j = 1 k z j ) j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) j = 1 k f ( 1 ( 2 k ) n z j ) j = 1 k f ( 1 ( 2 k ) n z j ) Y

lim n ( 4 k ) α 2 n | η | α 2 2 f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k + 1 ( 2 k ) n j = 1 k z j ) + 2 f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k 1 ( 2 k ) n j = 1 k z j ) 3 2 k j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) + 1 2 k j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) 1 2 j = 1 k f ( 1 ( 2 k ) n z j ) 1 2 j = 1 k f ( 1 ( 2 k ) n z j ) Y + lim n ( 4 k ) α 2 n ( 2 k ) α 1 n r θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r )

= | η | α 2 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y (16)

for all x j , y j , z j X for all j = 1 n .

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y (17)

for all x j , y j , z j X for j = 1 n , So by lemma 3.1, it follows that the mapping ϕ : X Y is additive. Now I need to prove uniqueness, Suppose ϕ : X Y is also a quadratic mapping that satisfies (12). Then I have:

ϕ ( x ) ϕ ( x ) Y = ( 4 k ) α 2 n ϕ ( x ( 2 k ) n ) ϕ ( x ( 2 k ) n ) Y ( 4 k ) α 2 n ( ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y + ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y ) 2 ( 4 k ) α 2 n ( 2 k α 1 r + 1 + 1 ) ( 2 k ) α 1 n r ( ( 2 k ) α 1 r ( 4 k ) α 2 ) θ x X r (18)

which tends to zero as n for all x X . So I can conclude that ϕ ( x ) = ϕ ( x ) for all x X . This proves thus the mapping ϕ : X Y is a unique mapping satisfying(12) as I expected.

Theorem 3 Assume for r < 2 α 2 α 1 , θ be nonngative real number, and Suppose f : X Y be an even mapping satisfiying (11). Then there exists a unique quadratic mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) 2 k α 1 r + 1 + 1 ( 4 k ) α 2 ( 2 k ) α 1 r θ x r (19)

for all x X .

The proof is similar to the proof of theorem 3.3.

4. Constructing Solution to the η-Functional Inequalities (2) in ( α 1 , α 2 ) -Homogeneous Complex Banach Spaces

Now, I study the solutions of (2). Note that for these inequalities, when X is a α 1 -homogeneous complex Banach spaces and that Y is a α 2 -homogeneous complex Banach spaces.

Under this setting, I can show that the mapping satisfying (2) is quadratic. These results are given in the following.

Lemma 4 Let f : X Y be an even mapping satilies f ( 0 ) = 0 and:

2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y η ( f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) ) Y (20)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X if and only if f : X Y is quadratic.

Proof. Assume that f : X Y satisfies (20).

Replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 2 k x , ,0,0, ,0,0, ,0 ) in (20), I have.

Thus 4 f ( x 2 k ) 1 k f ( x ) Y 0

f ( x 2 k ) = 1 4 k f ( x ) (21)

for all x X .

From (20) and (21) I infer that:

1 ( 2 k ) α 2 f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y = 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y | η | α 2 f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y (22)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X and so: f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) = 2 j = 1 k f ( x j + y j 2 k ) + 2 j = 1 k f ( z j ) for all x 1 , , x k , y 1 , , y k , z 1 , , z k X , as I expected. The couverse is obviously true.

Let f : X Y be an even mapping satilies,

2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) = η ( f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) ) (23)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X if and only if f : X Y is quadratic Note! The functional Equation (23) is called an quadratic λ-functional equation.

Theorem 5 Assume for r > 2 α 2 α 1 , θ be nonngative real number, and suppose f : X Y be a mapping such that f ( 0 ) = 0 and

2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) + 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y η ( f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) ) Y + θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r ) (24)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X . Then there exists a unique quadratic mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y ( 2 k ) α 1 r ( 2 k ) α 1 r ( 4 k ) α 2 θ x X r (25)

for all x X .

Proof. Assume that f : X Y satisfies (24).

Replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 2 k x , ,0,0, ,0,0, ,0 ) in (24) I have:

4 f ( x 2 k ) 1 k f ( x ) Y ( 2 k ) α 1 r θ x X r (26)

for all x X . Thus

4 k f ( x 2 k ) f ( x ) ( 2 k ) α 1 r k α 2 θ x X r (27)

for all x X .

( 4 k ) l f ( x ( 2 k ) l ) ( 4 k ) m f ( x ( 2 k ) m ) j = 1 m 1 ( 4 k ) j f ( x ( 2 k ) j ) ( 4 k ) j + 1 f ( x ( 2 k ) j + 1 ) Y ( 2 k ) α 1 r k α 2 θ j = 1 m 1 ( 4 k ) α 2 j ( 2 k ) α 1 r j x X r (28)

for all nonnegative integers p, l with p > l and all x X . It follows from (28) that the sequence { ( 4 k ) n f ( x ( 2 k ) n ) } is a cauchy sequence for all x X . Since Y is complete, the sequence { ( 4 k ) n f ( x ( 2 k ) n ) } coverges.

So one can define the mapping ϕ : X Y by ϕ ( x ) : = lim n ( 4 k ) n f ( x ( 2 k ) n ) for all x X . Moreover, letting l = 0 and passing the limit m in (28), I get (25). Form f : X Y is even, the mapping: ϕ : X Y is even. It follows from (24) I have:

2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k ϕ ( x j + y j 2 k ) + 1 2 k j = 1 k ϕ ( x j + y j 2 k ) 1 2 k j = 1 k ϕ ( z j ) 1 2 k j = 1 k ϕ ( z j ) Y = lim n ( 4 k ) α 2 n 2 f ( j = 1 k x j + y j ( 2 k ) n + 2 + 1 ( 2 k ) n + 1 j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) n + 2 1 ( 2 k ) n + 1 j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j ( 2 k ) n + 1 ) + 1 2 k j = 1 k f ( x j + y j ( 2 k ) n + 1 ) 1 2 k j = 1 k f ( z j ( 2 k ) n ) 1 2 k j = 1 k f ( z j ( 2 k ) n ) Y

lim n ( 4 k ) α 2 n | η | α 2 2 f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k + 1 ( 2 k ) n j = 1 k z j ) + 2 f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k 1 ( 2 k ) n j = 1 k z j ) 2 j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) 1 2 k j = 1 k f ( 1 ( 2 k ) n z j ) 1 2 k j = 1 k f ( 1 ( 2 k ) n z j ) Y + lim n ( 4 k ) α 2 n ( 2 k ) α 1 n r θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r )

= ϕ ( j = 1 k x j + y j 2 k + j = 1 k z j ) + ϕ ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k ϕ ( x j + y j 2 k ) j = 1 k ϕ ( z j ) j = 1 k ϕ ( z j ) Y (29)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X .

2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k ϕ ( x j + y j 2 k ) + 1 2 k j = 1 k ϕ ( x j + y j 2 k ) 1 2 k j = 1 k ϕ ( z j ) 1 2 k j = 1 k ϕ ( z j ) Y η ( ϕ ( j = 1 k x j + y j 2 k + j = 1 k z j ) + ϕ ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k ϕ ( x j + y j 2 k ) j = 1 k ϕ ( z j ) j = 1 k ϕ ( z j ) ) Y

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X , So by lemma 4.1 it follows that the mapping ϕ : X Y is quadratic. Now I need to prove uniqueness, Suppose ϕ : X Y is also a quadratic mapping that satisfies (25). Then I have:

ϕ ( x ) ϕ ( x ) Y = ( 4 k ) α 2 n ϕ ( x ( 2 k ) n ) ϕ ( x ( 2 k ) n ) Y ( 4 k ) α 2 n ( ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y + ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y ) 2 ( 4 k ) α 2 n ( 2 k ) α 1 r ( 2 k ) α 1 n r ( ( 2 k ) α 1 r ( 4 k ) α 2 ) θ x X r (30)

which tends to zero as n for all x X . So I can conclude that ϕ ( x ) = ϕ ( x ) for all x X .This proves thus the mapping ϕ : X Y is a unique mapping satisfying(25) as I expected. □

Theorem 6 Assume for r < 2 α 2 α 1 , θ be nonngative real number, f ( 0 ) = 0 and suppose f : X Y be an odd mapping (24). Then there exists a unique quadratic mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y ( 2 k ) α 1 r ( 4 k ) α 2 ( 2 k ) α 1 r θ x X r (31)

for all x X .

