[1]
|
Palsson-McDermott, E.M. and O’Neill, L.A.J. (2013) The Warburg Effect Then and Now: From Cancer to Inflammatory Diseases. BioEssays, 35, 965-973.
https://doi.org/10.1002/bies.201300084
|
[2]
|
Pascale, R.M., Calvisi, D.F., Simile, M.M., Feo, C.F. and Feo, F. (2020) The Warburg Effect 97 Years after Its Discovery. Cancers, 12, Article No. 2819.
https://doi.org/10.3390/cancers12102819
|
[3]
|
Kieran, D. and Basaraba, R.J. (2012) Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 624607. https://doi.org/10.3389/fcimb.2021.624607
|
[4]
|
Cumming, B.M., Pacl, H.T. and Steyn, A.J.C. (2020) Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 576596. https://doi.org/10.3389/fcimb.2020.576596
|
[5]
|
de Jong, G.M., McCall, M.B.B., Dik, W.A., Urbanus, R.T., Wammes, L.J., et al. (2020) Transforming Growth Factor-Beta Profiles Correlate with Clinical Symptoms and Parameters of Haemostasis and Inflammation in a Controlled Human Malaria Infection, Cytokine, 125, Article ID: 154838.
https://doi.org/10.1016/j.cyto.2019.154838
|
[6]
|
Possemiers, H., Vandermosten, L. and Van den Steen, P.E. (2021) Etiology of Lactic Acidosis in Malaria. PLOS Pathogens, 17, e1009122.
https://doi.org/10.1371/journal.ppat.1009122
|
[7]
|
Lotz, M. and Zuraw, B.L. (1987) Interferon-γ Is a Major Regulator of C1-Inhibitor Synthesis by Human Blood Monocytes. The Journal of Immunology, 139, 3382-3387.
https://pubmed.ncbi.nlm.nih.gov/3119706/
|
[8]
|
Zuraw, B.L. and Lotz, M. (1990) Regulation of the Hepatic Synthesis of C1 Inhibitor by the Hepatocyte Stimulating Factors Interleukin 6 and Interferon γ. The Journal of Biological Chemistry, 265, 12664-12670.
https://doi.org/10.1016/S0021-9258(19)38395-4
|
[9]
|
Chambers, P.W. (2022) Long Covid, Short Magnesium. Open Access Library Journal, 9, e8736.
https://www.scirp.org/journal/paperinformation.aspx?paperid=117413
|
[10]
|
Grassrootshealth Nutrient Research Institute (2020) Could a Lack of Magnesium be Worsening Your Ability to Handle Stress?
https://www.grassrootshealth.net/blog/lack-magnesium-worsening-ability-handle-stress/
|
[11]
|
Malecki, J.M., Davydova, E. and Falnes, P.O. (2022) Protein Methylation in Mitochondria. Journal of Biological Chemistry, 298, Article ID: 101791.
https://doi.org/10.1016/j.jbc.2022.101791
|
[12]
|
Rhein, V.F., Carroll, J., He, J., Ding, S., Fearnley, I.M. and Walker, J.E. (2014) Human METTL20 Methylates Lysine Residues Adjacent to the Recognition Loop of the Electron Transfer Flavoprotein in Mitochondria. The Journal of Biological Chemistry, 289, 24640-24651. https://doi.org/10.1074/jbc.M114.580464
|
[13]
|
Know, L. (2018) Mitochondria and the Future of Medicine: The Key to Understanding Disease, Chronic Illness, Aging, and Life Itself. Chelsea Green Publishing, Hartford.
|
[14]
|
Porter, N.S., Jason, L.A., Boulton, A., Bothne, N. and Coleman, B. (2010) Alternative Medical Interventions Used in the Treatment and Management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia. The Journal of Alternative and Complementary Medicine, 16, 235-249.
https://doi.org/10.1089/acm.2008.0376
|
[15]
|
Kim, S.H., Kim, H.J., Kim, S., Kang, J.S., Koo, Y.T., et al. (2022) A Comparative Study of Antifatigue Effects of Taurine and Vitamin C on Chronic Fatigue Syndrome Pharmacology & Pharmacy, 13, 300-312.
