[1]
|
Chung, S.H. and Kim, W.B. (2018) Various Approaches and Treatments for Pelvic Organ Prolapse in Women. Journal of Menopausal Medicine, 24, 155-162. https://doi.org/10.6118/jmm.2018.24.3.155
|
[2]
|
Vos, T., Flaxman, A.D., Naghavi, M., et al. (2012) Years Lived with Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2163-2196.
|
[3]
|
Mattsson, N.K., Karjalainen, P.K., Tolppanen, A.M., Heikkinen, A.M., Sintonen, H., Härkki, P., Nieminen, K. and Jalkanen, J. (2020) Pelvic Organ Prolapse Surgery and Quality of Life—A Nationwide Cohort Study. American Journal of Obstetrics and Gynecology, 222, 588.E1-588.E10. https://doi.org/10.1016/j.ajog.2019.11.1285
|
[4]
|
Dietrich, W., Elenskaia, K., Obermayr, E., Horvat, R., Mayerhofer, K., Umek, W., Zeillinger, R. and Hanzal, E. (2012) Relaxin and Gonadal Steroid Receptors in Uterosacral Ligaments of Women with and without Pelvic Organ Prolapse. International Urogynecology Journal, 23, 495-500. https://doi.org/10.1007/s00192-011-1615-9
|
[5]
|
Swift, S., Woodman, P., O’Boyle, A., Kahn, M., Valley, M., Bland, D., Wang, W. and Schaffer, J. (2005) Pelvic Organ Support Study (POSST): The Distribution, Clinical Definition, and Epidemiologic Condition of Pelvic Organ Support Defects. American Journal of Obstetrics and Gynecology, 192, 795-806. https://doi.org/10.1016/j.ajog.2004.10.602
|
[6]
|
Vergeldt, T.F.M., Weemhoff, M., IntHout, J. and Kluivers, K.B. (2015) Risk Factors for Pelvic Organ Prolapse and Its Recurrence: A Systematic Review. International Urogynecology Journal, 26, 1559-1573. https://doi.org/10.1007/s00192-015-2695-8
|
[7]
|
Niblock, K., Bailie, E., McCracken, G. and Johnston, K. (2017) Vaginal McCall Culdoplasty versus Laparoscopic Uterosacral Pliation to Prophylactically Address Vaginal Vault Prolapse. Gynecological Surgery, 14, Article No. 3. https://doi.org/10.1186/s10397-017-1006-4
|
[8]
|
Zhao, X., Ma, C., Li, R., Xue, J., Liu, L. and Liu, P. (2017) Hypoxia Induces Apoptosis through HIF-1α Signaling Pathway in Human Uterosacral Ligaments of Pelvic Organ Prolapse. BioMed Research International, 2017, Article ID: 8316094. https://doi.org/10.1155/2017/8316094
|
[9]
|
Sun, M.J., Cheng, Y.S., Liu, C.S. and Sun, R. (2019) Changes in the PGC-1α and mtDNA Copy Number May Play a Role in the Development of Pelvic Organ Prolapse in Pre-Menopausal Patients. Taiwanese Journal of Obstetrics and Gynecology, 58, 526-530. https://doi.org/10.1016/j.tjog.2019.05.017
|
[10]
|
Zhang, L., Zheng, P., Duan, A., Hao, Y., Lu, C. and Lu, D. (2019) [Corrigendum] Genome-Wide DNA Methylation Analysis of Uterosacral Ligaments in Women with Pelvic Organ Prolapse. Molecular Medicine Reports, 19, 2458. https://doi.org/10.3892/mmr.2019.9852
|
[11]
|
Tyagi, T., Alarab, M., Leong, Y., Lye, S. and Shynlova, O. (2019) Local Oestrogen Therapy Modulates Extracellular Matrix and Immune Response in the Vaginal Tissue of Post-Menopausal Women with Severe Pelvic Organ Prolapse. Journal of Cellular and Molecular Medicine, 23, 2907-2919. https://doi.org/10.1111/jcmm.14199
|
[12]
|
Alarab, M., Kufaishi, H., Lye, S., Drutz, H. and Shynlova, O. (2014) Expression of Extracellular Matrix-Remodeling Proteins Is Altered in Vaginal Tissue of Premenopausal Women with Severe Pelvic Organ Prolapse. Reproductive Sciences, 21, 704-715. https://doi.org/10.1177/1933719113512529
|
[13]
|
De Landsheere, L., Blacher, S., Munaut, C., Nusgens, B., Rubod, C., Noel, A., Foidart, J.M., Cosson, M. and Nisolle, M. (2014) Changes in Elastin Density in Different Locations of the Vaginal Wall in Women with Pelvic Organ Prolapse. International Urogynecology Journal, 25, 1673-1681. https://doi.org/10.1007/s00192-014-2431-9
|
[14]
|
Strinic, T., Vulic, M., Tomic, S., Capkun, V., Stipic, I. and Alujevic, I. (2010) Increased Expression of Matrix Metalloproteinase-1 in Uterosacral Ligament Tissue from Women with Pelvic Organ Prolapse. Acta Obstetricia et Gynecologica Scandinavica, 89, 832-834. https://doi.org/10.3109/00016341003592545
|
[15]
|
Min, J., Li, B., Liu, C., Guo, W., Hong, S., Tang, J. and Hong, L. (2017) Extracellular Matrix Metabolism Disorder Induced by Mechanical Strain on Human Parametrial Ligament Fibroblasts. Molecular Medicine Reports, 15, 3278-3284. https://doi.org/10.3892/mmr.2017.6372
|
[16]
|
Qi, X., Hong, L., Guo, F., Fu, Q., Chen, L. and Li, B. (2011) Expression of Transforming Growth Factor-β1 and Connective Tissue Growth Factor in Women with Pelvic Organ Prolapse. Saudi Medical Journal, 32, 474-478.
