[1]
|
Shen, X., Liu, H., Cheng, X.B. and Huang, J.Q. (2018) Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes. Energy Storage Materials, 12, 161-175. https://doi.org/10.1016/j.ensm.2017.12.002
|
[2]
|
Yan, G., Mariyappan, S., Rousse, G., Jacquet, Q., Deschamps, M., David, R., Mirvaux, B., Freeland, J.W. and Tarascon, J.M. (2019) Higher Energy and Safer Sodium Ion Batteries via an Electrochemically Made Disordered Na3V2(PO4)2F3 Material. Nature Communications, 10, Article No. 585. https://doi.org/10.1038/s41467-019-08359-y
|
[3]
|
Reddy, M.V., Subba Rao, G.V. and Chowdari, B.V.R. (2013) Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews, 113, 5364-5457. https://doi.org/10.1021/cr3001884
|
[4]
|
Eckert, H. and Rodrigues, A.C.M. (2017) Ion-Conducting Glass-Ceramics for Energy-Storage Applications. MRS Bulletin, 42, 206-212. https://doi.org/10.1557/mrs.2017.30
|
[5]
|
Bachman, J.C., Muy, S., Grimaud, A., Chang, H.H., Pour, N., Lux, S.F., Paschos, O., Magila, F., Lupart, S., Lamp, P., Giordano, L. and Shao-Horn, Y. (2016) Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews, 116, 140-162. https://doi.org/10.1021/acs.chemrev.5b00563
|
[6]
|
Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J. and Lu, L. (2019) Development of Solid-State Electrolytes for Sodium-Ion Battery—A Short Review. Nano Materials Science, 1, 91-100. https://doi.org/10.1016/j.nanoms.2019.02.007
|
[7]
|
Viallet, V., Hayashi, A., Tatsumisago, M. and Pradel, A. (2019) Glasses and Glass-Ceramics for Solid-State Battery Applications. In: Musgraves, J.D., Hu, J.J. Calvez, L., Eds., Springer Handbook of Glass, Springer, Berlin, 1697-1754. https://doi.org/10.1007/978-3-319-93728-1_50
|
[8]
|
Kaup, K., Bazak, D., Vajargah, S.H., Wu, X., Kulisch, J., Goward, G.R. and Nazar, L.F. (2020) A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity. Advanced Energy Materials, 10, Article ID: 1902783. https://doi.org/10.1002/aenm.201902783
|
[9]
|
Singh, K. (1999) Ion Conducting Glasses for Solid State Electrochemical Applications. Indian Journal of Pure & Applied Physics, 37, 266-271.
|
[10]
|
Suzuki, K., Nakamura, Y., Tanibata, N. and Hayashi, A. (2016) Preparation and Characterization of Na3BO3-Na2SO4 Glass Electrolytes with Na+ Ion Conductivity Prepared by a Mechanical Milling Technique. Journal of Asian Ceramic Societies, 4, 6-10. https://doi.org/10.1016/j.jascer.2015.10.002
|
[11]
|
Minami, T. (1985) Fast Ion Conducting Glasses. Journal of Non-Crystalline Solids, 73, 273-284. https://doi.org/10.1016/0022-3093(85)90353-9
|
[12]
|
Tuller, H.L., Button, D.P. and Uhlmann, D.R. (1980) Fast Ion Transport in Oxide Glasses. Journal of Non-Crystalline Solids, 40, 93-118. https://doi.org/10.1016/0022-3093(80)90096-4
|
[13]
|
Scrosati, B., et al. (1992) Fast Ion Transport in Solids. Springer, Berlin. https://doi.org/10.1007/978-94-011-1916-0
|
[14]
|
Souquet, J.L. and Duclot, M. (2001) Batteries: Glassy Electrolytes. In: Buschow, K.H.J., et al., Eds., Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam, 457-462. https://doi.org/10.1016/B0-08-043152-6/00091-7
|
[15]
|
Ravaine, D. (1980) Glasses as Solid Electrolytes. Journal of Non-Crystalline Solids, 38-39, 353-358. https://doi.org/10.1016/0022-3093(80)90444-5
|
[16]
|
Lee, S., Kim, J. and Shin, D. (2007) Modification of Network Structure Induced by Glass Former Composition and Its Correlation to the Conductivity in Lithium Borophosphate Glass for Solid State Electrolyte. Solid State Ionics, 178, 375-379. https://doi.org/10.1016/j.ssi.2007.01.011
|
[17]
|
Lee, C.H., Joo, K.H., Woo, S.G., Sohn, S.J., Kang, T., Park, Y. and Oh, J.Y. (2002) Characterizations of a New Lithium Ion Conducting Li2O-SeO2-B2O3 Glass Electrolyte. Solid State Ionics, 149, 59-65. https://doi.org/10.1016/S0167-2738(02)00137-6
|
[18]
|
Julien, C. and Nazri, G.A. (1994) Solid State Batteries: Materials Design and Optimization. Springer, Berlin. https://doi.org/10.1007/978-1-4615-2704-6
|
[19]
|
Bray, P.J. (1978) NMR Studies of Borates. In: Pye, L.D., Fréchette, V.D. and Kreidl, N.J., Eds., Borate Glasses: Structure, Properties, Applications, Springer, New York, 321-351.
|
[20]
|
Zhang, Z., Kennedy, Z., Thompson, J., Anderson, S. and Lathorp, D. (1989) Competitive Network Modification in Non-Oxide Chalcogenide Glasses Structural and Motional Properties of Glasses in the System Li2S-P2S5-B2S3 Studied by Multinuclear NMR Techniques. Applied Physics A, 49, 41-54. https://doi.org/10.1007/BF00615463
|
[21]
|
Rodriguis, A.C.M. and Duclot, M.J. (1988) LiX (Li = Br, F) Salt Doping Effect Lithium Borophosphate Glasses. Solid State Ionics, 28-30, 776-779. https://doi.org/10.1016/S0167-2738(88)80143-7
|
[22]
|
Calahoo, C. and Wondraczek, L. (2020) Ionic Glasses: Structure, Properties and Classification. Journal of Non-Crystalline Solids, 8, Article ID: 100054. https://doi.org/10.1016/j.nocx.2020.100054
|
[23]
|
Tuller, H.L. (1989) Amorphous Fast Ion Conductors. In: Tuller, H.L. and Balkanski, M., Eds., Science and Technology of Fast Ion Conductors, Springer, New York, 51-87. https://doi.org/10.1007/978-1-4613-0509-5_3
|
[24]
|
Massot, M., Julien, C. and Balkanski, M. (1989) Investigation of the Boron-Oxygen Network in Borate Glasses by Infrared Spectroscopy. Infrared Physics, 29, 775-779. https://doi.org/10.1016/0020-0891(89)90124-3
|
[25]
|
Gandhi, P.R., Deshpande, V.K. and Singh, K. (1989) Conductivity Enhancement in Li2SO4 Incorporated Li2O:B2O3 Glass System. Solid State Ionics, 36, 97-102. https://doi.org/10.1016/0167-2738(89)90066-0
|
[26]
|
Kamitsos, E.I., Karakassides, M.A. and Chryssikos, G.D. (1986) A Vibrational Study of Lithium Sulfate Based Fast Ionic Conducting Borate Glasses. The Journal of Physical Chemistry B, 90, 4528-4533. https://doi.org/10.1021/j100410a010
|
[27]
|
Heller, G. (1993) The System Boron—Oxygen. In: Heller, G., Faust, J. and Niedenzu, K., Eds., Boron and Oxygen, Springer, Berlin, 1-297. https://doi.org/10.1007/978-3-662-06150-3_1
|
[28]
|
Pasha, K.R.S., Gowda, V.C.V., Hanumantharaju, N. and Narayana Reddy, C. (2019) Effect of Li2SO4 on the Structure and Properties of Lithium Lead Borate Glasses Containing Neodymium Ions. International Journal of Applied Engineering Research, 14, 1426-1430.