https://doi.org/10.4236/pp.2022.138023
|
[16]
|
Bounous, G. and Molson, J. (1999) Competition for Glutathione Precursors between the Immune System and the Skeletal Muscle: Pathogenesis of Chronic Fatigue Syndrome. Medical Hypotheses, 53, 347-349.
https://doi.org/10.1054/mehy.1998.0780
|
[17]
|
Alves, C.R.R., Santiago, B.M., Lima, F.R., Otaduy, M.C.G., Calich, A.L., et al. (2013) Creatine Supplementation in Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care & Research, 65, 1449-1459.
https://doi.org/10.1002/acr.22020
|
[18]
|
Dworzański, J., Strycharz-Dudziak, M., Kliszczewska, E., Kielczykowska, M., Dworzańska, A., Drop, B., et al. (2020) Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) Activity in Patients with Diabetes Mellitus Type 2 Infected with Epstein-Barr Virus. PLOS ONE, 15, e0230374.
https://doi.org/10.1371/journal.pone.0230374
|
[19]
|
Miller, A.L., Kelly, G.S. and Tran, J. (1997) Homocysteine Metabolism: Nutritional Modulation and Impact on Health and Disease.
https://musculoskeletalkey.com/homocysteine-metabolism-nutritional-modulation-and-impact-on-health-and-disease/
|
[20]
|
Fukumoto, K., Ito, K., Saer, B., et al. (2022) Excess S-Adenosylmethionine Inhibits Methylation via Catabolism to Adenine. Communications Biology, 5, Article No. 313.
https://doi.org/10.1038/s42003-022-03280-5
|
[21]
|
Mahoney, D.E., Hiebert, J.B., Thimmesch, A., Pierce, J.T., Vacek, J.L., et al. (2018) Understanding D-Ribose and Mitochondrial Function. Advances in Bioscience and Clinical Medicine, 6, 1-5. https://doi.org/10.7575/aiac.abcmed.v.6n.1p.1
|
[22]
|
Dawidowicz, A.J., Olszowy-Tomczyk, M. and Typek, R. (2021) Synergistic and Antagonistic Antioxidant Effects in the Binary Cannabinoids Mixtures. Fitoterapia, 153, Article ID: 104992. https://doi.org/10.1016/j.fitote.2021.104992
|
[23]
|
Bjørklund, G., Dadar, M., Pen, J.J., Chirumbolo, S. and Aaseth, J. (2019) Chronic Fatigue Syndrome (CFS): Suggestions for a Nutritional Treatment in the Therapeutic Approach. Biomedicine & Pharmacotherapy, 109, 1000-1007.
https://doi.org/10.1016/j.biopha.2018.10.076
|
[24]
|
Stark, C.M., Nylund, C.M., Gorman, G.H. and Lechner, B.L. (2016) Primary Renal Magnesium Wasting: An Unusual Clinical Picture of Exercise-Induced Symptoms. Physiological Reports, 4, e12773. https://doi.org/10.14814/phy2.12773
|
[25]
|
Rosanoff, A. (2010) Rising Ca:Mg Intake Ratio from Food in USA Adults: A Concern? Magnesium Research, 23, S181-S193. http://mgwater.com/Ca-Mg.pdf
|
[26]
|
Klein, J., Wood, J., Jaycox, J., Lu, P. and Dhodapkar, R.M. (2022) Distinguishing Features of Long COVID Identified through Immune Profiling. MedRxiv 2022. 08.09.22278592. https://doi.org/10.1101/2022.08.09.22278592
|
[27]
|
Phoenix Rising: A Community for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (2012) The Hypocortisolism in Chronic Fatigue Syndrome (ME/CFS)—Artifact or Central Factor?
https://phoenixrising.me/myalgic-encephalomyelitis-chronic-fatigue-syndrome-mecfs-research/pharmacogenomics/the-hypocortisolism-in-chronic-fatigue-syndrome-mecfs-artifact-or-central-factor/
|
[28]
|
Hoad, A., Spickett, G., Elliott, J. and Newton, J. (2008) Postural Orthostatic Tachycardia Syndrome Is an Under-Recognized Condition in Chronic Fatigue Syndrome. QJM: An International Journal of Medicine, 101, 961-965.