|
[17]
|
Li, B.S., Hong, L., Min, J., Wu, D., Hu, M. and Guo, W.J. (2013) The Expression of Glutathione Peroxidase-1 and the Anabolism of Collagen Regulation Pathway Transforming Growth Factor-β1-Connective Tissue Growth Factor in Women with Uterine Prolapse and the Clinic Significance. Clinical and Experimental Obstetrics & Gynecology, 40, 586-590.
|
[18]
|
Wen, Y., Polan, M.L. and Chen, B. (2006) Do Extracellular Matrix Protein Expressions Change with Cyclic Reproductive Hormones in Pelvic Connective Tissue from Women with Stress Urinary Incontinence? Human Reproduction, 21, 1266-1273. https://doi.org/10.1093/humrep/dei485
|
[19]
|
Meijerink, A.M., van Rijssel, R.H. and van der Linden, P.J.Q. (2013) Tissue Composition of the Vaginal Wall in Women with Pelvic Organ Prolapse. Gynecologic and Obstetric Investigation, 75, 21-27. https://doi.org/10.1159/000341709
|
[20]
|
Zhao, Y., Xia, Z., Lin, T. and Qin, M. (2021) Transforming Growth Factor Beta 1 and p44/42 Expression in Cardinal Ligament Tissues of Patients with Pelvic Organ Prolapse. Medical Science Monitor, 27, e930433. https://doi.org/10.12659/MSM.930433
|
[21]
|
Bump, R.C., Mattiasson, A., Bø, K., Brubaker, L.P., DeLancey, J.O., Klarskov, P., Shull, B.L. and Smith, A.R. (1996) The Standardization of Terminology of Female Pelvic Organ Prolapse and Pelvic Floor Dysfunction. American Journal of Obstetrics and Gynecology, 175, 10-17. https://doi.org/10.1016/S0002-9378(96)70243-0
|
[22]
|
Carlin, G.L., Bodner, K., Kimberger, O., Haslinger, P., Schneeberger, C., Horvat, R., Kölbl, H., Umek, W. and Bodner-Adler, B. (2020) The Role of Transforming Growth Factor-ß (TGF-ß1) in Postmenopausal Women with Pelvic Organ Prolapse: An Immunohistochemical Study. European Journal of Obstetrics & Gynecology and Reproductive Biology: X, 7, Article ID: 100111. https://doi.org/10.1016/j.eurox.2020.100111
|
[23]
|
Wilson, M.S. and Wynn, T.A. (2009) Pulmonary Fibrosis: Pathogenesis, Etiology and Regulation. Mucosal Immunology, 2, 103-121. https://doi.org/10.1038/mi.2008.85
|
[24]
|
Jackson, S.R., Eckford, S.D., Abrams, P., Avery, N.C., Tarlton, J.F. and Bailey, A.J. (1996) Changes in Metabolism of Collagen in Genitourinary Prolapse. The Lancet, 347, 1658-1661. https://doi.org/10.1016/S0140-6736(96)91489-0
|
[25]
|
Pascual, G., Corrales, C., Gómez-Gil, V., Buján, J. and Bellón, J.M. (2007) TGF-β1 Overexpression in the Transversalis Fascia of Patients with Direct Inguinal Hernia. European Journal of Clinical Investigation, 37, 516-521. https://doi.org/10.1111/j.1365-2362.2007.01816.x
|
[26]
|
Pan, S., Zhou, Y., Yan, L., Xuan, F., Tong, J., Li, Y., Huang, J., Feng, W., Chen, S., Cui, Y., Yang, F., Tan, S., Wang, Z., Tian, B., Hong, L.E., Tan, Y.L. and Tian, L. (2022) TGF-β1 Is Associated with Deficits in Cognition and Cerebral Cortical Thickness in First-Episode Schizophrenia. Journal of Psychiatry & Neuroscience, 47, E86-E98. https://doi.org/10.1503/jpn.210121
|
[27]
|
Loh, J.K., Lieu, A.S., Su, Y.F., Cheng, C.Y., Tsai, T.H., Lin, C.L., Lee, K.S., Hwang, S.L., Kwan, A.L., Wang, C.J., Hong, Y.R., Chio, C.C. and Howng, S.L. (2013) Plasma Levels of Transforming Growth Factor-β1 before and after Removal of Low- and High-Grade Astrocytomas. Cytokine, 61, 413-418. https://doi.org/10.1016/j.cyto.2012.11.011
|
[28]
|
Kuchtey, J., Kunkel, J., Burgess, L.G., Parks, M.B., Brantley, M.A.J. and Kuchtey, R.W. (2014) Elevated Transforming Growth Factor β1 in Plasma of Primary Open-Angle Glaucoma Patients. Investigative Ophthalmology & Visual Science, 55, 5291-5297. https://doi.org/10.1167/iovs.14-14578