The proof is similar to the proof of theorem 4.3.

5. Constructing Solution to the Additive η-Functional Inequalities (1) in ( α 1 , α 2 ) -Homogeneous Complex Banach Spaces

Now, I first study the solutions of (1). Note that for these inequalities, when X is a α 1 -homogeneous complex Banach spaces and that Y is a α 2 -homogeneous complex Banach spaces. Under this setting, I can show that the mapping satisfying (1) is additive. These results are given in the following.

Lemma 7 Let f : X Y be an odd mapping satilies:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y (32)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X if and only if f : X Y is additive.

Proof. Assume that f : X Y satisfies (32).

I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 0, ,0,0, ,0,0, ,0 ) in (32), I have: ( 4 k 2 ) f ( 0 ) Y | η | α 2 5 f ( 0 ) Y 0 therefore f ( 0 ) = 0 .

Next replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( k x , , k x , k x , , k x , x , , x ) in (32), I have.

Thus f ( 2 k x ) 2 k f ( x ) Y 0

f ( x 2 k ) = 1 2 k f ( x ) (33)

for all x X From (32) and (33) I infer that:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y = | η | α 2 | k | α 2 f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y (34)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X and so.

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) = 2 j = 1 k f ( x j + y j 2 k ) (35)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X .

Next I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( k x , , k x , k x , , k x , z , , z ) in (35), I have

f ( k x + k z ) + f ( k x k z ) = 2 k f ( x ) (36)

for all x , z X Now letting p = k x + k z , q = k x k z when that in (36), I get

f ( p ) + f ( q ) = 2 k f ( p + q 2 k ) = 2 k 1 2 k f ( p + q ) = f ( p + q ) (37)

for all p , q X . So f is an additive mapping. as I expected. The couverse is obviously true. □

Corollary 2 Let f : X Y be an even mapping satilies:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) = η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) (38)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X if and only if f : X Y is additive.

Note! The functional Equation (38) is called an additive η-functional equation.

Theorem 8 Assume for r > α 2 α 1 , θ be nonngative real number, and suppose f : X Y be an odd mapping such that:

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y + θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r ) (39)

for all x 1 , , x k , y 1 , , y k , z 1 , , z k X . Then there exists a unique additive mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 1 r ( 2 k ) α 2 θ x X r . (40)

for all x X .

Proof. Assume that f : X Y satisfies (39). I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 0, ,0,0, ,0,0, ,0 ) in (39), I have: O ( 4 k 2 ) f ( 0 ) Y 5 λ f ( 0 ) Y therefore, ( | 4 k 2 | α 2 | 5 λ | α 2 ) f ( 0 ) Y 0

So f ( 0 ) = 0 . Next replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( k x , , k x , k x , , k x , x , , x ) in (39) I have:

f ( 2 k x ) 2 k f ( x ) Y ( 2 k α 1 r + 1 + 1 ) θ x X r (41)

for all x X . Thus

f ( x ) 2 k f ( x 2 k ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 1 r θ x X r (42)

for all x X .

( 2 k ) l f ( x ( 2 k ) l ) ( 2 k ) m f ( x ( 2 k ) m ) Y j = 1 m 1 ( 2 k ) j f ( x ( 2 k ) j ) ( 2 k ) j + 1 f ( x ( 2 k ) j + 1 ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 1 r θ j = 1 m 1 ( 2 k ) α 2 j ( 2 k ) α 1 r j x X r (43)

for all nonnegative integers p, l with p > l and all x X . It follows from (15) that the sequence { ( 2 k ) n f ( x ( 2 k ) n ) } is a cauchy sequence for all x X . Since Y is complete, the sequence { ( 2 k ) n f ( x ( 2 k ) n ) } coverges.