https://doi.org/10.1093/qjmed/hcn123
|
[29]
|
Kinsey, D.L. (1979) Calcium and Magnesium Sensitivity of the Carotid Baroreceptor Reflex in Cats. Circulation Research, 45, 815-821.
https://doi.org/10.1161/01.RES.45.6.815
|
[30]
|
Sayago, C.M. and Beierwaltes, W.H. (2001) Nitric Oxide Synthase and cGMP-Mediated Stimulation of Renin Secretion. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281, R1146-R1151.
https://doi.org/10.1152/ajpregu.2001.281.4.R1146
|
[31]
|
Howard, A.B., Alexander, R.W. and Taylor, W.R. (1995) Effects of Magnesium on Nitric Oxide Synthase Activity in Endothelial Cells. American Journal of Physiology-Cell Physiology, 269, C612-C618.
https://doi.org/10.1152/ajpcell.1995.269.3.C612
|
[32]
|
Neubauer, B., Machura, K., Kett, R., Luisa, M. and Lopez, S.S. (2013) Endothelium-Derived Nitric Oxide Supports Renin Cell Recruitment through the Nitric Oxide-Sensitive Guanylate Cyclase Pathway. Hypertension, 61, 400-407.
https://doi.org/10.1161/HYPERTENSIONAHA.111.00221
|
[33]
|
Atanassova, N. and Koeva, Y. (2012) Hydrohysteroid Dehydrogenases—Biological Role and Clinical Importance—Review. In: Canuto, R.A., Ed., Dehydrogenases, IntechOpen, London. https://doi.org/10.5772/54149
|
[34]
|
Pinto, M.D., Lambert, N., Downs, C.A., Abrahim, H., Hughes, T.D. and Rahmani, A.M. (2022) Antihistamines for Post Acute Sequelae of SARS-CoV-2 Infection. The Journal for Nurse Practitioners, 18, 335-338.
https://doi.org/10.1016/j.nurpra.2021.12.016
|
[35]
|
Gewin, L. (2019) The Many Talents of Transforming Growth Factor-β in the Kidney. Current Opinion in Nephrology and Hypertension, 28, 203-210.
https://doi.org/10.1097/MNH.0000000000000490
|
[36]
|
Vander Ark, A., Cao, J. and Li, X. (2018) TGF-β Receptors: In and beyond TGF-β Signaling. Cellular Signalling, 52, 112-120.
https://doi.org/10.1016/j.cellsig.2018.09.002
|
[37]
|
Zhang, X., Chen, Y., Li, Z., Han, X. and Liang, Y. (2020) TGFBR3 Is an Independent Unfavourable Prognostic Marker in Oesophageal Squamous Cell Cancer and Is Positively Correlated with Ki-67. International Journal of Experimental Pathology, 101, 223-229. https://doi.org/10.1111/iep.12380
|
[38]
|
Song, H., Yang, J. and Yu, W. (2022) Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer’s Disease: An Integrated Epigenomic-Transcriptomic Analysis. Frontiers in Cell and Developmental Biology, 9, Article ID: 825729.
https://doi.org/10.3389/fcell.2021.825729
|
[39]
|
Oronsky, B., Larson, C., Hammond, T.C., et al. (2021) A Review of Persistent Post-COVID Syndrome (PPCS). Clinical Reviews in Allergy & Immunology.
https://doi.org/10.1007/s12016-021-08848-3
|
[40]
|
Montoya, J.G., Holmes, T.H. and Anderson, J.N. (2017) Cytokine Signature Associated with Disease Severity in Chronic Fatigue Syndrome Patients. Proceedings of the National Academy of Sciences of the United States of America, 114, E7150-E7158.
https://doi.org/10.1073/pnas.1710519114
|
[41]
|
Lidbury, B.A., Kita, B., Lewis, D.P., et al. (2017) Activin B Is a Novel Biomarker for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) Diagnosis: A Cross Sectional Study. Journal of Translational Medicine, 15, Article No. 60.
https://doi.org/10.1186/s12967-017-1161-4
|
[42]
|
Zhang, H.Y., Liu, Z.D., Hu, C.J., Wang, D.X., et al. (2011) Up-Regulation of TGF-β1 mRNA Expression in Peripheral Blood Mononuclear Cells of Patients with Chronic Fatigue Syndrome. Journal of the Formosan Medical Association, 110, 701-704.
