[1]
|
Louis, D.N., Perry, A., Reifenberger, G., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820. https://doi.org/10.1007/s00401-016-1545-1
|
[2]
|
Kleihues, P., Louis, D.N., Scheithauer, B.W., et al. (2002) The WHO Classification of Tumors of the Nervous System. Journal of Neuropathology & Experimental Neurology, 61, 215-225. https://doi.org/10.1093/jnen/61.3.215
|
[3]
|
Louis, D.N., Ohgaki, H., Wiestler, O.D., et al. (2007) The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114, 97-109. https://doi.org/10.1007/s00401-007-0243-4
|
[4]
|
Louis, D.N., Perry, A., Wesseling, P., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106
|
[5]
|
Li, B.K., Vasiljevic, A., Dufour, C., et al. (2020) Pineoblastoma Segregates into Molecular Sub-Groups with Distinct Clinico-Pathologic Features: A Rare Brain Tumor Consortium Registry Study. Acta Neuropathologica, 139, 223-241. https://doi.org/10.1007/s00401-019-02111-y
|
[6]
|
Pfaff, E., Aichmüller, C., Sill, M., et al. (2020) Molecular Subgrouping of Primary Pineal Parenchymal Tumors Reveals Distinct Subtypes Correlated with Clinical Parameters and Genetic Alterations. Acta Neuropathologica, 139, 243-257. https://doi.org/10.1007/s00401-019-02101-0
|
[7]
|
Hunt, J.L. (2017) Applications of Molecular Testing in Surgical Pathology of the Head and Neck. Modern Pathology, 30, S104-S111. https://doi.org/10.1038/modpathol.2016.192
|
[8]
|
Netto, G.J., Saad, R.D. and Dysert, P.A. (2003) Diagnostic Molecular Pathology: Current Techniques and Clinical Applications, Part I. Baylor University Medical Center Proceedings, 16, 379-383. https://doi.org/10.1080/08998280.2003.11927931
|
[9]
|
Bluth, M.J. and Bluth, M.H. (2013) Molecular Pathology Techniques. Clinics in Laboratory Medicine, 33, 753-772. https://doi.org/10.1016/j.cll.2013.09.004
|
[10]
|
Fassan, M. (2018) Molecular Diagnostics in Pathology Time for a Next-Generation Pathologist? Archives of Pathology & Laboratory Medicine, 142, 313-320. https://doi.org/10.5858/arpa.2017-0269-RA
|
[11]
|
Monteiro de Oliveira Novaes, J.A. and William Jr., W.N. (2016) Prognostic Factors, Predictive Markers and Cancer Biology: The Triad for Successful Oral Cancer Chemoprevention. Future Oncology, 12, 2379-2386. https://doi.org/10.2217/fon-2016-0168
|
[12]
|
Chehab, F.F. (1993) Molecular Diagnostics: Past, Present, and Future. Human Mutation, 2, 331-337. https://doi.org/10.1002/humu.1380020502
|
[13]
|
Patrinos, G.P. and Ansorge, W.J. (2010) Molecular Diagnostics: Past, Present, and Future. In: Molecular Diagnostics, Elsevier, Amsterdam, 1-11. https://doi.org/10.1016/B978-0-12-374537-8.00001-8
|
[14]
|
Hussaini, M. (2015) Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control, 22, 158-166. https://doi.org/10.1177/107327481502200206
|
[15]
|
Kristensen, B.W., Petersen, J.K. and Wesseling, P. (2019) Molecular Pathology of Tumors of the Central Nervous System. Annals of Oncology, 30, 1265-1278. https://doi.org/10.1093/annonc/mdz164
|
[16]
|
Reifenberger, J., Reifenberger, G., Liu, L., et al. (1994) Molecular Genetic Analysis of Oligodendroglial Tumors Shows Preferential Allelic Deletions on 19q and 1p. The American Journal of Pathology, 145, 1175-1190.