So one can define the mapping ϕ : X Y by ϕ ( x ) : = lim n ( 2 k ) n f ( x ( 2 k ) n ) for all x X . Moreover, letting l = 0 and passing the limit m in (15), I get (40).

Form f : X Y is even, the mapping ϕ : X Y is even.

It follows from (39) I have:

ϕ ( j = 1 k x j + y j 2 k + j = 1 k z j ) + ϕ ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k ϕ ( x j + y j 2 k ) j = 1 k ϕ ( z j ) j = 1 k ϕ ( z j ) Y = lim n ( 2 k ) α 2 n f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k + 1 ( 2 k ) n j = 1 k z j ) + f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k 1 ( 2 k ) n j = 1 k z j ) j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) j = 1 k f ( 1 ( 2 k ) n z j ) j = 1 k f ( 1 ( 2 k ) n z j ) Y

lim n ( 2 k ) α 2 n | λ | α 2 2 f ( 1 ( 2 k ) n j = 1 k x j + y j ( 2 k ) 2 + 1 ( 2 k ) n + 1 j = 1 k z j ) + 2 f ( 1 ( 2 k ) n j = 1 k x j + y j ( 2 k ) 2 1 ( 2 k ) n + 1 j = 1 k z j ) 3 2 k j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) 1 2 k j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) 1 2 k j = 1 k f ( 1 ( 2 k ) n z j ) 1 2 k j = 1 k f ( 1 ( 2 k ) n z j ) Y + lim n ( 2 k ) α 2 n ( 2 k ) α 1 n r θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r )

= | λ | α 2 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y (44)

for all x j , y j , z j X for all j = 1 n .

f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y η ( 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) ) Y

for all x j , y j , z j X for j = 1 n , So by lemma 5.1, it follows that the mapping ϕ : X Y is additive. Now I need to prove uniqueness, suppose ϕ : X Y is also an additive mapping that satisfies (40). Then I have:

ϕ ( x ) ϕ ( x ) Y = ( 2 k ) α 2 n ϕ ( x ( 2 k ) n ) ϕ ( x ( 2 k ) n ) Y ( 2 k ) α 2 n ( ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y + ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y ) 2 ( 2 k ) α 2 n ( 2 k α 1 r + 1 + 1 ) ( 2 k ) α 1 n r ( ( 2 k ) α 1 r ( 2 k ) α 2 ) θ x X r (45)

which tends to zero as n for all x X . So I can conclude that ϕ ( x ) = ϕ ( x ) for all x X . This proves thus the mapping ϕ : X Y is a unique mapping satisfying(40) as I expected. □

Theorem 9 Assume for r < α 2 α 1 , θ be nonngative real number, and suppose f : X Y be an odd mapping satisfying (1). Then there exists a unique additive mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y 2 k α 1 r + 1 + 1 ( 2 k ) α 2 ( 2 k ) α 1 r θ x X r (46)

for all x X .

The rest of the proof is similar to the proof of Theorem 5.3.

6. Constructing Solution to the Additive η-Functional Inequalities (2) in ( α 1 , α 2 ) -Homogeneous Complex Banach Spaces

Now, I first study the solutions of (2). Note that for these inequalities, when X is a α 1 -homogeneous complex Banach spaces and that Y is a α 2 -homogeneous complex Banach spaces. Under this setting, I can show that the mapping satisfying (2) is additive. These results are given in the following.

Lemma 10 Let f : X Y be an odd mapping satilies:

2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y η ( f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) ) Y (47)

for all x j , y j , z j X for j = 1 n , if and only if f : X Y is additive.

Proof. Assume that f : X Y satisfies (47).

I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 0, ,0,0, ,0,0, ,0 ) in (20), I have: 2 k f ( 0 ) Y | η | α 2 ( 4 k 2 ) f ( 0 ) Y

So f ( 0 ) = 0 .

Replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 2 k x , ,0,0, ,0,0, ,0 ) in (47), I have.