|
[29]
|
Martin, S.W. (1991) Ionic Conduction in Phosphate Glasses. Journal of the American Ceramic Society, 74, 1767-1784. https://doi.org/10.1111/j.1151-2916.1991.tb07788.x
|
[30]
|
Smith, J.G. and Siegel, D.J. (2020) Low-Temperature Paddlewheel Effect in Glassy Solid Electrolytes. Nature Communications, 11, Article No. 1483. https://doi.org/10.1038/s41467-020-15245-5
|
[31]
|
Kunze, D. (1973) Fast Ion Transport in Solids, Solid State Batteries and Devices. North Holland, Amsterdam.
|
[32]
|
Doherty, P.E., Lee, D.W. and Davis, R.S. (1967) Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2. Journal of the American Ceramic Society, 50, 77-81. https://doi.org/10.1111/j.1151-2916.1967.tb15043.x
|
[33]
|
Sandhu, G. (2023) Ionic Gravitation and Ionized Solid Iron Stellar Bodies. Journal of High Energy Physics, Gravitation and Cosmology, 9, 414-437. https://doi.org/10.4236/jhepgc.2023.92030
|
[34]
|
ElBaz, N., El-Damrawi, G. and Abdelghany, A. (2021) Structural Role of CeO2 in the Modified Borate Glass-Ceramics. New Journal of Glass and Ceramics, 11, 34-43. https://doi.org/10.4236/njgc.2021.111002
|
[35]
|
Gutnikov, S.I., Manylov, M.S. and Lazoryak, B.I. (2019) Crystallization and Thermal Stability of the P-Doped Basaltic Glass Fibers. Minerals, 9, Article 615. https://doi.org/10.3390/min9100615
|
[36]
|
Hussein, T. and Marza, M. (2017) Study of Effect TiO2 Additive on the Properties of Glass-Ceramic Products from Soda Lime Glass. Advances in Natural and Applied Sciences, 11, 34-44.
|
[37]
|
Harizi, A., Rabeh, M.B. and Kanzari, M. (2016) Substrate Temperature-Dependent Physical Properties of Thermally Evaporated Sn4Sb6S13 Thin Films. Acta Metallurgica Sinica (English Letters), 29, 79-88. https://doi.org/10.1007/s40195-015-0364-z
|
[38]
|
Muralidharan, P., Venkateswarlu, M. and Satyanarayana, N. (2004) AC Conductivity Studies of Lithium Borosilicate Glasses: Synthesized by Sol-Gel Process with Various Concentrations of Nitric Acid as a Catalyst. Materials Chemistry and Physics, 88, 138-144. https://doi.org/10.1016/j.matchemphys.2004.06.032
|
[39]
|
Gautam, C., Yadav, A.K. and Singh, A.K. (2012) A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives. ISRN Ceramics, 2012, Article ID: 428497. https://doi.org/10.5402/2012/428497
|
[40]
|
Takebe, H., Suzuki, Y. and Uemura, T. (2014) The Effects of B2O3 and Al2O3 Additions on the Structure of Phosphate Glasses. Physics and Chemistry of Glasses, 55, 207-210.
|
[41]
|
De Oliveira, M., Aitken, B. and Eckert, H. (2018) Structure of P2O5-SiO2 Pure Network Former Glasses Studied by Solid State NMR Spectroscopy. The Journal of Physical Chemistry C, 122, 19807-19815. https://doi.org/10.1021/acs.jpcc.8b06055
|
[42]
|
Youngman, R. (2018) NMR Spectroscopy in Glass Science: A Review of the Elements. Materials (Basel), 11, Article 476. https://doi.org/10.3390/ma11040476
|
[43]
|
Silver, A.H. and Bray, P.J. (1958) Nuclear Magnetic Resonance Absorption in Glass. I. Nuclear Quadrupole Effects in Boron Oxide, Soda-Boric Oxide, and Borosilicate Glasses. The Journal of Chemical Physics, 29, 984-990. https://doi.org/10.1063/1.1744697
|
[44]
|
Nassau, K., Grasso, M. and Glass, A.M. (1979) Quenched Glasses in the Systems of Li2O with Al2O3, Ga2O3 and Bi2O3. Journal of Non-Crystalline Solids, 34, 425-436. https://doi.org/10.1016/0022-3093(79)90028-0
|
[45]
|
Martin, S.W. and Angell, C.A. (1986) Dc and Ac Conductivity in Wide Composition Range Li2O P2O5 Glasses. Journal of Non-Crystalline Solids, 83, 185-207. https://doi.org/10.1016/0022-3093(86)90067-0
|
[46]
|
Mogus-Milankovic, A., Santic, A., Reis, S.T.D. and Day, D.E. (2009) Electrical Properties of Phosphate Glasses. IOP Conference Series: Materials Science and Engineering, 2, Article ID: 012004. https://doi.org/10.1088/1757-899X/2/1/012004
|
[47]
|
Button, D.P., Tandon, R.P., Tuller, H.L. and Uhlmann, D.R. (1980) Fast Li+ Ion Conduction in Chloro-Borate Glasses. Journal of Non-Crystalline Solids, 42, 297-306. https://doi.org/10.1016/0022-3093(80)90031-9
|
[48]
|
Bartholomew, R.F. (1973) Electrical Properties of Phosphate Glasses. Journal of Non-Crystalline Solids, 12, 321-32. https://doi.org/10.1016/0022-3093(73)90004-5
|
[49]
|
Kuchler, R., Kanert, O., Ruckstein, S. and Jain, H. (1991) Correspondence between Nuclear Spin Relaxation and Ionic Conduction in Lithium Germanate Glasses. Journal of Non-Crystalline Solids, 128, 328-332. https://doi.org/10.1016/0022-3093(91)90471-H
|
[50]
|
Kanert, O., Kloke, M., Kuchler, R., Ruckstein, S. and Jain, H. (1991) Nuclear Spin Relaxation. Nuclear Spin Relaxation and Electrical Conductivity in Lithium Germanate Glasses. Berichte der Bunsengesellschaft für Physikalische Chemie, 95, 1061-1068. https://doi.org/10.1002/bbpc.19910950922
|
[51]
|
Abouzari, M.R.S. (2007) Ion-Conductivity of Thin Film Li-Borate Glasses. Ph.D. Thesis, Westphalian Wilhelms University, Münster, 110 p.