https://doi.org/10.1016/j.jfma.2011.09.006
|
[43]
|
Iempridee, T., Das, S., Xu, I. and Mert, J.E. (2011) Transforming Growth Factor β-Induced Reactivation of Epstein-Barr Virus Involves Multiple Smad-Binding Elements Cooperatively Activating Expression of the Latent-Lytic Switch BZLF1 Gene. Journal of Virology, 85, 7836-7848. https://doi.org/10.1128/JVI.01197-10
|
[44]
|
Kossmann, T.M., Morganti-Kossmann, M.C., Orenstein, J.M., Britt, W.J., Wahl, S.M., et al. (2003) Cytomegalovirus Production by Infected Astrocytes Correlates with Transforming Growth Factor-β Release. The Journal of Infectious Diseases, 187, 534-541. https://doi.org/10.1086/373995
|
[45]
|
Hoffman, B. (2021) Chronic Inflammatory Response Syndrome (CIRS) Evaluation and Treatment. Hoffman Centre for Integrative and Functional Medicine, Calgary.
https://hoffmancentre.com/chronic-inflammatory-response-syndrome-cirs-evaluation-and-treatment/
|
[46]
|
Zhang, X., Huang, W.J. and Chen, W.W. (2016) TGF-β1 Factor in the Cerebrovascular Diseases of Alzheimer’s Disease. European Review for Medical and Pharmacological Sciences, 20, 5178-5185. https://pubmed.ncbi.nlm.nih.gov/28051272/
|
[47]
|
Wang, L., et al. (2022) Association of COVID-19 with New-Onset Alzheimer’s Disease. Journal of Alzheime’s Disease, 89, 411-414.
https://doi.org/10.3233/JAD-220717
|
[48]
|
Xia, X., Wang, Y. and Zheng, J. (2021) COVID-19 and Alzheimer’s Disease: How One Crisis Worsens the Other. Translational Neurodegeneration, 10, Article No. 15.
https://doi.org/10.1186/s40035-021-00237-2
|
[49]
|
Carbone, I., Lazzarotto, T., Ianni, M., Porcellini, E., Forti, P., et al. (2014) Herpes Virus in Alzheimer’s Disease: Relation to Progression of the Disease. Neurobiology of Aging, 35, 122-129. https://doi.org/10.1016/j.neurobiolaging.2013.06.024
|
[50]
|
Bredesen, D.E. (2016) Inhalational Alzheimer’s Disease: An Unrecognized-and Treatable-Epidemic. Aging, 108, 304-313. https://doi.org/10.18632/aging.100896
|
[51]
|
Tzeng, N.S., Chung, C.H., Liu, F.C., Chou, Y.C., Lin, F.H., et al. (2018) Fibromyalgia and Risk of Dementia—A Nationwide, Population-Based, Cohort Study. American Journal of the Medical Sciences, 355, 153-161.
https://doi.org/10.1016/j.amjms.2017.09.002
|
[52]
|
Barnes, L.L., Capuano, A.W., Aiello, A.E., Turner, A.D., Yolken, R.H., et al. (2015) Cytomegalovirus Infection and Risk of Alzheimer Disease in Older Black and White Individuals. The Journal of Infectious Diseases, 211, 230-237.
https://doi.org/10.1093/infdis/jiu437
|
[53]
|
Vaidya, B. and Sharma, S.S. (2020) Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson’s Disease: An Insight into Role of Pharmacological Interventions. Frontiers in Cell and Developmental Biology, 8, Article ID: 584513. https://doi.org/10.3389/fcell.2020.584513
|
[54]
|
Belrose, J. and Jackson, M. (2018) TRPM2: A Candidate Therapeutic Target for Treating Neurological Diseases. Acta Pharmacologica Sinica, 39, 722-732.