Thus 4 k f ( x 2 k ) 2 f ( x ) Y 0

f ( x 2 k ) = 1 2 k f ( x ) (48)

for all x X . From (47) and (48) I infer that:

1 | k | α 2 f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y = 2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y | η | α 2 f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) Y (49)

for all x j , y j , z j X for j = 1 n , and so: f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) = 2 j = 1 k f ( x j + y j 2 k ) for all x j , y j , z j X for j = 1 n , as I expected. The couverse is obviously true. □

Let f : X Y be an even mapping satilies.

Theorem 11 Assume for r > α 2 α 1 , θ be nonngative real number, and suppose f : X Y be a mapping such that f ( 0 ) = 0 and:

2 f ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( x j + y j 2 k ) 1 2 k j = 1 k f ( z j ) 1 2 k j = 1 k f ( z j ) Y η ( f ( j = 1 k x j + y j 2 k + j = 1 k z j ) + f ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k f ( x j + y j 2 k ) j = 1 k f ( z j ) j = 1 k f ( z j ) ) Y + θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r ) (50)

for all x j , y j , z j X for all j = 1 n . Then there exists a unique additive mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y ( 2 k ) α 1 r ( 2 k ) α 1 r ( 4 k ) α 2 θ x X r (51)

for all x X .

Proof. Assume that f : X Y satisfies (50).

I replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 0, ,0,0, ,0,0, ,0 ) in (50), I have: 2 f ( 0 ) Y | η | α 2 ( 4 k 2 ) f ( 0 ) Y therefore, ( | 4 k 2 | α 2 | 2 η | α 2 ) f ( 0 ) Y 0

So f ( 0 ) = 0 .

Replacing ( x 1 , , x k , y 1 , , y k , z 1 , , z k ) by ( 2 k x , ,0,0, ,0,0, ,0 ) in (50) I have:

4 f ( x 2 k ) 1 k f ( x ) Y ( 2 k ) α 1 r θ x X r (52)

for all x X . Thus

4 k f ( x 2 k ) f ( x ) Y ( 2 k ) α 1 r k α 2 θ x X r (53)

for all x X .

( 4 k ) l f ( x ( 2 k ) l ) ( 4 k ) m f ( x ( 2 k ) m ) Y j = 1 m 1 ( 4 k ) j f ( x ( 2 k ) j ) ( 4 k ) j + 1 f ( x ( 2 k ) j + 1 ) Y ( 2 k ) α 1 r k α 2 θ j = 1 m 1 ( 4 k ) α 2 j ( 2 k ) α 1 r j x X r (54)

for all nonnegative integers p, l with p > l and all x X . It follows from (54) that the sequence { ( 4 k ) n f ( x ( 2 k ) n ) } is a cauchy sequence for all x X . Since Y is complete, the sequence { ( 4 k ) n f ( x ( 2 k ) n ) } coverges.

So one can define the mapping ϕ : X Y by ϕ ( x ) : = lim n ( 4 k ) n f ( x ( 2 k ) n ) for all x X . Moreover, letting l = 0 and passing the limit m in (28), I get (51). Form f : X Y is even, the mapping ϕ : X Y is even. It follows from (50) I have:

2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k ϕ ( x j + y j 2 k ) + 1 2 k j = 1 k ϕ ( x j + y j 2 k ) 1 2 k j = 1 k ϕ ( z j ) 1 2 k j = 1 k ϕ ( z j ) ) Y = lim n ( 4 k ) α 2 n 2 f ( j = 1 k x j + y j ( 2 k ) n + 2 + 1 ( 2 k ) n + 1 j = 1 k z j ) + 2 f ( j = 1 k x j + y j ( 2 k ) n + 2 1 ( 2 k ) n + 1 j = 1 k z j ) 3 2 k j = 1 k f ( x j + y j ( 2 k ) n + 1 ) + 1 2 k j = 1 k f ( x j + y j ( 2 k ) n + 1 ) 1 2 k j = 1 k f ( z j ( 2 k ) n ) 1 2 k j = 1 k f ( z j ( 2 k ) n ) Y

lim n ( 4 k ) α 2 n | η | α 2 2 f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k + 1 ( 2 k ) n j = 1 k z j ) + 2 f ( 1 ( 2 k ) n j = 1 k x j + y j 2 k 1 ( 2 k ) n j = 1 k z j ) 2 j = 1 k f ( 1 ( 2 k ) n x j + y j 2 k ) 1 2 k j = 1 k f ( 1 ( 2 k ) n z j ) 1 2 k j = 1 k f ( 1 ( 2 k ) n z j ) Y + lim n ( 4 k ) α 2 n ( 2 k ) α 1 n r θ ( j = 1 k x j X r + j = 1 k y j X r + j = 1 k z j X r )