|
[17]
|
Hartmann, C., Mueller, W., Lass, U., et al. (2005) Molecular Genetic Analysis of Oligodendroglial Tumors. Journal of Neuropathology & Experimental Neurology, 64, 10-14. https://doi.org/10.1093/jnen/64.1.10
|
[18]
|
Blons, H., Garinet, S., Laurent-Puig, P., et al. (2019) Molecular Markers and Prediction of Response to Immunotherapy in Non-Small Cell Lung Cancer: An Update. Journal of Thoracic Disease, 11, S25. https://doi.org/10.21037/jtd.2018.12.48
|
[19]
|
Du, F. and Liu, Y. (2022) Predictive Molecular Markers for the Treatment with Immune Checkpoint Inhibitors in Colorectal Cancer. Journal of Clinical Laboratory Analysis, 36, e24141. https://doi.org/10.1002/jcla.24141
|
[20]
|
Mansouri, A., Hachem, L.D., Mansouri, S., et al. (2019) MGMT Promoter Methylation Status Testing to Guide Therapy for Glioblastoma: Refining the Approach Based on Emerging Evidence and Current Challenges. Neuro-Oncology, 21, 167-178. https://doi.org/10.1093/neuonc/noy132
|
[21]
|
Cairncross, J.G., Ueki, K., Zlatescu, M.C., et al. (1998) Specific Genetic Predictors of Chemotherapeutic Response and Survival in Patients with Anaplastic Oligodendrogliomas. JNCI: Journal of the National Cancer Institute, 90, 1473-1479.
|
[22]
|
https://doi.org/10.1093/jnci/90.19.1473
|
[23]
|
Liu, S., Liu, X., Xiao, Y., et al. (2019) Prognostic Factors Associated with Survival in Patients with Anaplastic Oligodendroglioma. PLOS ONE, 14, e0211513. https://doi.org/10.1371/journal.pone.0211513
|
[24]
|
Nishi, A., Milner Jr., D.A., Giovannucci, E.L., et al. (2016) Integration of Molecular Pathology, Epidemiology and Social Science for Global Precision Medicine. Expert Review of Molecular Diagnostics, 16, 11-23. https://doi.org/10.1586/14737159.2016.1115346
|
[25]
|
Schmidt, F. and Efferth, T. (2016) Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance. Pharmaceuticals, 9, 33-43. https://doi.org/10.3390/ph9020033
|
[26]
|
Ding, S., Chen, X. and Shen, K. (2020) Single-Cell RNA Sequencing in Breast Cancer: Understanding Tumor Heterogeneity and Paving Roads to Individualized Therapy. Cancer Communications, 40, 329-344. https://doi.org/10.1002/cac2.12078
|
[27]
|
Lawson, D.A., Kessenbrock, K., Davis, R.T., et al. (2018) Tumour Heterogeneity and Metastasis at Single-Cell Resolution. Nature Cell Biology, 20, 1349-1360. https://doi.org/10.1038/s41556-018-0236-7
|
[28]
|
Chakravarthi, B.V.S.K., Nepal, S. and Varambally, S. (2016) Genomic and Epigenomic Alterations in Cancer. The American Journal of Pathology, 186, 1724-1735. https://doi.org/10.1016/j.ajpath.2016.02.023
|
[29]
|
Angerilli, V., Galuppini, F., Pagni, F., et al. (2021) The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics, 11, 339. https://doi.org/10.3390/diagnostics11020339
|
[30]
|
Capper, D., Jones, D.T.W., Sill, M., et al. (2018) DNA Methylation-Based Classification of Central Nervous System Tumours. Nature, 555, 469-474.
|
[31]
|
Koelsche, C., Schrimpf, D., Stichel, D., et al. (2021) Sarcoma Classification by DNA Methylation Profiling. Nature Communications, 12, 498-498. https://doi.org/10.1038/s41467-020-20603-4
|
[32]
|
Pidsley, R., Zotenko, E., Peters, T.J., et al. (2016) Critical Evaluation of the Illumina MethylationEPIC BeadChip Microarray for Whole-Genome DNA Methylation Profiling. Genome Biology, 17, Article No. 208. https://doi.org/10.1186/s13059-016-1066-1
|
[33]
|
Ko, Y.-A., Mohtat, D., Suzuki, M., et al. (2013) Cytosine Methylation Changes in Enhancer Regions of Core Pro-Fibrotic Genes Characterize Kidney Fibrosis Development. Genome Biology, 14, R108. https://doi.org/10.1186/gb-2013-14-10-r108
|
[34]
|
Raciti, G.A., Desiderio, A., Longo, M., et al. (2021) DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment? International Journal of Molecular Sciences, 22, 11652. https://doi.org/10.3390/ijms222111652
|
[35]
|
Berdenis van Berlekom, A., Notman, N., Sneeboer, M.A.M., et al. (2021) DNA Methylation Differences in Cortical Grey and White Matter in Schizophrenia. Epigenomics, 13, 1157-1169. https://doi.org/10.2217/epi-2021-0077
|
[36]
|
Binnie, A., Walsh, C.J., Hu, P., et al. (2020) Epigenetic Profiling in Severe Sepsis: A Pilot Study of DNA Methylation Profiles in Critical Illness. Critical Care Medicine, 48, 142-150. https://doi.org/10.1097/CCM.0000000000004097
|
[37]
|
Al-Qahtani, S.M., Bryzgalova, G., Valladolid-Acebes, I., et al. (2017) 17β-Estradiol Suppresses Visceral Adipogenesis and Activates Brown Adipose Tissue-Specific Gene Expression. Hormone Molecular Biology and Clinical Investigation, 29, 13-26. https://doi.org/10.1515/hmbci-2016-0031
|
[38]
|
Sahm, F., Schrimpf, D., Stichel, D., et al. (2017) DNA Methylation-Based Classification and Grading System for Meningioma: A Multicentre, Retrospective Analysis. The Lancet Oncology, 18, 682-694.
