[1]
|
Workinger, J.L., Doyle, R.P. and Bortz, J. (2018) Challenges in the Diagnosis of Magnesium Status. Nutrients, 10, Article 1202. https://doi.org/10.3390/nu10091202
|
[2]
|
Wacker, M. and Holick, M.F. (2018) Vitamin D—Effects on Skeletal and Extraskeletal Health and the Need for Supplementation. Nutrients, 5, 111-148.
https://doi.org/10.3390/nu5010111
|
[3]
|
Zhao, J., Giri, A., Zhu, X., et al. (2019) Calcium: Magnesium Intake Ratio and Colorectal Carcinogenesis, Results from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. British Journal of Cancer, 121, 796-804.
https://doi.org/10.1038/s41416-019-0579-2
|
[4]
|
Dai, Q., Sandler, R., Barry, E., Summers, R., Grau, M. and Baron, J. (2012) Calcium, Magnesium, and Colorectal Cancer. Epidemiology, 23, 504-505.
https://doi.org/10.1097/EDE.0b013e31824deb09
|
[5]
|
Costello, R., Rosanoff, A., Dai, Q, Saldanha, L.G. and Potischman, N.A. (2021) Perspective: Characterization of Dietary Supplements Containing Calcium and Magnesium and Their Respective Ratio—Is a Rising Ratio a Cause for Concern? Advances in Nutrition, 12, 291-297. https://doi.org/10.1093/advances/nmaa160
|
[6]
|
Dai, Q., Motley, S.S., Smith Jr., J.A., Concepcion, R., Barocas, D., Byerly, S. and Fowke, J.H. (2011) Blood Magnesium, and the Interaction with Calcium, on the Risk of High-Grade Prostate Cancer. PLOS ONE, 6, e18237.
https://doi.org/10.1371/journal.pone.0018237
|
[7]
|
Zhu, X., Borenstein, A.R, Zheng, Y., Zhang, W., Seidner, D.L., Ness, R., et al. (2020) Ca:Mg Ratio, APOE Cytosine Modifications, and Cognitive Function: Results from a Randomized Trial. Journal of Alzheimer’s Disease, 75, 85-98.
https://doi.org/10.3233/JAD-191223
|
[8]
|
Tulloch, J., Leong, L., Chen, S., Keene, C.D., Millard, S., Shutes-David, A., et al. (2018) APOE DNA Methylation Is Altered in Lewy Body Dementia. Alzheimer’s and Dementia, 14, 889-894. https://doi.org/10.1016/j.jalz.2018.02.005
|
[9]
|
Gröber, U., Schmidt, J. and Kisters, K. (2015) Magnesium in Prevention and Therapy. Nutrients, 7, 8199-8226. https://doi.org/10.3390/nu7095388
|
[10]
|
Rooney, M.R., Rudser, K.D., Alonso, A., Harnack, L., Saenger, A.K. and Lutsey, P.L. (2020) Circulating Ionized Magnesium: Comparisons with Circulating Total Magnesium and the Response to Magnesium Supplementation in a Randomized Controlled Trial. Nutrients, 12, Article 263. https://doi.org/10.3390/nu12010263
|
[11]
|
Mathew, A.A. and Panonnummal, R. (2021) ‘Magnesium’—The Master Cation—As a Drug—Possibilities and Evidence. Biometals, 34, 955-986.
https://doi.org/10.1007/s10534-021-00328-7
|
[12]
|
Altura, B.T., Shirey, T.L., Young, C.C., et al. (1994) Characterization of a New Ion Selective Electrode for Ionized Magnesium in Whole Blood, Plasma, Serum, and Aqueous Samples. Scandinavian Journal of Clinical and Laboratory Investigation, 54, 21-36. https://doi.org/10.3109/00365519409095208
|
[13]
|
Micke, O., Vormann, J., Kraus, A. and Kisters, K. (2021) Serum Magnesium: Time for a Standardized and Evidence-Based Reference Range. Magnetic Resonance, 34, 84-89.
https://www.magnesium-ges.de/Micke_et_al._2021.pdf
|
[14]
|
Rosanoff, A., West, C., Elin, R.J., et al. (2022) Recommendation on an Updated Standardization of Serum Magnesium Reference Ranges. European Journal Nutrition, 61, 3697-3706. https://doi.org/10.1007/s00394-022-02916-w
|
[15]
|
Rosanoff, A., Weaver, C.M. and Rude, R.K. (2012) Suboptimal Magnesium Status in the United States: Are the Health Consequences Underestimated? Nutrition Reviews, 70, 153-164. https://doi.org/10.1111/j.1753-4887.2011.00465.x
|
[16]
|
Costello, R.B., Elin, R.J., Rosanoff, A., Wallace, T.C., Guerrero-Romero, F., Hruby, A., et al. (2016) Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Advances in Nutrition, 7, 977-993.