= ϕ ( j = 1 k x j + y j 2 k + j = 1 k z j ) + ϕ ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k ϕ ( x j + y j 2 k ) j = 1 k ϕ ( z j ) j = 1 k ϕ ( z j ) ) Y (55)

for all x j , y j , z j X for all j = 1 n .

2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 + 1 2 k j = 1 k z j ) + 2 ϕ ( j = 1 k x j + y j ( 2 k ) 2 1 2 k j = 1 k z j ) 3 2 k j = 1 k ϕ ( x j + y j 2 k ) + 1 2 k j = 1 k ϕ ( x j + y j 2 k ) 1 2 k j = 1 k ϕ ( z j ) 1 2 k j = 1 k ϕ ( z j ) ) Y λ ( ϕ ( j = 1 k x j + y j 2 k + j = 1 k z j ) + ϕ ( j = 1 k x j + y j 2 k j = 1 k z j ) 2 j = 1 k ϕ ( x j + y j 2 k ) j = 1 k ϕ ( z j ) j = 1 k ϕ ( z j ) ) Y

for all x j , y j , z j X for j = 1 n , So by lemma 6.1, it follows that the mapping ϕ : X Y is quadratic. Now I need to prove uniqueness, suppose ϕ : X Y is also a quadratic mapping that satisfies (50). Then I have:

ϕ ( x ) ϕ ( x ) Y = ( 4 k ) α 2 n ϕ ( x ( 2 k ) n ) ϕ ( x ( 2 k ) n ) Y ( 4 k ) α 2 n ( ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y + ϕ ( x ( 2 k ) n ) f ( x ( 2 k ) n ) Y ) 2 ( 4 k ) α 2 n ( 2 k ) α 1 r ( 2 k ) α 1 n r ( ( 2 k ) α 1 r ( 4 k ) α 2 ) θ x X r (56)

which tends to zero as n for all x X . So I can conclude that ϕ ( x ) = ϕ ( x ) for all x X . This proves thus the mapping ϕ : X Y is a unique mapping satisfying(51) as I expected.

Theorem 12 Assume for r < α 2 α 1 , θ be nonngative real number, f ( 0 ) = 0 and suppose f : X Y be an odd mapping satisfying (50). Then there exists a unique quadratic mapping ϕ : X Y such that:

f ( x ) ϕ ( x ) Y ( 2 k ) α 1 r ( 4 k ) α 2 ( 2 k ) α 1 r θ x X r . (57)

for all x X .

The proof is similar to theorem 6.2.