https://doi.org/10.1038/aps.2018.31
|
[55]
|
Ding, R., Yin, Y.-L. and Jiang, L.-H. (2021) Reactive Oxygen Species-Induced TRPM2-Mediated Ca2+ Signalling in Endothelial Cells. Antioxidants, 10, Article No. 718. https://doi.org/10.3390/antiox10050718
|
[56]
|
Zhu, D., You, J., Zhao, N. and Xu, H. (2019) Magnesium Regulates Endothelial Barrier Functions through TRPM7, MagT1, and S1P1. Advanced Science, 6, Article ID: 1901166. https://doi.org/10.1002/advs.201901166
|
[57]
|
Starkus, J., Beck, A., Fleig, A. and Penner, R. (2007) Regulation of TRPM2 by Extra- and Intracellular Calcium. Journal of General Physiology, 130, 427-440.
https://doi.org/10.1085/jgp.200709836
|
[58]
|
Zhou, J., Gao, G., Zhang, S., Wang, H., Ke, L., et al. (2020) Influences of Calcium and Magnesium Ions on Cellular Antioxidant Activity (CAA) Determination. Food Chemistry, 320, Article ID: 126625. https://doi.org/10.1016/j.foodchem.2020.126625
|
[59]
|
Du, Y., Chen, J., Shen, L. and Wang, B. (2022) TRP Channels in Inflammatory Bowel Disease: Potential Therapeutic Targets. Biochemical Pharmacology, 203, Article ID: 115195. https://doi.org/10.1016/j.bcp.2022.115195
|
[60]
|
Smith, R.A.J., Hartley, R.C., Cochemé, H.M. and Murphy, M.P. (2012) Mitochondrial Pharmacology. Trends in Pharmacological Sciences, 33, 341-352.
https://doi.org/10.1016/j.tips.2012.03.010
|
[61]
|
Giorgio, V., Guo, L., Bassot, C., Petronilli, V. and Bernardi, P. (2018) Calcium and Regulation of the Mitochondrial Permeability Transition. Cell Calcium, 70, 56-63.
https://doi.org/10.1016/j.ceca.2017.05.004
|
[62]
|
Kang, H., Seo, E., Oh, Y.S., et al. (2022) TGF-β Activates NLRP3 Inflammasome by an Autocrine Production of TGF-β in LX-2 Human Hepatic Stellate Cells. Molecular and Cellular Biochemistry, 477, 1329-1338.
https://doi.org/10.1007/s11010-022-04369-5
|
[63]
|
Wang, R., Wang, S.Y., Wang, Y., Xin, R., Xia, B., et al. (2020) The Warburg Effect Promoted the Activation of the NLRP3 Inflammasome Induced by Ni-Refining Fumes in BEAS-2B Cells. Toxicology and Industrial Health, 36, 580-590.
https://doi.org/10.1177/0748233720937197
|
[64]
|
Zhang, Z.T., Du, X.M., Ma, X.J., et al. (2016) Activation of the NLRP3 Inflammasome in Lipopolysaccharide-Induced Mouse Fatigue and Its Relevance to Chronic Fatigue Syndrome. Journal of Neuroinflammation, 13, Article No. 71.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-016-0539-1
|
[65]
|
Song, L., Pei, L., Yao, S., Wu, Y. and Shang, Y. (2017) NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Frontiers in Cellular Neuroscience, 11, Article No. 63. https://doi.org/10.3389/fncel.2017.00063
|
[66]
|
Zhen, Y. and Zhang, H. (2019) NLRP3 Inflammasome and Inflammatory Bowel Disease. Frontiers in Immunology, 10, Article No. 276.
https://doi.org/10.3389/fimmu.2019.00276
|
[67]
|
Xiao, W. (2010) NLRP3 Inflammasome-Mediated Inflammatory Process in Patients with Irritable Bowel Syndrome Dissertation Topic. Shandong University, Jinan.