https://doi.org/10.3945/an.116.012765
|
[17]
|
Liebscher, D.H. and Liebscher, D.E. (2004) About the Misdiagnosis of Magnesium Deficiency. Journal of the American College of Nutrition, 23, 730S-731S.
https://doi.org/10.1080/07315724.2004.10719416
|
[18]
|
Facchinetti, F., Borella, P., Fioroni, L., Pironti, T. and Genazzani, A.R. (1990) Reduction of Monocyte Magnesium in Patients Affected by Premenstrual Syndrome. Journal of Psychosomatic Obstetrics & Gynecology, 11, 221-229.
https://doi.org/10.3109/01674829009084417
|
[19]
|
Thomas, J., Millot, J.M., Sebille, S., Delabroise, A.M., Thomas, E. and Manfait, M. (2000) Free and Total Magnesium in Lymphocytes of Migraine Patients—Effect of Magnesium-Rich Mineral Water Intake. Clinica Chimica Acta, 295, 63-75.
https://doi.org/10.1016/S0009-8981(00)00186-8
|
[20]
|
Razzaque, M.S. (2018) Magnesium: Are We Consuming Enough? Nutrients, 10, Article 1863. https://doi.org/10.3390/nu10121863
|
[21]
|
Mulquiney, Peter J., and Kuchel, Philip W. (1997) Free Magnesium-Ion Concentration in Erythrocytes by 31P NMR: The Effect of Metabolite: Hemoglobin Interactions. NMR in Biomedicine, 10, 129-137.
https://www.deepdyve.com/lp/wiley/free-magnesium-ion-concentration-in-erythrocytes-by-31-p-nmr-the-MAOMj0MQ1C
|
[22]
|
Xiong, W., Liang, Y., Li, X., et al. (2016) Erythrocyte Intracellular Mg2+ Concentration as an Index of recognition and Memory. Scientific Reports, 6, Article No. 26975.
https://doi.org/10.1038/srep26975
|
[23]
|
Ulger, Z., Ariogul, S., Cankurtaran, M., et al. (2020) Intra-Erythrocyte Magnesium levels and Their Clinical Implications in Geriatric Outpatients. Journal of Nutrition, Health and Aging, 14, 810-814. https://doi.org/10.1007/s12603-010-0121-y
|
[24]
|
Mansmann, H.C. (1993) Consider Magnesium Homeostasis: II: Staging of Magnesium Deficiencies. Pediatric Allergy, Immunology and Pulmonology, 7, 211-215.
https://doi.org/10.1089/pai.1993.7.211
|
[25]
|
Kisters, K., Niedner, W., Fafera, I., and Zidek, W. (1990) Plasma and Intracellular Mg2+ Concentrations in Pre-Eclampsia. Journal of Hypertension, 8, 303-306.
https://doi.org/10.1097/00004872-199004000-00002
|
[26]
|
Sales, C.H., Nascimento, D.A., Medeiros, A.C.Q., Lima, K.C., and Pedrosa, L.F.C. (2014) There Is Chronic Latent Magnesium Deficiency in Apparently Healthy University Students. Nutricion Hospitalaria, 30, 200-204.
|
[27]
|
Cheung, M.M., DeLuccia, R., Ramadoss, R.K., Aljahdali, A., Volpe, S.L., Shewokis, P.A. and Sukumar, D. (2019) Low Dietary Magnesium Intake Alters Vitamin D— Parathyroid Hormone Relationship in Adults Who Are Overweight or Obese. Nutrition Research, 69, 82-93. https://doi.org/10.1016/j.nutres.2019.08.003
|
[28]
|
Veugelers, P.J. and Ekwaru, J.P. (2014) A Statistical Error in the Estimation of the Recommended Dietary Allowance for Vitamin D. Nutrients, 6, 4472-4475.
https://doi.org/10.3390/nu6104472
|
[29]
|
Reddy, P. and Edwards, L.R. (2019) Magnesium Supplementation in Vitamin D Deficiency. American Journal of Therapeutics, 26, e124-e132.
https://doi.org/10.1097/MJT.0000000000000538
|
[30]
|
Ginde, A.A., Wolfe, P., Camargo, C.A., et al. (2012) Defining Vitamin D Status by Secondary Hyperparathyroidism in the U.S. Population. Journal of Endocrinological Investigation, 35, 42-48.