|
[52]
|
Chandra, A., Bhatt, A. and Chandra, A. (2013) Ion Conduction in Superionic Glassy Electrolytes: An Overview. Journal of Materials Science & Technology, 29, 193-208. https://doi.org/10.1016/j.jmst.2013.01.005
|
[53]
|
Radhakrishna, S. and Daud, A. (1991) Solid State Materials. Springer Science + Business Media, New York. https://doi.org/10.1007/978-3-662-09935-3
|
[54]
|
Ganguli, M., Bhat, M.H. and Rao, K.J. (1999) Lithium Ion Transport in Li2SO4-Li2O-P2O5 Glasses. Solid State Ionics, 122, 23-33. https://doi.org/10.1016/S0167-2738(99)00059-4
|
[55]
|
Radhakrishnan, K. and Chowdari, B.V.R. (1992) Fast Ion Conduction in Li2O-GeO2-Nb2O5 Glasses. Materials Science and Engineering: B, 14, 17-22. https://doi.org/10.1016/0921-5107(92)90322-Z
|
[56]
|
Christensen, R., Olson, G. and Martin, S.W. (2013) Ionic Conductivity of Mixed Glass Former 0.35 Na2O + 0.65 [xB2O3 + (1 − x) P2O5] Glasses. The Journal of Physical Chemistry B, 117, 16577-16586.
|
[57]
|
Tatsumisago, M., Takano, R., Tadanaga, K. and Hayashi, A. (2014) Preparation of Li3BO3-Li2SO4 Glass-Ceramic Electrolytes for All-Oxide Lithium Batteries. Journal of Power Sources, 270, 603-607. https://doi.org/10.1016/j.jpowsour.2014.07.061
|
[58]
|
Tatsumisago, M., Takano, R., Nose, M., Nagao, K., Kato, A., Sakuda, A., Tadanaga, K. and Hayashi, A. (2017) Electrical and Mechanical Properties of Glass and Glass-Ceramic Electrolytes in the System Li3BO3-Li2SO4. Journal of the Ceramic Society of Japan, 125, 433-437. https://doi.org/10.2109/jcersj2.17026
|
[59]
|
Hayashi, A. (2007) Preparation and Characterization of Glassy Materials for All-Solid-State Lithium Secondary Batteries (Review). Journal of the Ceramic Society of Japan, 115, 110-117. https://doi.org/10.2109/jcersj.115.110
|
[60]
|
Robert, G., Malugani, J.P. and Saida, A. (1981) Fast Ionic Silver and Lithium Conduction in Glasses. Solid State Ionics, 3-4, 311-315. https://doi.org/10.1016/0167-2738(81)90104-1
|
[61]
|
Doreau, M., El Anouar, A.A. and Robert, G. (1980) Domaine vitreux, structure et conductivity electrique des verres du systeme LiCl/1b Li2O/1b P2O5. Materials Research Bulletin, 15, 285-294. https://doi.org/10.1016/0025-5408(80)90131-2
|
[62]
|
Malugani, J.P. (1978) Nouveaux Verres Conducteurs par les lonis Ag’ et Li. Comptes Rendus de l’Académie des Sciences, 287, 455-457.
|
[63]
|
Sokolov, I.A., Valova, N.A., Tarlakov, Y.P. and Pronkin, A.A. (2003) Electrical Properties and the Structure of Glasses in the Li2SO4-LiPO3 System. Glass Physics and Chemistry, 29, 548-554. https://doi.org/10.1023/B:GPAC.0000007930.11101.ee
|
[64]
|
Mayer, S.W., Mills, T.H., Alden, R.C. and Owens, B.B. (1961) Liquidus Curves for Molten Alkali Metaphosphate-Sulfate Systems. The Journal of Physical Chemistry, 65, 822-825. https://doi.org/10.1021/j100823a027
|
[65]
|
Salorkar, M.A. and Deshpande, V.K. (2022) Study of Lithium Ion Conducting Glasses for Solid Electrolyte Application. Physica B: Condensed Matter, 627, Article ID: 413590. https://doi.org/10.1016/j.physb.2021.413590
|
[66]
|
Arkhipov, V.G. (1986) Spectroscopic Investigation into Structural Features of Alkali-Containing Sulfate-Phosphate Glasses. Zhurnal Prikladnoi Spektroskopii, 45, 460-464. https://doi.org/10.1007/BF00663524
|
[67]
|
Thilo, E. and Blumental, G. (1966) Zur Chemie der kondensiewten Phosphate und Arsenate uber Sulfatosphate. Zeitschrift für Anorganische und Allgemeine Chemie, 358, 77-78. https://doi.org/10.1002/zaac.19663480110
|
[68]
|
Herczog, A. (1985) Sodium Ion Conducting Glasses for the Sodium-Sulfur Battery. Journal of the Electrochemical Society, 132, 1539. https://doi.org/10.1149/1.2114161
|
[69]
|
Cristensen, R., Olson, G. and Martin, S.W. (2013) Structural Studies of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5] Glasses by Raman and 11B and 31P Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopies. The Journal of Physical Chemistry B, 117, 2169-2179. https://doi.org/10.1021/jp308494a
|
[70]
|
Smedley, S.I. and Angell, C.A. (1978) Highly Conducting Li+-Rich Inorganic Glasses. Solid State Communications, 27, 21-23. https://doi.org/10.1016/0038-1098(78)91042-6
|
[71]
|
Kluvánek, P., Klement, R. and Karáčoň, M. (2007) Investigation of the Conductivity of the Lithium Borosilicate Glass System. Journal of Non-Crystalline Solids, 353, 2004-2007. https://doi.org/10.1016/j.jnoncrysol.2007.01.064
|
[72]
|
Maiti, H.S., Kulkarni, A.R. and Paul, A. (1983) Lithium Conducting Glassy Solid Electrolytes in the LiFLi2 OAl(PO3)3 System. Solid State Ionics, 9-10, 605-610. https://doi.org/10.1016/0167-2738(83)90302-8
|
[73]
|
Levasseur, A., Brethous, J.C., Reau, J.M., Hagenmuller, P. and Couzi, M. (1980) Synthesis and Characterization of New Solid Electrolyte Conductors of Lithium Ions. Solid State Ionics, 1, 177-186. https://doi.org/10.1016/0167-2738(80)90002-8
|
[74]
|
Tatsumisago, M., Yoneda, K., Machida, N. and Hinami, T. (1987) Ionic Conductivity of Rapidly Quenched Glasses with High Concentration of Lithium Ions. Journal of Non-Crystalline Solids, 95-96, 857-864. https://doi.org/10.1016/S0022-3093(87)80691-9
|
[75]
|
Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G. and Kadyrova, N.I. (2016) The Influence of Lithium Oxide Concentration on the Transport Properties of Glasses in the Li2O-B2O3-SiO2 System. Journal of Non-Crystalline Solids, 443, 75-81. https://doi.org/10.1016/j.jnoncrysol.2016.04.025
|
[76]
|
Dieckhöfer, J., Kenert, O., Kuchler, R., Volmari, A. and Jain, H. (1997) Composition Dependence of Low-Frequency Excitations in Lithium Silicophosphate Glasses by Nuclear Magnetic Resonance and Electrical Conductivity. Physical Review B, 55, 14836-14846. https://doi.org/10.1103/PhysRevB.55.14836