https://www.dissertationtopic.net/doc/663467
|
[68]
|
Olcum, M., Tastan, B., Kiser, C., Genc, S. and Genc, K. (2020) Chapter Seven—Microglial NLRP3 Inflammasome Activation in Multiple Sclerosis. In: Donev, R., Ed., Advances in Protein Chemistry and Structural Biology, Vol. 119, Academic Press, Cambridge, 247-308. https://doi.org/10.1016/bs.apcsb.2019.08.007
|
[69]
|
Shen, H.H., Yang, Y.X., Meng, X., Luo, X.Y., Li, X.M., et al. (2018) NLRP3: A Promising Therapeutic Target for Autoimmune Diseases. Autoimmunity Reviews, 17, 694-702. https://doi.org/10.1016/j.autrev.2018.01.020
|
[70]
|
Reinhart, N.M., Akinyemi, I.A., Frey, T.R., Xu, H., Agudelo, C., et al. (2022) The Danger Molecule HMGB1 Cooperates with the NLRP3 Inflammasome to Sustain Expression of the EBV Lytic Switch Protein in Burkitt Lymphoma Cells. Virology, 566, 136-142. https://doi.org/10.1016/j.virol.2021.12.002
|
[71]
|
Bazrafkan, M., Hosseini, E., Nazari, M., Amorim, C.A. and Sadeghi, M.R. (2021) NLRP3 Inflammasome: A Joint, Potential Therapeutic Target in Management of COVID-19 and Fertility Problems. Journal of Reproductive Immunology, 148, Article ID: 103427. https://doi.org/10.1016/j.jri.2021.103427
|
[72]
|
Lee, G.S., Subramanian, N., Kim, A., et al. (2012) The Calcium-Sensing Receptor Regulates the NLRP3 Inflammasome through Ca2+ and cAMP. Nature, 492, 123-127.
https://doi.org/10.1038/nature11588
|
[73]
|
Chang, Y.Y., Kao, M.C., Lin, J.A., Wong, C.S. and Tzeng, I.S. (2018) Effects of MgSO4 on Inhibiting Nod-Like Receptor Protein 3 Inflammasome Involve Decreasing Intracellular Calcium. Journal of Surgical Research, 221, 257-265.
https://doi.org/10.1016/j.jss.2017.09.005
|
[74]
|
Zhao, X.J., Yang, Y.Z., Zheng, Y.J., Wang, S.C., Gu, H.M., et al. (2017) Magnesium Isoglycyrrhizinate Blocks Fructose-Induced Hepatic NF-κB/NLRP3 Inflammasome Activation and Lipid Metabolism Disorder. European Journal of Pharmacology, 809, 141-150. https://doi.org/10.1016/j.ejphar.2017.05.032
|
[75]
|
Jiang, X., Zhong, L., Sun, D. and Rong, L. (2016) Magnesium Lithospermate B Acts against Dextran Sodium Sulfate-Induced Ulcerative Colitis by Inhibiting Activation of the NRLP3/ASC/Caspase-1 Pathway. Environmental Toxicology and Pharmacology, 41, 72-77. https://doi.org/10.1016/j.etap.2015.10.009
|
[76]
|
Lund, T.M., Obel, L.F., Risa, Ø. and Sonnewald, U. (2011) β-Hydroxybutyrate Is the Preferred Substrate for GABA and Glutamate Synthesis While Glucose Is Indispensable during Depolarization in Cultured GABAergic Neurons. Neurochemistry International, 59, 309-318. https://doi.org/10.1016/j.neuint.2011.06.002
|
[77]
|
Gobaille, S., Hechler, V., Andriamampandry, C., Kemmel, V. and Maitre, M. (1999) γ-Hydroxybutyrate Modulates Synthesis and Extracellular Concentration of γ-Aminobutyric acid In Discrete Rat Brain Regions in Vivo. Journal of Pharmacology and Experimental Therapeutics, 290, 303-309
https://pubmed.ncbi.nlm.nih.gov/10381791/
|
[78]
|
Boyd, A. (2015) Gamma-Aminobutyric Acid (GABA) Monograph.
https://www.fxmedicine.com.au/blog-post/gamma-aminobutyric-acid-gaba-monograph
|
[79]
|
Zanos, P. (2016) Ketamine and Esketamine in Depression—A Synopsis on Efficacy and Mechanism of Action. Psych Scene Hub.
https://psychscenehub.com/psychinsights/ketamine-and-depression/
|
[80]
|
Möykkynen, T., Uusi-Oukari, M., Heikkilä, J., Lovinger, D.M., Lüddens, H., et al. (2001) Magnesium Potentiation of the Function of Native and Recombinant GABAA Receptors. Neuroreport, 12, 2175-2179.
https://doi.org/10.1097/00001756-200107200-00026
|
[81]
|
Von Bartheld, C.S., Hagen, M.M. and Butowt, R. (2020) Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-Analysis Reveals Significant Ethnic Differences. ACS Chemical Neuroscience, 11, 2944-2961.