|
[39]
|
Sturm, D., Witt, H., Hovestadt, V., et al. (2012) Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 22, 425-437.
|
[40]
|
Reinhardt, A., Stichel, D., Schrimpf, D., et al. (2018) Anaplastic Astrocytoma with Piloid Features, a Novel Molecular Class of IDH Wildtype Glioma with Recurrent MAPK Pathway, CDKN2A/B and ATRX Alterations. Acta Neuropathologica, 136, 273-291. https://doi.org/10.1007/s00401-018-1837-8
|
[41]
|
Maros, M.E., Capper, D., Jones, D.T.W., et al. (2020) Machine Learning Workflows to Estimate Class Probabilities for Precision Cancer Diagnostics on DNA Methylation Microarray Data. Nature Protocols, 15, 479-512. https://doi.org/10.1038/s41596-019-0251-6
|
[42]
|
Al-Qahtani, S.M., et al. (2018) Implementation of Methylation Array-Based Classification of Paediatric Central Nervous System Tumours in Routine Diagnostic Pa. 30th European Congress of Pathology, Bilbao, 8-12 September 2018, S26.
|
[43]
|
Barros-Silva, D., Marques, C.J., Henrique, R., et al. (2018) Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes (Basel), 9, Article No. 429. https://doi.org/10.3390/genes9090429
|
[44]
|
Jaunmuktane, Z., Capper, D., Jones, D.T.W., et al. (2019) Methylation Array Profiling of Adult Brain Tumours: Diagnostic Outcomes in a Large, Single Centre. Acta Neuropathologica Communications, 7, Article No. 24. https://doi.org/10.1186/s40478-019-0668-8
|
[45]
|
Hegi, M.E., Kleihues, P., Wen, P.Y., et al. (2018) Toward Methylation-Based Classification of Central Nervous System Tumors. Neuro-Oncology, 20, 579-581. https://doi.org/10.1093/neuonc/noy023
|
[46]
|
Perez, E. and Capper, D. (2020) Invited Review: DNA Methylation-Based Classification of Paediatric Brain Tumours. Neuropathology and Applied Neurobiology, 46, 28-47. https://doi.org/10.1111/nan.12598
|
[47]
|
Priesterbach-Ackley, L.P., Boldt, H.B., Petersen, J.K., et al. (2020) Brain Tumour Diagnostics Using a DNA Methylation-Based Classifier as a Diagnostic Support Tool. Neuropathology and Applied Neurobiology, 46, 478-492. https://doi.org/10.1111/nan.12610
|
[48]
|
Capper, D., Stichel, D., Sahm, F., et al. (2018) Practical Implementation of DNA Methylation and Copy-Number-Based CNS Tumor Diagnostics: The Heidelberg Experience. Acta Neuropathologica, 136, 181-210. https://doi.org/10.1007/s00401-018-1879-y
|
[49]
|
Louis, D.N., Wesseling, P., Aldape, K., et al. (2020) cIMPACT-NOW Update 6: New Entity and Diagnostic Principle Recommendations of the cIMPACT-Utrecht Meeting on Future CNS Tumor Classification and Grading. Wiley Online Library. https://doi.org/10.1111/bpa.12832
|
[50]
|
Pajtler, K.W., Mack, S.C., Ramaswamy, V., et al. (2017) The Current Consensus on the Clinical Management of Intracranial Ependymoma and Its Distinct Molecular Variants. Acta Neuropathologica, 133, 5-12. https://doi.org/10.1007/s00401-016-1643-0
|
[51]
|
Taylor, M.D., Northcott, P.A., Korshunov, A., et al. (2012) Molecular Subgroups of Medulloblastoma: The Current Consensus. Acta Neuropathologica, 123, 465-472. https://doi.org/10.1007/s00401-011-0922-z
|
[52]
|