|
[77]
|
Johnson, R.T. (1976) Ionic Conductivity in Solid Electrolytes Based on Lithium Aluminosilicate Glass and Glass-Ceramic. Journal of the Electrochemical Society, 123, 680-687. https://doi.org/10.1149/1.2132909
|
[78]
|
Blache, V., Förster, J., Jain, H., Kenert, O., Kuchler, R. and Ngai, C.K.L. (1998) Ionic Motion in Lithium Silicophosphate Glasses by Nuclear Spin Relaxation and Electrical Conductivity. Solid State Ionics, 113-115, 723-731. https://doi.org/10.1016/S0167-2738(98)00335-X
|
[79]
|
Kanert, O., Kuchler, R., Suter, D., Shannon, G.N. and Jain, H. (2000) Effect of Devitrification on the Ionic Diffusion of Li-Disilicate. Journal of Non-Crystalline Solids, 274, 202-207. https://doi.org/10.1016/S0022-3093(00)00189-7
|
[80]
|
Chatterjee, S., Miah, M., Saha, S.K. and Chakravorty, D. (2018) Synthesis of Lithium Superionic Conductor by Growth of a Nanoglass within Mesoporous Silica SBA-15 Template. Journal of Physics D: Applied Physics, 51, Article ID: 135301. https://doi.org/10.1088/1361-6463/aab006
|
[81]
|
Muñoz, F., Montagne, L., Pascual, L. and Duran, A. (2009) Composition and Structure Dependence of the Properties of Lithium Borophosphate Glasses Showing Boron Anomaly. Journal of Non-Crystalline Solids, 355, 2571-2577. https://doi.org/10.1016/j.jnoncrysol.2009.09.013
|
[82]
|
Cho, K.I., Li, S.H., Cho, K.H., Shin, D.W. and Sun, Y.K. (2006) Li2O-B2O3-P2O5 Solid Electrolyte for Thin Film Batteries. Journal of Power Sources, 163, 223-228. https://doi.org/10.1016/j.jpowsour.2006.02.011
|
[83]
|
Salodkar, R.V., Deshpande, V.K. and Singh, K. (1989) Enhancement of the Ionic Conductivity of Lithium Borophosphate Glass: A Mixed Glass Former Approach. Journal of Power Sources, 25, 257-263. https://doi.org/10.1016/0378-7753(89)85013-X
|
[84]
|
Raguenet, B., Tricot, G., Silly, G., Ribes, M. and Pradel, A. (2012) The Mixed Glass Former Effect in Twin-Roller Quenched Lithium Borophosphate Glasses. Solid State Ionics, 208, 25-30. https://doi.org/10.1016/j.ssi.2011.11.034
|
[85]
|
Money, B.K. and Hariharan, K. (2008) Glass Formation and Electrical Conductivity Studies of Melt Quenched and Mechanically Milled 50Li2O:(50 − x)P2O5:xB2O3. Solid State Ionics, 179, 1273-1277. https://doi.org/10.1016/j.ssi.2007.12.068
|
[86]
|
Tsuchiya, T. and Moriya, T. (1980) Anomalous Behavior of Physical and Electrical Properties in Borophosphate Glasses Containing R2O and V2O5. Journal of Non-Crystalline Solids, 38-39, 323-328. https://doi.org/10.1016/0022-3093(80)90439-1
|
[87]
|
Tian, F. and Pan, L.Z. (1989) NMR Studies of Lithium Borophosphate Glasses. Journal of Non-Crystalline Solids, 112, 142-146. https://doi.org/10.1016/0022-3093(89)90509-7
|
[88]
|
Magistris, A., Chiodelli, G. and Villa, M. (1985) Lithium Borophosphate Vitreous Electrolytes. Journal of Power Sources, 14, 87-91. https://doi.org/10.1016/0378-7753(85)88016-2
|
[89]
|
Gundale, S.S., Behare, V.V. and Deshpande, A.V. (2016) Study of Electrical Conductivity of Li2O-B2O3-SiO2-Li2SO4 Glasses and Glass-Ceramics. Solid State Ionics, 298, 57-62. https://doi.org/10.1016/j.ssi.2016.11.002
|
[90]
|
Rathore, M. and Dalvi, A. (2013) Electrical Transport in Li2SO4-Li2O-P2O5 Ionic Glasses and Glass-Ceramic Composites: A Comparative Study. Solid State Ionics, 239, 50-55. https://doi.org/10.1016/j.ssi.2013.03.022
|
[91]
|
Chryssikos, G.D., Kamitsos, E.I. and Patsis, A.P. (1996) Effect of Li2SO4 on the Structure of Li2O-B2O3 Glasses. Journal of Non-Crystalline Solids, 202, 222-232. https://doi.org/10.1016/0022-3093(96)00200-1
|
[92]
|
Deshpande, V.K., Charalwar, S.G. and Singh, K. (1990) Electrical Conductivity of Li2O∙B2O3∙P2O5∙Li2SO4 Glass System. Solid State Ionics, 40-41, 689-692. https://doi.org/10.1016/0167-2738(90)90099-D
|
[93]
|
Ganguli, M. and Rao, K.J. (1999) Studies on the Effect of Li2SO4 on the Structure of Lithium Borate Glasses. The Journal of Physical Chemistry B, 103, 920-930. https://doi.org/10.1021/jp982930z
|
[94]
|
Kim, C.E., Hwang, H.C., Yoon, M.Y., Choi, B.H. and Whang, H.J. (2011) Fabrication of a High Lithium Ion Conducting Lithium Borosilicate Glass. Journal of Non-Crystalline Solids, 357, 2863-2867. https://doi.org/10.1016/j.jnoncrysol.2011.03.022
|
[95]
|
Neyret, M., Lenoir, M., Grandjean, A., Massoni, M., Penelon, B. and Malki, M. (2015) Ionic Transport of Alkali in Borosilicate Glass. Role of Alkali Nature on Glass Structure and on Ionic Conductivity at the Glassy State. Journal of Non-Crystalline Solids, 410, 74-81. https://doi.org/10.1016/j.jnoncrysol.2014.12.002
|
[96]
|
Adams, S. and Swenson, J. (2002) Bond Valence Analysis of Transport Pathways in RMC Models of Fast Ion Conducting Glasses. Physical Chemistry Chemical Physics, 4, 3179-3184. https://doi.org/10.1039/b111310k
|
[97]
|
Stacy, E.W. (2020) Understanding the Fundamentals of Ionic Conductivity in Polymer Electrolytes. Ph.D. Thesis, University of Tennessee, Knoxville, 168 p.
|
[98]
|
Mei, Q. (2003) Structural Investigation into the Non-Arrhenius Behavior of Fast Ion Conducting Sulfide Glasses. Ph.D. Thesis, Iowa State University, Ames, 138 p. https://dr.lib.iastate.edu/server/api/core/bitstreams/95912a3b-f792-4759-be5f-7cf079fe1d6b/content
|
[99]
|
Bruce, J.A., Ingram, M., Mackenzie, M.A. and Syed, R. (1986) Ionic Conductivity in Glass: A New Look at the Weak Electrolyte Theory. Solid State Ionics, 18-19, 410-414. https://doi.org/10.1016/0167-2738(86)90151-7
|
[100]
|
Watson, D.E. (2015) Mixed Glass Former Effect of 0.5Na2S + 0.5[xSiS2 + (1 − x)P2S5] and 0.67Na2S + 0.33[xSiS2 + (1 − x)P2S5] Glass Systems. Ph.D. Thesis, Iowa State University, Ames, 12 p.