https://doi.org/10.1021/acschemneuro.0c00460
|
[82]
|
Levy, L.M. and Henkin, R.I. (2004) Brain Gamma-Aminobutyric Acid Levels Are Decreased in Patients with Phantageusia and Phantosmia Demonstrated by Magnetic Resonance Spectroscopy. Journal of Computer Assisted Tomography, 28, 721-727.
https://doi.org/10.1097/00004728-200411000-00001
|
[83]
|
Henkin, R.I. (2006) Treatment of Distortions of Taste and Smell. Taste and Smell Clinic. http://www.tasteandsmell.com/sep06.htm
|
[84]
|
Barker-Haliski, M. and White, H.S. (2015) Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harbor Perspectives in Medicine, 5, a022863.
https://doi.org/10.1101/cshperspect.a022863
|
[85]
|
Tataru, A. and Nicoara, E. (2004) Idiopathic Diffuse Alopecias in Young Women Correlated with Hypomagnesemia. Journal of the European Academy of Dermatology and Venereology, 18, 393-394.
https://doi.org/10.1111/j.1468-3083.2004.00660.x
|
[86]
|
Chambers, P.W. (2021) Basigin Binds Spike S on SARS-CoV2. Open Access Library Journal, 8, 1-7.
https://www.scirp.org/journal/paperinformation.aspx?paperid=113177
|
[87]
|
Brown, E.M. and Chen, C.J. (1989) Calcium, Magnesium and the Control of PTH Secretion. Bone and Mineral, 5, 249-257.
https://doi.org/10.1016/0169-6009(89)90003-2
|
[88]
|
Haensel, A., Mills, P.J., Nelesen, R.A., Ziegler, M.J. and Dimsdale, J.E. (2008) The Relationship between Heart Rate Variability and Inflammatory Markers in Cardiovascular Diseases. Psychoneuroendocrinology, 33, 1305-1312.
https://doi.org/10.1016/j.psyneuen.2008.08.007
|
[89]
|
Gidron, Y., Deschepper, R., De Couck, M., Thayer, J.F. and Velkeniers, B. (2018) The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. Journal of Clinical Medicine, 7, Article No. 371. https://doi.org/10.3390/jcm7100371
|
[90]
|
Mol, M.B.A., Strous, M.T.A., van Osch, F.H.M., Vogelaar, F.J., Barten, D.G., Farchi, M., et al. (2021) Heart-Rate-Variability (HRV), Predicts Outcomes in COVID-19. PLOS ONE, 16, e0258841. https://doi.org/10.1371/journal.pone.0258841
|
[91]
|
Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., et al. (2018) Heart Rate Variability as Predictive Factor for Sudden Cardiac Death. Aging, 10, 166-177.
https://doi.org/10.18632/aging.101386
|
[92]
|
Behbahani, S., Dabanloo, N.J., Nasrabadi, A.M. and Dourado, A. (2016) Prediction of Epileptic Seizures Based on Heart Rate Variability. Technology and Health Care, 24, 795-810. https://doi.org/10.3233/THC-161225
|
[93]
|
Engel, T., Ben-Horin, S. and Beer-Gabel, M. (2015) Autonomic Dysfunction Correlates with Clinical and Inflammatory Activity in Patients with Crohn’s Disease. Inflammatory Bowel Diseases, 21, 2320-2326.
https://doi.org/10.1097/MIB.0000000000000508
|
[94]
|
Hirten, R.P., Danieletto, M., Scheel, R., Shervey, M., Ji, J., et al. (2021) Longitudinal Autonomic Nervous System Measures Correlate with Stress and Ulcerative Colitis Disease Activity and Predict Flare. Inflammatory Bowel Diseases, 27, 1576-1584.
https://doi.org/10.1093/ibd/izaa323
|
[95]
|
Escorihuela, R.M., Capdevila, L., Castro, J.R., et al. (2020) Reduced Heart Rate Variability Predicts Fatigue Severity in Individuals with Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis. Journal of Translational Medicine, 18, Article No. 4.