Shen, N., Du, J., Zhou, H., et al. (2019) A Diagnostic Panel of DNA Methylation Biomarkers for Lung Adenocarcinoma. Frontiers in Oncology, 9, Article No. 1281. https://doi.org/10.3389/fonc.2019.01281
|
[53]
|
Zhang, X., Gao, C., Liu, L., et al. (2019) DNA Methylation-Based Diagnostic and Prognostic Biomarkers of Nonsmoking Lung Adenocarcinoma Patients. Journal of Cellular Biochemistry, 120, 13520-13530. https://doi.org/10.1002/jcb.28627
|
[54]
|
Rauch, T.A., Wang, Z., Wu, X., et al. (2012) DNA Methylation Biomarkers for Lung Cancer. Tumor Biology, 33, 287-296. https://doi.org/10.1007/s13277-011-0282-2
|
[55]
|
Rohrich, M., Koelsche, C., Schrimpf, D., et al. (2016) Methylation-Based Classification of Benign and Malignant Peripheral Nerve Sheath Tumors. Acta Neuropathologica, 131, 877-887. https://doi.org/10.1007/s00401-016-1540-6
|
[56]
|
Hasan, N.M., Sharma, A., Ruzgar, N.M., et al. (2021) Epigenetic Signatures Differentiate Uterine and Soft Tissue Leiomyosarcoma. Oncotarget, 12, 1566-1579. https://doi.org/10.18632/oncotarget.28032
|
[57]
|
Wu, S.P., Cooper, B.T., Bu, F., et al. (2017) DNA Methylation-Based Classifier for Accurate Molecular Diagnosis of Bone Sarcomas. JCO Precision Oncology, 1, 1-11. https://doi.org/10.1200/PO.17.00031
|
[58]
|
Renner, M., Wolf, T., Meyer, H., et al. (2013) Integrative DNA Methylation and Gene Expression Analysis in High-Grade Soft Tissue Sarcomas. Genome Biology, 14, 1-26. https://doi.org/10.1186/gb-2013-14-12-r137
|
[59]
|
Miele, E., De Vito, R., Ciolfi, A., et al. (2020) DNA Methylation Profiling for Diagnosing Undifferentiated Sarcoma with Capicua Transcriptional Receptor (CIC) Alterations. International Journal of Molecular Sciences, 21, Article No. 1818. https://doi.org/10.3390/ijms21051818
|
[60]
|
Bodelon, C., Killian, J.K., Sampson, J.N., et al. (2019) Molecular Classification of Epithelial Ovarian Cancer Based on Methylation Profiling: Evidence for Survival Heterogeneity Methylation and Ovarian Cancer Survival. Clinical Cancer Research, 25, 5937-5946. https://doi.org/10.1158/1078-0432.CCR-18-3720
|
[61]
|
Stahl, P.L., Salmén, F., Vickovic, S., et al. (2016) Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science (80-), 353, 78-82. https://doi.org/10.1126/science.aaf2403
|
[62]
|
Ji, A.L., Rubin, A.J., Thrane, K., et al. (2020) Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Journal of Cleaner Production, 182, 497-514.e22. https://doi.org/10.1016/j.cell.2020.05.039
|
[63]
|
Tirosh, I., Izar, B., Prakadan, S.M., et al. (2016) Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-seq. Science (80-), 352, 189-196.
|
[64]
|
Tirosh, I., Venteicher, A.S., Hebert, C., et al. (2016) Single-Cell RNA-seq Supports a Developmental Hierarchy in Human Oligodendroglioma. Nature, 539, 309-313.
|
[65]
|
Puram, S.V., Tirosh, I., Parikh, A.S., et al. (2017) Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell, 171, 1611-1624. https://doi.org/10.1016/j.cell.2017.10.044
|
[66]
|
Neftel, C., Laffy, J., Filbin, M.G., et al. (2019) An Integrative Model of Cellular States, Plasticity, and Genetics For Glioblastoma. Cell, 178, 835-849.