|
[31]
|
Dai, Q., Zhu, X., Manson, J.E., Song, Y., Li, X., Franke, A., et al. (2018) Magnesium Status and Supplementation Influence Vitamin D Status and Metabolism: Results from a Randomized Trial. The American Journal of Clinical Nutrition, 108, 1249-1258.
https://doi.org/10.1093/ajcn/nqy274
|
[32]
|
Kimball, S.M., Burton, J.M., O’Connor, P.G., and Vieth, R. (2011) Urinary Calcium Response to High Dose Vitamin D3 with Calcium Supplementation in Patients with Multiple Sclerosis. Clinical Biochemistry, 44, 930-932.
https://doi.org/10.1016/j.clinbiochem.2011.04.017
|
[33]
|
Dai, Q., Shu, X.O., Deng, X., Xiang, Y.B., Li, H., Yang, G., et al. (2013) Modifying Effect of Calcium/Magnesium Intake Ratio and Mortality: A Population-Based Cohort Study. BMJ Open, 3, e002111. https://doi.org/10.1136/bmjopen-2012-002111
|
[34]
|
Huang, F., Wang, Z., Zhang, J., Du, W., Su, C. and Jiang, H. (2018) Dietary Calcium intake and Food Sources among Chinese Adults in CNTCS. PLOS ONE, 13, e0205045.
https://doi.org/10.1371/journal.pone.0205045
|
[35]
|
Wark, P.A., Lau, R., Norat, T. and Kampman, E. (2012) Magnesium Intake and Colorectal Tumor Risk: A Case-Control Study and Meta-Analysis. The American Journal of Clinical Nutrition, 96, 622-631. https://doi.org/10.3945/ajcn.111.030924
|
[36]
|
Connor, T. (2020) The Importance of the Calcium-to-Magnesium Ratio.
https://thepaleodiet.com/the-importance-of-the-calcium-to-magnesium-ratio
|
[37]
|
Martineau, A.R., Jolliffe, D.A., Hoope, R.L., Greenberg, L., Aloia, J.F. and Bergman, P. (2017) Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ, 356, i6583. https://www.bmj.com/content/356/bmj.i6583
|
[38]
|
CDC. Centers for Disease Control and Prevention. Influenza (Flu).
https://www.cdc.gov/flu/about/burden/index.html
|
[39]
|
Matsuoka, H. (2005) Aldosterone and Magnesium. Clinical Calcium, 15, 187-191.
https://pubmed.ncbi.nlm.nih.gov/15692156/
|
[40]
|
Pickering, G., Mazur, A., Trousselard, M., Bienkowski, P., Yaltsewa, N., Amessou, M., et al. (2020) Magnesium Status and Stress: The Vicious Circle Concept Revisited. Nutrients, 12, Article 3672. https://doi.org/10.3390/nu12123672
|
[41]
|
Kelly, O.J., Gilman, J.C. and Ilich, J.Z. (2018) Utilizing Dietary Micronutrient Ratios in Nutritional Research May Be More Informative than Focusing on Single Nutrients. Nutrients, 10, Article 107. https://doi.org/10.3390/nu10010107
|
[42]
|
DiNicolantonio, J.J. and O’Keefe, J.H. (2021) Magnesium and Vitamin D Deficiency as a Potential Cause of Immune Dysfunction, Cytokine Storm and Disseminated Intravascular Coagulation in Covid-19 Patients. Missouri Medicine, 118, 68-73.
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7861592/
|
[43]
|
Bird, L. (2022) Magnesium: Essential for T Cells. Nature Reviews Immunology, 22, 144-145.
|
[44]
|
Vardhana, S. and Dustin, M.L. (2022) Magnesium for T Cells: Strong to the Finish! Trends in Immunology, 43, 277-279. https://doi.org/10.1016/j.it.2022.02.004
|
[45]
|
Polonikov, A. (2020) Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infectious Diseases, 6, 1558-1562. https://doi.org/10.1021/acsinfecdis.0c00288
|
[46]
|
Shchetinin, E., Baturin, V., Arushanyan, E., Bolatchiev, A. and Bobryshev, D. (2022) Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants, 11, Article 140. https://doi.org/10.3390/antiox11010140
|
[47]
|
Shi, Z., and Puyo, C.A. (2020) N-Acetylcysteine to Combat COVID-19: An Evidence Review. Therapeutics and Clinical Risk Management, 16, 1047-1055.
https://doi.org/10.2147/TCRM.S273700
|
[48]
|
Schwalfenberg, G.K. (2021) N-Acetylcysteine: A Review of Clinical Usefulness (An Old Drug with New Tricks). Journal of Nutrition and Metabolism, 2021, Article ID: 9949453. https://doi.org/10.1155/2021/9949453
|
[49]
|
Twelve Steps to Optimize Your Methylation Process.