|
[101]
|
Christensen, R., Byer, J., Oslon, G. and Martin, S.W. (2012) The Densities of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5] Glasses Related to the Atomic Fractions and Volumes of Short Range Structures. Journal of Non-Crystalline Solids, 385, 583-589. https://doi.org/10.1016/j.jnoncrysol.2011.10.018
|
[102]
|
Zielniok, D., Cramer, C. and Eckert, H. (2007) Structure/Property Correlations in Ion-Conducting Mixed-Network Former Glasses: Solid-State NMR Studies of the System Na2O-B2O3-P2O5. Chemistry of Materials, 19, 3162-3170. https://doi.org/10.1021/cm0628092
|
[103]
|
Anantha, P.S. and Hariharan, K. (2005) Structure and Ionic Transport Studies of Sodium Borophosphate Glassy System. Materials Chemistry and Physics, 89, 428-437. https://doi.org/10.1016/j.matchemphys.2004.09.029
|
[104]
|
Pradel, A. and Ribes, M. (1986) Electrical Properties of Lithium Conductive Silicon Sulfide Glasses Prepared by Twin Roller Quenching. Solid State Ionics, 18-19, 351-355. https://doi.org/10.1016/0167-2738(86)90139-6
|
[105]
|
Mercier, R., Malugani, J.P., Fahys, B. and Robert, G. (1981) Superionic Conduction in Li2S-P2S5-LiI-Glasses. Solid State Ionics, 5, 663-666. https://doi.org/10.1016/0167-2738(81)90341-6
|
[106]
|
Wada, H., Menetrier, M., Levasseur, A. and Hagenmuller, P. (1983) Preparation and Ionic Conductivity of New B2S3-Li2S-LiI Glasses. Materials Research Bulletin, 18, 189-193. https://doi.org/10.1016/0025-5408(83)90080-6
|
[107]
|
Ribes, M., Barrau, B. and Souquet, J.L. (1980) Sulfide Glasses: Glass Forming Region, Structure and Ionic Conduction of Glasses in Na2S-XS2 (X = Si; Ge), Na2S P2S5 and Li2S GeS2 Systems. Journal of Non-Crystalline Solids, 38-39, 271-276. https://doi.org/10.1016/0022-3093(80)90430-5
|
[108]
|
Kennedy, J.H. (1989) Ionically Conductive Glasses Based on SiS2. Materials Chemistry and Physics, 23, 29-50. https://doi.org/10.1016/0254-0584(89)90015-1
|
[109]
|
Hayashi, A., Hama, S., Minami, T. and Tatsumisago, M. (2003) Formation of Superionic Crystals from Mechanically Milled Li2S-P2S5 Glasses. Electrochemistry Communications, 5, 111-114. https://doi.org/10.1016/S1388-2481(02)00555-6
|
[110]
|
Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. and Minami, T. (2001) Preparation of Li2S-P2S5 Amorphous Solid Electrolytes by Mechanical Milling. Journal of the American Ceramic Society, 84, 477-479. https://doi.org/10.1111/j.1151-2916.2001.tb00685.x
|
[111]
|
Dietrich, C., Weber, D.A., Sedlmaier, S.H., Indris, S., Culver, S.P., Walter, D., Janaek, J. and Zeier, W.G. (2017) Lithium Ion Conductivity in Li2S-P2S5 Glasses-Building Units and Local Structure Evolution during the Crystallization of Superionic Conductors Li3PS4, Li7P3S11 and Li4P2S7. Journal of Materials Chemistry A, 5, 18111-18119. https://doi.org/10.1039/C7TA06067J
|
[112]
|
Zhang, Z. and Kennedy, J.H. (1990) Synthesis and Characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S Glass Systems. Solid State Ionics, 38, 217-224. https://doi.org/10.1016/0167-2738(90)90424-P
|
[113]
|
Minami, T. (2005) Solid State Ionics for Batteries. Springer, Berlin. https://doi.org/10.1007/4-431-27714-5
|
[114]
|
Kudu, Ö.U., Famprikis, T., Fleutot, B., Braida, M.D., Mercier, T.L., Islam, M.S. and Masquelier, C. (2018) A Review of Structural Properties and Synthesis Methods of Solid Electrolyte Materials in the Li2S-P2S5 Binary System. Journal of Power Sources, 407, 31-43. https://doi.org/10.1016/j.jpowsour.2018.10.037
|
[115]
|
Morimoto, H., Yamashita, H., Tatsumisago, M. and Minami, T. (1999) Mechanochemical Synthesis of New Amorphous Materials of 60Li2S∙40SiS2 with High Lithium Ion Conductivity. Journal of the American Ceramic Society, 82, 1352-1354. https://doi.org/10.1111/j.1151-2916.1999.tb01923.x
|
[116]
|
Morimoto, H., Yamashita, H., Tatsumisago, M. and Minami, T. (2000) Mechanochemical Synthesis of the High Lithium Ion Conductive Amorphous Materials in the Systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4. Journal of the Ceramic Society of Japan, 108, 128-131. https://doi.org/10.2109/jcersj.108.1254_128
|
[117]
|
Tatsumisago, M., Yamiashita, H., Hayashi, A., Morimoto, H. and Minami, T. (2000) Preparation and Structure of Amorphous Solid Electrolytes Based on Lithium Sulfide. Journal of Non-Crystalline Solids, 274, 30-38. https://doi.org/10.1016/S0022-3093(00)00180-0
|
[118]
|
Tatsumisago, M. and Hayashi, A. (2012) Superionic Glasses and Glass-Ceramics in the Li2S-P2S5 System for All-Solid-State Lithium Secondary Batteries. Solid State Ionics, 225, 342-345. https://doi.org/10.1016/j.ssi.2012.03.013
|
[119]
|
Baba, T. and Kawamura, Y. (2016) Structure and Ionic Conductivity of Li2S-P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics. Frontiers in Energy Research, 4, Article 22. https://doi.org/10.3389/fenrg.2016.00022
|
[120]
|
Mori, K., Iwase, K., Oba, Y., Ikeda, K., Otomo, T. and Fukunaga, T. (2020) Structural and Electrochemical Features of (Li2S)x(SiS2)100 − x Superionic Glasses. Solid State Ionics, 344, Article ID: 115141. https://doi.org/10.1016/j.ssi.2019.115141
|
[121]
|
Pradel, A., Pagnier, T. and Ribes, M. (1985) Effect of Rapid Quenching on Electrical Properties of Lithium Conductive Glasses. Solid State Ionics, 17, 147-154. https://doi.org/10.1016/0167-2738(85)90064-5
|
[122]
|
Menetrier, M., Hojjaji, A., Estournes, C. and Levasseur, A. (1991) Ionic Conduction in the B2S3-Li2S Glass System. Solid State Ionics, 48, 325-330. https://doi.org/10.1016/0167-2738(91)90051-C
|
[123]
|
Musgraves, J.D., Hu, J. and Calvez, L. (2019) Springer Handbook of Glass. Springer, Berlin.