7. Conclusion

In the article, I developed the quadratic additivity η-function inequality with many variables on the complex ( α 1 , α 2 ) -homogeneous Banach space and showed that their solution is a quadratic additivity map. This is a remarkable idea for modern mathematics.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] Ulam, S.M. (1960) A Collection of the Mathematical Problems. Interscience Publ., New York.
[2] Hyers, D.H. (1941) On the Stability of the Linear Functional Equation. Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[3] Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Spaces. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064
[4] Rassias, Th.M. (1978) On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the AMS, 72, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[5] Găvruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-436. https://doi.org/10.1006/jmaa.1994.1211
[6] Gilányi, A. (2002) On a Problem by K. Nikodem. Mathematical Inequalities & Applications, 5, 707-710. https://doi.org/10.7153/mia-05-71
[7] Gilányi, A. (2002) Eine zur parallelogrammleichung äquivalente ungleichung. Aequations, 5, 707-710. https://doi.org/10.7153/mia-05-71
[8] Fechner, W. (2006) Stability of a Functional Inequalities Associated with the Jordan-von Neumann Functional Equation. Aequationes Mathematicae, 71, 149-161. https://doi.org/10.1007/s00010-005-2775-9
[9] Lee, J.R., Park, C. and Shin, D.Y. (2014) Additive and Quadratic Functional in Equalities in Non-Archimedean Normed Spaces. International Journal of Mathematical Analysis, 8, 1233-1247. https://doi.org/10.12988/ijma.2014.44113
[10] Lee, H., Cha, J.Y., Cho, M.W. and Kwon, M. (2016) Additive ρ-Functional Inequalities in β-Homogeneous F-Spaces. Journal of the Korean Society of Mathematical Education Series B-Pure and Applied Mathematics, 23, 319-328. https://doi.org/10.7468/jksmeb.2016.23.3.319
[11] Park, C., Cho, Y. and Han, M. (2007) Functional Inequalities Associated with Jordan-von Newman-Type Additive Functional Equations. Journal of Inequalities and Applications, 2007, Article ID: 041820. https://doi.org/10.1155/2007/41820
[12] Prager, W. and Schwaiger, J. (2013) A System of Two in Homogeneous Linear Functional Equations. Acta Mathematica Hungarica, 140, 377-406. https://doi.org/10.1007/s10474-013-0315-y
[13] Park, C. (2014) Additive β-Functional Inequalities. Journal of Nonlinear Sciences and Applications, 7, 296-310. https://doi.org/10.22436/jnsa.007.05.02
[14] Van An, L. (2020) Generalized Hyers-Ulam Type Stability of the Type Functional Equation with 2k-Variable in Non-Archimedean Space. Asia Mathematika, 5, 69- 83.
[15] Van An, L. (2020) Generalized Hyers-Ulam Type Stability of the Additive Functional Equation Inequalities with 2n-Variables on an Approximate Group and Ring Homomorphism. Asia Mathematika, 4, 161-175.
[16] Van An, L. (2021) Generalized Hyers-Ulam-Rassias Type Stability of the with 2k-Variable Quadratic Functional Inequalities in Non-Archimedean Banach Spaces and Banach Spaces. Asia Mathematika, 5, 69-83. https://doi.org/10.14445/22315373/IJMTT-V67I9P521
[17] Van An, L. (2021) Generalized Hyers-Ulam Type Stability of the 2k-Variables Quadratic β-Functional Inequalities and Function in γ-Homogeneous Normed Space. International Journal of Mathematics and Its Applications, 9, 81-93.
[18] Van An, L. (2023) Generalized Stability of Functional Inequalities with 3k-Variables Associated for Jordan-von Neumann-Type Additive Functional Equation. Open Access Library Journal, 10, e9681.
[19] Van An, L. (2020) Generalized Hyers-Ulam Type Stability of the 2k-Variable Additive β-Functional Inequalities and Equations in Complex Banach Space. International Journal of Mathematics Trends and Technology, 66, 134-147. https://doi.org/10.14445/22315373/IJMTT-V66I7P518
[20] Van An, L. (2022) Generalized Stability Additive λ-Functional Inequalities with 3k-Variable in α-Homogeneous F-Spaces. International Journal of Analysis and Applications, 20, 43. https://doi.org/10.28924/2291-8639-20-2022-43
[21] Skof, F. (1983) Proprieta’ locali e approssimazione di operatori. Rendiconti del Seminario Matematico e Fisico di Milano, 53, 113-129. https://doi.org/10.1007/BF02924890
[22] Cholewa, P.W. (1984) Remarks on the Stability of Functional Equations. Aequationes Mathematicae, 27, 76-86. https://doi.org/10.1007/BF02192660
[23] Bahyrycz, A. and Piszczek, M. (2014) Hyers Stability of the Jensen Function Equation. Acta Mathematica Hungarica, 142, 353-365. https://doi.org/10.1007/s10474-013-0347-3
[24] Balcerowski, M. (2013) On the Functional Equations Related to a Problem of Z Boros and Z. Dróczy. Acta Mathematica Hungarica, 138, 329-340. https://doi.org/10.1007/s10474-012-0278-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.