|
[29]
|
Nikolić-Vukosavljević, D., Todorović-Raković, N., Demajo, M., Ivanović, V., Nesković, B., Markićević, M. and Nesković-Konstantinović, Z. (2004) Plasma TGF-β1-Related Survival of Postmenopausal Metastatic Breast Cancer Patients. Clinical & Experimental Metastasis, 21, 581-585. https://doi.org/10.1007/s10585-004-4978-1
|
[30]
|
Ivanović, V., Demajo, M., Krtolica, K., Krajnović, M., Konstantinović, M., Baltić, V., Prtenjak, G., Stojiljković, B., Breberina, M., Nesković-Konstantinović, Z., Nikolić-Vukosavljević, D. and Dimitrijević, B. (2006) Elevated Plasma TGF-β1 Levels Correlate with Decreased Survival of Metastatic Breast Cancer Patients. Clinica Chimica Acta, 371, 191-193. https://doi.org/10.1016/j.cca.2006.02.027
|
[31]
|
Rübe, C.E., Palm, J., Erren, M., Fleckenstein, J., König, J., Remberger, K. and Rübe, C. (2008) Cytokine Plasma Levels: Reliable Predictors for Radiation Pneumonitis? PLOS ONE, 3, e2898. https://doi.org/10.1371/journal.pone.0002898
|
[32]
|
Wang, Q., Ou, T., Li, J., Cui, X. and Liang, J. (2020) Research on the Association of Plasma TGF-β1 Level and Blood Lymphocyte/Monocyte Ratio with Pathological Grade, Clinical Stage and Prognosis of Prostate Cancer. Journal of Balkan Union of Oncology, 25, 2418-2423.
|
[33]
|
Juarez, I., Gutierrez, A., Vaquero-Yuste, C., Molanes-López, E.M., López, A., Lasa, I., Gómez, R. and Martin-Villa, J.M. (2021) TGFB1 Polymorphisms and TGF-β1 Plasma Levels Identify Gastric Adenocarcinoma Patients with Lower Survival Rate and Disseminated Disease. Journal of Cellular and Molecular Medicine, 25, 774-783. https://doi.org/10.1111/jcmm.16131
|
[34]
|
Manjari, K.S., Jyothy, A., Vidyasagar, A., Prabhakar, B., Nallari, P. and Venkateshwari, A. (2013) Matrix Metalloproteinase-9, Transforming Growth Factor-β1, and Tumor Necrosis Factor-α Plasma Levels in Chronic Pancreatitis. Indian Journal of Gastroenterology, 32, 103-107. https://doi.org/10.1007/s12664-012-0299-5
|
[35]
|
Li, J., Yang, Y., Ng, C.Y., Zhang, Z., Liu, T. and Li, G. (2016) Association of Plasma Transforming Growth Factor-β1 Levels and the Risk of Atrial Fibrillation: A Meta-Analysis. PLOS ONE, 11, e0155275. https://doi.org/10.1371/journal.pone.0155275
|
[36]
|
Lijnen, P.J., Petrov, V.V. and Fagard, R.H. (2003) Association between Transforming Growth Factor-β and Hypertension. American Journal of Hypertension, 16, 604-611. https://doi.org/10.1016/S0895-7061(03)00847-1
|
[37]
|
Matsuki, K., Hathaway, C.K., Lawrence, M.G., Smithies, O. and Kakoki, M. (2014) The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure. Current Hypertension Reviews, 10, 223-238. https://doi.org/10.2174/157340211004150319123313
|
[38]
|
Kumar, P., Stiernborg, M., Fogdell-Hahn, A., Månsson, K., Furmark, T., Berglind, D., Melas, P.A., Forsell, Y. and Lavebratt, C. (2022) Physical Exercise Is Associated with a Reduction in Plasma Levels of Fractalkine, TGF-β1, Eotaxin-1 and IL-6 in Younger Adults with Mobility Disability. PLOS ONE, 17, e0263173. https://doi.org/10.1371/journal.pone.0263173
|
[39]
|
Chen, Y., Huang, M., Yan, Y. and He, D. (2021) Tranilast Inhibits Angiotensin II-Induced Myocardial Fibrosis Through S100A11/Transforming Growth Factor-β1 (TGF-β1)/Smad Axis. Bioengineered, 12, 8447-8456. https://doi.org/10.1080/21655979.2021.1982322
|
[40]
|
Nishijima, S., Sugaya, K., Kadekawa, K., Ashitomi, K., Ueda, T. and Yamamoto, H. (2013) High-Dose Tranilast Administration to Rats Creates Interstitial Cystitis-Like Symptoms with Increased Vascular Permeability. Life Sciences, 93, 897-903. https://doi.org/10.1016/j.lfs.2013.10.010
|