|
[124]
|
Hou, W., Guo, X., Shen, X., Amine, K., Yu, H. and Lu, J. (2018) Solid Electrolytes and Interfaces in All-Solid-State Sodium Batteries: Progress and Perspective. Nano Energy, 52, 279-291. https://doi.org/10.1016/j.nanoen.2018.07.036
|
[125]
|
Dive, A., Zhan, Y., Martin, S.W. and Banerjee, S. (2019) Investigations of the Structure of Na2S+P2S5 Glassy Electrolytes and Its Impact on Na+ Ionic Conductivity through Ab Initio Molecular Dynamics. Solid State Ionics, 338, 177-184. https://doi.org/10.1016/j.ssi.2019.05.014
|
[126]
|
Noi, K., Hayashi, A. and Tatsumisago, M. (2014) Structure and Properties of the Na2S-P2S5 Glasses and Glass-Ceramics Prepared by Mechanical Milling. Journal of Power Sources, 269, 260-265. https://doi.org/10.1016/j.jpowsour.2014.06.158
|
[127]
|
Souquet, J.L., Robinel, E., Barrau, B. and Ribes, M. (1981) Glass Formation and Ionic Conduction in the M2S GeS2 (M = Li, Na, Ag) Systems. Solid State Ionics, 3-4, 317-321. https://doi.org/10.1016/0167-2738(81)90105-3
|
[128]
|
Patel, H.K. and Martin, S.W. (1992) Fast Ionic Conduction in Na2S + B2S3 Glasses: Compositional Contributions to Non-Exponentiality in Conductivity Relaxations. Solid State Ionics, 53-56, 1148-1156. https://doi.org/10.1016/0167-2738(92)90304-8
|
[129]
|
Deshpande, V.K., Pradel, A. and Ribes, M. (1988) The Mixed Glass Former Effect in the Li2S:SiS2:GeS2 System. Materials Research Bulletin, 23, 379-384. https://doi.org/10.1016/0025-5408(88)90012-8
|
[130]
|
Kim, Y., Saienga, J. and Martin, S.W. (2006) Anomalous Ionic Conductivity Increase in Li2S + GeS2 + GeO2 Glasses. The Journal of Physical Chemistry B, 110, 16318-16325. https://doi.org/10.1021/jp060670c
|
[131]
|
Souquet, J.L. (1981) Ionic Transport in Amorphous Solid Electrolytes. Annual Review of Materials Science, 11, 211-231. https://doi.org/10.1146/annurev.ms.11.080181.001235
|
[132]
|
Malugani, J.P., Fahys, B., Mercier, R., Robert, G., Duchange, J.P., Baudry, S., Broussely, M. and Gabano, J.P. (1983) De nouveaux verres conducteurs par l’ion lithium et leurs applications dans des generateurs electrochimiques. Solid State Ionics, 9-10, 659-665. https://doi.org/10.1016/0167-2738(83)90311-9
|
[133]
|
Angell, C.A. (1990) Dynamic Processes in Ionic Glasses. Chemical Reviews, 90, 523-542. https://doi.org/10.1021/cr00101a006
|
[134]
|
Aotani, N., Iwamoto, K., Takada, K. and Kondo, S. (1994) Synthesis and Electrochemical Properties of Lithium Ion Conductive Glass, Li3PO4-Li2S-SiS2. Solid State Ionics, 68, 35-39. https://doi.org/10.1016/0167-2738(94)90232-1
|
[135]
|
Kennedy, J.H. and Yang, Y. (1987) Glass-Forming Region and Structure in SiS2-Li2S-LiX (X = Br, I). Journal of Solid State Chemistry, 69, 252-257. https://doi.org/10.1016/0022-4596(87)90081-8
|
[136]
|
Kennedy, J.H. (1989) Preparation and Electrochemical Properties of the SiS2-P2S5-Li2S Glass Coformer System. Journal of the Electrochemical Society, 136, 2441-2443. https://doi.org/10.1149/1.2097416
|
[137]
|
Sahami, S., Shea, S.W. and Kennedy, J.H. (1985) Preparation and Conductivity Measurements of SiS2-Li2S-LiBr Lithium Ion Conductive Glasses. Journal of the Electrochemical Society, 132, 985-986. https://doi.org/10.1149/1.2114001
|
[138]
|
Kennedy, J.H. (1986) A Highly Conductive Li+-Glass System: (1 − x)(0.4SiS2-0.6Li2S)-xLil. Journal of the Electrochemical Society, 133, 2437-2438. https://doi.org/10.1149/1.2108425
|
[139]
|
Kennedy, J.H., Sahami, S., Shea, S.W. and Zhang, Z. (1986) Preparation and Conductivity Measurements of SiS2 Li2S Glasses Doped with LiBr and LiCl. Solid State Ionics, 18-19, 368-371. https://doi.org/10.1016/0167-2738(86)90142-6
|
[140]
|
Kennedy, J.H. and Zhang, Z. (1988) Improved Stability for the SiS2-P2S5-Li2S-LiI Glass System. Solid State Ionics, 28-30, 726-728. https://doi.org/10.1016/S0167-2738(88)80133-4
|
[141]
|
Kennedy, J.H., Schaupp, C., Eckert, H. and Ribes, M. (1991) Aluminum Substitution in the Glass System 0.33[(1 − x)P2S5-xAl2S3]-0.67Li2S. Solid State Ionics, 45, 21-27. https://doi.org/10.1016/0167-2738(91)90098-V
|
[142]
|
Yamamoto, H., Machida, N. and Shigematsu, T. (2004) A Mixed-Former Effect on Lithium-Ion Conductivities of the Li2S-GeS2-P2S5 Amorphous Materials Prepared by a High-Energy Ball-Milling Process. Solid State Ionics, 175, 707-711. https://doi.org/10.1016/j.ssi.2004.08.028
|
[143]
|
Pradel, A., Kuwata, N. and Ribes, M. (2003) Ion Transport and Structure in Chalcogenide Glasses. Journal of Physics: Condensed Matter, 15, S1561-S1571. https://doi.org/10.1088/0953-8984/15/16/306
|
[144]
|
Pradel, A., Rau, C., Bittencourt, D., Armand, P., Philippot, E. and Ribes, M. (1998) Mixed Glass Former Effect in the System 0.3Li2S-0.7[(1 − x)SiS2-xGeS2]: A Structural Explanation. Chemistry of Materials, 10, 2162-2166. https://doi.org/10.1021/cm980701j
|
[145]
|
Carette, B., Ribes, M. and Souquet, J.L. (1983) The Effects of Mixed Anions in Ionic Conductive Glasses. Solid State Ionics, 9-10, 735-737. https://doi.org/10.1016/0167-2738(83)90323-5
|
[146]
|
Fan, B., Fu, H., Li, H., Xeu, B., Zhang, X., Luo, A. and Ma, H. (2018) Ionic Conductive GeS2-Ga2S3-Li2S-LiI Glass Powders Prepared by Mechanical Synthesis. Journal of Alloys and Compounds, 740, 61-67. https://doi.org/10.1016/j.jallcom.2017.12.356
|
[147]
|
Saienga, J., Kim, Y., Campbell, B. and Martin, S.W. (2005) Preparation and Characterization of Glasses in the LiI + Li2S + GeS2 + Ga2S3 System. Solid State Ionics, 176, 1229-1236. https://doi.org/10.1016/j.ssi.2005.03.001
|
[148]
|
Yamamura, Y., Hasegawa, M., Takada, K. and Kondo, S. (1992) European Patent Application. EP 469574.
|
[149]
|
Minami, T., Takada, K. and Kondo, S. (1994) European Patent Application. EP 618632.