|
[67]
|
Berglund, E., Maaskola, J., Schultz, N., et al. (2018) Spatial Maps of Prostate Cancer Transcriptomes Reveal an Unexplored Landscape of Heterogeneity. Nature Communications, 9, Article No. 2419. https://doi.org/10.1038/s41467-018-04724-5
|
[68]
|
Asp, M., Giacomello, S., Larsson, L., et al. (2019) A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell, 179, 1647-1660. https://doi.org/10.1016/j.cell.2019.11.025
|
[69]
|
Maniatis, S., Aijo, T., Vickovic, S., et al. (2019) Spatiotemporal Dynamics of Molecular Pathology in Amyotrophic Lateral Sclerosis. Science (80-), 364, 89-93. https://doi.org/10.1126/science.aav9776
|
[70]
|
Hoffman, E.A., Frey, B.L., Smith, L.M., et al. (2015) Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes. Journal of Biological Chemistry, 290, 26404-26411. https://doi.org/10.1074/jbc.R115.651679
|
[71]
|
Gracia Villacampa, E., Larsson, L., Mirzazadeh, R., et al. (2021) Genome-Wide Spatial Expression Profiling in Formalin-Fixed Tissues. Cell Genomics, 1, Article ID: 100065. https://doi.org/10.1016/j.xgen.2021.100065
|
[72]
|
Mathieson, W. and Thomas, G. (2019) Using FFPE Tissue in Genomic Analyses: Advantages, Disadvantages and the Role of Biospecimen Science. Current Pathobiology Reports, 7, 35-40. https://doi.org/10.1007/s40139-019-00194-6
|
[73]
|
Lundmark, A., Gerasimcik, N., Bage, T., et al. (2018) Gene Expression Profiling of Periodontitis-Affected Gingival Tissue by Spatial Transcriptomics. Scientific Reports, 8, Article No. 9370. https://doi.org/10.1038/s41598-018-27627-3
|
[74]
|
Mantri, M., Hinchman, M.M., McKellar, D.W., et al. (2021) Spatiotemporal Transcriptomics Reveals Pathogenesis of Viral Myocarditis. https://doi.org/10.1101/2021.12.07.471659
|
[75]
|
Carlberg, K., Korotkova, M., Larsson, L., et al. (2019) Exploring Inflammatory Signatures in Arthritic Joint Biopsies with Spatial Transcriptomics. Scientific Reports, 9, Article No. 18975. https://doi.org/10.1038/s41598-019-55441-y
|
[76]
|
Zhao, E., Stone, M.R., Ren, X., et al. (2021) Spatial Transcriptomics at Subspot Resolution with BayesSpace. Nature Biotechnology, 39, 1375-1384. https://doi.org/10.1038/s41587-021-00935-2
|
[77]
|
Moncada, R., Barkley, D., Wagner, F., et al. (2020) Integrating Microarray-Based Spatial Transcriptomics and Single-Cell RNA-seq Reveals Tissue Architecture in Pancreatic Ductal Adenocarcinomas. Nature Biotechnology, 38, 333-342. https://doi.org/10.1038/s41587-019-0392-8
|
[78]
|
Thrane, K., Eriksson, H., Maaskola, J., et al. (2018) Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma. Cancer Research, 78, 5970-5979. https://doi.org/10.1158/0008-5472.CAN-18-0747
|
[79]
|
Wang, Y., Mashock, M., Tong, Z., et al. (2020) Changing Technologies of RNA Sequencing and Their Applications in Clinical Oncology. Frontiers in Oncology, 10, Article No. 447. https://doi.org/10.3389/fonc.2020.00447
|
[80]
|
Lein, E., Borm, L.E., Linnarsson, S. (2017) The Promise of Spatial Transcriptomics for Neuroscience in the Era of Molecular Cell Typing. Science (80-), 358, 64-69. https://doi.org/10.1126/science.aan6827
|
[81]
|
Civita, P., Franceschi, S., Aretini, P., et al. (2019) Laser Capture Microdissection and RNA-seq Analysis: High Sensitivity Approaches to Explain Histopathological Heterogeneity in Human Glioblastoma FFPE Archived Tissues. Frontiers in Oncology, 9, Article No. 482. https://doi.org/10.3389/fonc.2019.00482
|
[82]
|
Kalita-de Croft, P., Sadeghi Rad, H., Gasper, H., et al. (2021) Spatial Profiling Technologies and Applications for Brain Cancers. Expert Review of Molecular Diagnostics, 21, 323-332. https://doi.org/10.1080/14737159.2021.1900735
|
[83]
|
Lyon, J.F., Vasudevaraja, V., Mirchia, K., et al. (2021) Spatial Progression and Molecular Heterogeneity of IDH-Mutant Glioblastoma Determined by DNA Methylation-Based Mapping. Acta Neuropathologica Communications, 9, Article No. 120. https://doi.org/10.1186/s40478-021-01221-7
|