https://doi.org/10.1186/s12967-019-02184-z
|
[96]
|
Choi, K.W. and Jeon, H.J. (2020) Heart Rate Variability for the Prediction of Treatment Response in Major Depressive Disorder. Frontiers in Psychiatry, 11, Article No. 607. https://doi.org/10.3389/fpsyt.2020.00607
|
[97]
|
Kim, Y.H., Jung, K.I. and Song, C.H. (2012) Effects of Serum Calcium and Magnesium on Heart Rate Variability in Adult Women. Biological Trace Element Research, 150, 116-122. https://doi.org/10.1007/s12011-012-9518-2
|
[98]
|
Lladós, G. and Mateu, L. (2022) Pilot Study Suggests Long COVID Could Be Linked to the Effects of SARS-CoV-2 on the Vagus Nerve. European Society of Clinical Microbiology and Infectious Diseases.
https://www.eurekalert.org/news-releases/943102
|
[99]
|
Burkhardt, C. (2009) ‘Lone’ Atrial Fibrillation Precipitated by Monosodium Glutamate and Aspartame. International Journal of Cardiology, 137, 307-308.
https://doi.org/10.1016/j.ijcard.2009.01.028
|
[100]
|
Chambers, P. (2003) Magnesium and Potassium in Lone Atrial Fibrillation. The Magnesium Online Library. http://www.mgwater.com/laf.shtml
|
[101]
|
Chambers, P.W. (2007) Lone Atrial Fibrillation: Pathologic or Not? Medical Hypotheses, 68, 281-287. https://doi.org/10.1016/j.mehy.2006.07.030
|
[102]
|
Yeoh, Y.K., Zuo, T., Lui, G.C., et al. (2021) Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut, 70, 698-706. https://doi.org/10.1136/gutjnl-2020-323020
|
[103]
|
Clos-Garcia, M., Andrés-Marin, N., Fernández-Eulate, G., Abecia, L., Lavín, J.L., et al. (2019) Gut Microbiome and Serum Metabolome Analyses Identify Molecular Biomarkers and Altered Glutamate Metabolism in Fibromyalgia. EBioMedicine, 46, 499-511. https://doi.org/10.1016/j.ebiom.2019.07.031
|
[104]
|
Zhou, X., Baumann, R., Gao, X., Mendoza, M., Singh, S., et al. (2022) Gut Microbiome of Multiple Sclerosis Patients and Paired Household Healthy Controls Reveal Associations with Disease Risk and Course. Cell, 185, 3467-3486.
https://doi.org/10.1016/j.cell.2022.08.021
|
[105]
|
Lupo, G.F.D., Rocchetti, G., Lucini, L., et al. (2021) Potential Role of Microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Scientific Reports, 11, Article No. 7043. https://doi.org/10.1038/s41598-021-86425-6
|
[106]
|
Fu, Y., Wang, Y., Gao, H., Li, D.H. and Jiang, R.R. (2021) Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators of Inflammation, 2021, Article ID: 8879227.
https://doi.org/10.1155/2021/8879227
|
[107]
|
Castro-Marrero, J., Zaragozá, M.C., Domingo, J.C., Martinez-Martinez, A. and Alegre, J. (2018) Low Omega-3 Index and Polyunsaturated Fatty Acid Status in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Prostaglandins Leukotrienes and Essential Fatty Acids, 139, 20-24.
https://www.plefa.com/article/S0952-3278(18)30053-X/fulltext
|
[108]
|
Pellino, S., Luciano, M., Luciano, R., Mancini, E., Conte, M., Volpe, G. and Zerella, T. (2021) Long-COVID-19 Symptoms after Infection in COVID Long-Haulers. Open Journal of Epidemiology, 11, 473-482.
https://doi.org/10.4236/ojepi.2021.114038
|
[109]
|
Swank, Z., Senussi, Y., Manickas-Hill, Z., Yu, X.G., Li, J.Z., et al. (2022) Persistent Circulating SARS-CoV-2 Spike Is Associated with Post-Acute COVID-19 Sequelae. Clinical Infectious Diseases, 2022, ciac722. https://doi.org/10.1093/cid/ciac722
|
[110]
|
Chambers, P. (2022) Ca:Mg + D, the Shield that Interdicts the Crown Viruses and Vaccines. Open Access Library Journal, 9, e9249.
https://www.scirp.org/journal/paperinformation.aspx?paperid=119926
|