|
[150]
|
Schuch, M., Muller, C.R., Maass, P. and Martin, S.W. (2009) Mixed Barrier Model for the Mixed Glass Former Effect in Ion Conducting Glasses. Physical Review Letters, 102, Article ID: 145902. https://doi.org/10.1103/PhysRevLett.102.145902
|
[151]
|
Kim, Y. and Martin, S.W. (2006) Ionic Conductivities of Various GeS2-Based Oxy-Sulfide Amorphous Materials Prepared by Melt-Quenching and Mechanical Milling Methods. Solid State Ionics, 177, 2881-2887. https://doi.org/10.1016/j.ssi.2006.09.001
|
[152]
|
Larink, D., Eckert, H. and Martin, S.W. (2012) Structure and Ionic Conductivity in the Mixed-Network Former Chalcogenide Glass System [Na2S]2/3[(B2S3)x(P2S5)1 − x]1/3. The Journal of Physical Chemistry C, 116, 22698-22710. https://doi.org/10.1021/jp3068365
|
[153]
|
Kumar, S. and Rao, K.J. (2004) Lithium Ion Transport in Germanophosphate Glasses. Solid State Ionics, 170, 191-199. https://doi.org/10.1016/j.ssi.2004.03.004
|
[154]
|
Kumar, S., Vinatier, P., Levasseur, A. and Rao, K.J. (2004) Investigations of Structure and Transport in Lithium and Silver Borophosphate Glasses. Journal of Solid State Chemistry, 177, 1723-1737. https://doi.org/10.1016/j.jssc.2003.12.034
|
[155]
|
Tho, T.D., Rao, R.P. and Adams, S. (2012) Structure Property Correlation in Lithium Borophosphate Glasses. The European Physical Journal E, 35, Article No. 8. https://doi.org/10.1140/epje/i2012-12008-y
|
[156]
|
Larink, D., Eckert, H., Reichert, M. and Martin, S.W. (2012) Mixed Network Former Effect in Ion-Conducting Alkali Borophosphate Glasses: Structure/Property Correlations in the System [M2O]1/3[(B2O3)x(P2O5)1 − x]2/3 (M = Li, K, Cs). The Journal of Physical Chemistry C, 116, 26162-26176. https://doi.org/10.1021/jp307085t
|
[157]
|
Bischoff, C. (2013) The Mixed Glass Former Effect in 0.5Na2S + 0.5[xGeS2 + (1 − x)P2S5] Glasses. Ph.D. Thesis, Iowa State University, Ames, 186 p.
|
[158]
|
Yao, W. and Martin, S.W. (2008) Ionic Conductivity of Glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2) System (M = Li, Na, K and Cs). Solid State Ionics, 178, 1777-1784. https://doi.org/10.1016/j.ssi.2007.10.011
|
[159]
|
Tatsumisago, M., Machida, N. and Minami, T. (1987) Mixed Anion Effect in Conductivity of Rapidly Quenched Li4SiO4-Li3BO3 Glasses. Journal of the Ceramic Society of Japan, 95, 197-201. https://doi.org/10.2109/jcersj1950.95.1098_197
|
[160]
|
Hibi, Y., Tanibata, N., Hayisha, A. and Tatsumisago, M. (2015) Preparation of Sodium Ion Conducting Na3PS4-NaI Glasses by a Mechanochemical Technique. Solid State Ionics, 270, 6-9. https://doi.org/10.1016/j.ssi.2014.11.024
|
[161]
|
Tanibata, N., Noi, K., Hayashi, A. and Tatsumisago, M. (2018) Preparation and Characterization of Na3PS4-Na4GeS4 Glass and Glass-Ceramic Electrolytes. Solid State Ionics, 320, 193-198. https://doi.org/10.1016/j.ssi.2018.02.042
|
[162]
|
Minami, T., Hayashi, A. and Tatsumisago, M. (2006) Recent Progress of Glass and Glass-Ceramics as Solid Electrolytes for Lithium Secondary Batteries. Solid State Ionics, 177, 2715-2720. https://doi.org/10.1016/j.ssi.2006.07.017
|
[163]
|
Tatsumisago, M., Hirai, K., Hirata, T., Takahashi, M. and Minami, M. (1996) Structure and Properties of Lithium Ion Conducting Oxysulfide Glasses Prepared by Rapid Quenching. Solid State Ionics, 86-88, 487-490. https://doi.org/10.1016/0167-2738(96)00179-8
|
[164]
|
Lau, J., DeBlock, R.H., Butts, D.M., Ashby, D.S., Choi, C.S. and Dunn, B.S. (2018) Sulfide Solid Electrolytes for Lithium Battery Applications. Advanced Energy Materials, 8, Article ID: 1800933. https://doi.org/10.1002/aenm.201800933
|
[165]
|
Kondo, S., Takada, K. and Yamamura, Y. (1992) New Lithium Ion Conductors Based on Li2S-SiS2 System. Solid State Ionics, 53-56, 1183-1186. https://doi.org/10.1016/0167-2738(92)90310-L
|
[166]
|
Kawakami, Y., Ikuta, H., Uchida, T. and Wakihara, M. (1997) Ionic Conduction of Lithium in Li2-SiS2-Li4SiO4 Glass System. Thermochimica Acta, 299, 7-12. https://doi.org/10.1016/S0040-6031(97)00129-9
|
[167]
|
Seino, Y., Takada, K., Kim, B. C., Zhzng, L., Ohta, N., Wada, H., Osada, M. and Sasaki, T. (2006) Synthesis and Electrochemical Properties of Li2S-B2S3-Li4SiO4. Solid State Ionics, 177, 2601-2603. https://doi.org/10.1016/j.ssi.2006.01.005
|
[168]
|
Deshpande, V.K., Salorkar, M.A. and Nagpure, N. (2020) Study of Lithium Ion Conducting Glasses with Li2SO4 Addition. Journal of Non-Crystalline Solids, 527, Article ID: 119737. https://doi.org/10.1016/j.jnoncrysol.2019.119737
|
[169]
|
Takada, K., Aotani, N., Iwamoto, K. and Kondo, S. (1996) Solid State Lithium Battery with Oxysulfide Glass. Solid State Ionics, 86-88, 877-882. https://doi.org/10.1016/0167-2738(96)00199-3
|
[170]
|
Yamauchi, A., Sakuda, A., Hayashi, A. and Tatsumisago, M. (2013) Preparation and Ionic Conductivities of (100 − x)(0.75Li2S-0.25P2S5)•xLiBH4 Glass Electrolytes. Journal of Power Sources, 244, 707-710. https://doi.org/10.1016/j.jpowsour.2012.12.001
|
[171]
|
Kuhn, A., Wilkening, M. and Heitjans, P. (2009) Mechanically Induced Decrease of the Li Conductivity in an Alumosilicate Glass. Solid State Ionics, 180, 302-307. https://doi.org/10.1016/j.ssi.2009.02.028
|
[172]
|
Staesche, H., Murugavel, S. and Roling, B. (2009) Nonlinear Conductivity and Permittivity Spectra of Ion Conducting Glasses. Zeitschrift für Physikalische Chemie, 223, 1229-1238. https://doi.org/10.1524/zpch.2009.6076
|
[173]
|
Ross, S., Welsch, A.-M. and Behrens, H. (2015) Lithium Conductivity in Glasses of the Li2O-Al2O3-SiO2 System. Physical Chemistry Chemical Physics, 17, 465-474. https://doi.org/10.1039/C4CP03609C
|
[174]
|
Isard, J.O. (1959) Ionic Conductivity in Na2O-xAl2O3-2(4 − x)SiO2 Glass System. Journal of the Society of Glass Technology, 43, 113T.
|
[175]
|
Amma, S.-I., Lanagan, M.T., Kim, S.H. and Pantano, C.G. (2016) Ionic Conductivity in Sodium-Alkaline Earth-Aluminosilicate Glasses. Journal of the American Ceramic Society, 99, 1239-1247. https://doi.org/10.1111/jace.14101
|
[176]
|
Sharma, M., Sarma, A.V. and Rao, R.B. (2009) Electrical Conductivity, Relaxation, and Scaling Analysis Studies of Lithium Alumino Phosphate Glasses and Glass Ceramics. Journal of Materials Science, 44, 5557-5562. https://doi.org/10.1007/s10853-009-3778-z
|
[177]
|
Martin, S.W. and Angell, A. (1984) Conductivity Maximum in Sodium Aluminoborate Glass. Journal of the American Ceramic Society, 67, 148-150. https://doi.org/10.1111/j.1151-2916.1984.tb19628.x
|
[178]
|
Dongare, D.T. and Lad, A.B. (2015) Electrical Conductivity and Dielectric Relaxation of Lithium Alumino Borate Glasses. International Journal of Metallurgical & Materials Science and Engineering, 5, 1-8.
|
[179]
|
Gedam, R.S. and Deshpande, V.K. (2006) An Anomalous Enhancement in the Electrical Conductivity of Li2O:B2O3:Al2O3 Glasses. Solid State Ionics, 177, 2589-2592. https://doi.org/10.1016/j.ssi.2006.03.056
|
[180]
|
Muñoz, F., Duran, A., Pascaul, L., Montagne, L., Revel, B. and Rodiguis, A.C.M. (2008) Increased Electrical Conductivity of LiPON Glasses Produced by Ammonolysis. Solid State Ionics, 179, 574-579. https://doi.org/10.1016/j.ssi.2008.04.004
|
[181]
|
Yu, X.H., Bates, J.B., Jellison Jr., G.E. and Hart, F.X. (1997) A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. Journal of the Electrochemical Society, 144, 524-532. https://doi.org/10.1149/1.1837443
|
[182]
|
De Souza, J.E., Souza, S.R.D., Gebhardt, R., Kmiec, S., Whale, A. and Martin, S.W. (2020) LiPON and NaPON Glasses: A Study of the Ammonolysis of Lithium and Sodium Metaphosphate Melts. International Journal of Applied Glass Science, 11, 78-86. https://doi.org/10.1111/ijag.13508
|
[183]
|
Sakamoto, R., Tatsumisago, M. and Minami, T. (1999) Preparation of Fast Lithium Ion Conducting Glasses in the System Li2S-SiS2-Li3N. The Journal of Physical Chemistry B, 103, 4029-4031. https://doi.org/10.1021/jp983755p
|
[184]
|
Shigeno, M., Nagao, K., Deguchi, M., Hotehama, C., Kowada, H., Sakuda, A., Hayashi, A. and Tatsumisago, M. (2019) New Lithium-Conducting Nitride Glass Li3BN2. Solid State Ionics, 339, Article ID: 114985. https://doi.org/10.1016/j.ssi.2019.05.020
|
[185]
|
Fukushima, A., Hayashi, A., Yamamura, H. and Tatsumisago, M. (2017) Mechanochemical Synthesis of High Lithium Ion Conducting Solid Electrolytes in a Li2S-P2S5-Li3N System. Solid State Ionics, 304, 85-89. https://doi.org/10.1016/j.ssi.2017.03.010
|
[186]
|
Braga, M.H., Ferreira, J.A., Stockhausen, V., Oliveira, J.E. and El-Azab, A. (2014) Novel Li3ClO Based Glasses with Superionic Properties for Lithium Batteries. Journal of Materials Chemistry A, 2, 5470-5480. https://doi.org/10.1039/C3TA15087A
|
[187]
|
Braga, M.H., Murchison, A.J., Ferreira, J.A., Singh, P. and Goodenough, J.B. (2016) Glass-Amorphous Alkali-Ion Solid Electrolytes and Their Performance in Symmetrical Cells. Energy & Environmental Science, 9, 948-954. https://doi.org/10.1039/C5EE02924D
|
[188]
|
Heenen, H.H., Voss, J., Scheurer, C., Reuter, K. and Luntz, A.C. (2019) Multi-Ion Conduction in Li3OCl Glass Electrolytes. The Journal of Physical Chemistry Letters, 10, 2264-2269. https://doi.org/10.1021/acs.jpclett.9b00500
|
[189]
|
Thieu Duc, T., Rayavarapu, P.R. and Adams, S. (2010) Mobile Ion Transport Pathways in (LiBr)x[(Li2O)0.6(P2O5)0.4](1 − x) Glasses. Journal of Solid State Electrochemistry, 14, 1781-1786. https://doi.org/10.1007/s10008-010-1005-0
|
[190]
|
Malugani, J.P. and Robert, G. (1979) Conductivite ionique dans les verres LiPO3LiX (X = I, Br, Cl). Materials Research Bulletin, 14, 1075-1081. https://doi.org/10.1016/0025-5408(79)90075-8
|
[191]
|
Kulkarni, A.R., Maiti, H.S. and Paul, A. (1984) Fast Ion Conducting Lithium Glasses—Review. Bulletin of Materials Science, 6, 201-221. https://doi.org/10.1007/BF02743897
|
[192]
|
Malugani, J.P. and Robert, G. (1980) Preparation and Electrical Properties of the 0,37Li2S-0,18P2S5-0,45LiI Glass. Solid State Ionics, 1, 519-523. https://doi.org/10.1016/0167-2738(80)90048-X
|
[193]
|
Hirai, K., Tatsumisago, M. and Minami, T. (1995) Thermal and Electrical Properties of Rapidly Quenched Glasses in the Systems Li2S-SiS2-LixMOy (LixMOy = Li4SiO4, Li2SO4). Solid State Ionics, 78, 269-273. https://doi.org/10.1016/0167-2738(95)00094-M
|
[194]
|
Yamashita, M. and Yamanaka, H. (2003) Formation and Ionic Conductivity of Li2S-GeS2-Ga2S3 Glasses and Thin Films. Solid State Ionics, 158, 151-156. https://doi.org/10.1016/S0167-2738(02)00756-7
|
[195]
|
Zhang, W., Liu, Y. and Guo, Z. (2019) Approaching High-Performance Potassium-Ion Batteries via Advanced Design Strategies and Engineering. Science Advances, 5, eaav7412. https://doi.org/10.1126/sciadv.aav7412
|
[196]
|
Lodesani, F., Menziani, M.C., Hijiya, H., Takato, Y., Urata, S. and Pedone, A. (2020) Structural Origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and Its Assessment. Scientific Reports, 10, Article No. 2906. https://doi.org/10.1038/s41598-020-59875-7
|
[197]
|
Ahmina, W., Moudane, M.E., Zriouil, M. and Taibi, M. (2016) Role of Manganese in 20K2O-xMnO-(80−x)P2O5 Phosphate Glasses and Model of Structural Units. Journal of Materials and Environmental Science, 7, 694-699.
|
[198]
|
Carta, D., Pickup, D.M., Knowles, J.C., Smith, M.E. and Newport, R.J. (2005) Sol-Gel Synthesis of the P2O5-CaO-Na2O-SiO2 System as a Novel Bioresorbable Glass. Journal of Materials Chemistry, 15, 2134-2140. https://doi.org/10.1039/b414885a
|