https://practitionerselect.wordpress.com/2015/05/10/12-steps-to-optimize-your-methylation-process/
|
[50]
|
Liu, R.M., Liu, Y., Forman, H.J., Olman, M. and Tarpey, M.M. (2004) Glutathione Regulates Transforming Growth Factor-β-Stimulated Collagen Production in Fibroblasts. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286, L121-L128. https://doi.org/10.1152/ajplung.00231.2003
|
[51]
|
Deumer, U.-S., Varesi, A., Floris, V., Savioli, G., Mantovani, E., López-Carrasco, P., et al. (2021) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. Journal of Clinical Medicine, 10, Article 4786.
https://doi.org/10.3390/jcm10204786
|
[52]
|
Björkand, S., Ernberg, M. and Bileviciute-Ljungard, I. (2022) Reduced Immune System Responsiveness in Fibromyalgia—A Pilot Study. Clinical Immunology Communications, 2, 46-53. https://doi.org/10.1016/j.clicom.2022.02.003
|
[53]
|
Morrison, T.E., Mauser, A., et al. (2001) Inhibition of IFN-γ Signaling by an Epstein-Barr Virus Immediate-Early Protein. Immunity, 15, 787-799.
https://doi.org/10.1016/S1074-7613(01)00226-6
|
[54]
|
Sinclair, E., Black, D., Epling, C.L., Carvidi, A., Josefowicz, F.Z., Bredt, B.M., et al. (2004) CMV Antigen-Specific CD4+ and CD8+ T Cell IFNγ Expression and Proliferation Responses in Healthy CMV-Seropositive Individuals. Viral Immunology, 17, 445-454. https://doi.org/10.1089/vim.2004.17.445
|
[55]
|
Crook, H., Raza, S., Nowell, J., Young, M. and Edison, P. (2021) Long Covid-Mechanisms, Risk Factors, and Management. BMJ, 374, n1648.
https://doi.org/10.1136/bmj.n1648
|
[56]
|
Ghorbani, Z., Rafiee, P., Haghighi, S., et al. (2021) The Effects of Vitamin D3 Supplementation on TGF-β and IL-17 Serum Levels in Migraineurs: Post Hoc Analysis of a Randomized Clinical Trial. Journal of Pharmaceutical Health Care and Sciences, 7, Article No. 9.https://doi.org/10.1186/s40780-021-00192-0
|
[57]
|
Yasuda, K., Takeuchi, Y. and Hirota, K. (2019) The Pathogenicity of Th17 Cells in Autoimmune Diseases. Semin Immunopathol, 41, 283-297.
https://doi.org/10.1007/s00281-019-00733-8
|
[58]
|
Dankers, W., Colin, E.M., van Hamburg, J.P. and Lubberts, E. (2017) Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Frontiers in Immunology, 7, Article 697. https://doi.org/10.3389/fimmu.2016.00697
|
[59]
|
Wang, K., Chen, W., Zhang, Z., et al. (2020) CD147-Spike Protein Is a Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduction and Targeted Therapy, 5, Article 283. https://doi.org/10.1038/s41392-020-00426-x
|
[60]
|
Chambers, P.W. (2021) Basigin Binds Spike S on SARS-CoV2. Open Access Library Journal, 8, e8064. https://doi.org/10.4236/oalib.1108064
|
[61]
|
Bivona, G., Agnello, L. and Ciaccio, M. (2018) The Immunological Implication of the New Vitamin D Metabolism. Central-European Journal of Immunology, 43, 331-334.
https://doi.org/10.5114/ceji.2018.80053
|
[62]
|
Watanabe, M., Nakamura, K., Kato, M., Okada, T., and Iesaki, T. (2021) Chronic Magnesium Deficiency Causes Reversible Mitochondrial Permeability Transition Pore Opening and Impairs Hypoxia Tolerance in the Rat Heart. Journal of Pharmacological Sciences, 148, 238-247. https://doi.org/10.1016/j.jphs.2021.12.002
|
[63]
|
Fan, L., Zhu, X., Zheng, Y., Zhang, W., et al. (2021) Magnesium Treatment on Methylation Changes of Transmembrane Serine Protease 2 (TMPRSS2). Nutrition, 89, Article ID: 111340. https://doi.org/10.1016/j.nut.2021.111340
|
[64]
|
Tian, J., Tang, L., Liu, X., Li, Y., Chen, J., Huang, W. and Liu, M. (2022) Populations in Low-Magnesium Areas Were Associated with Higher Risk of Infection in COVID-19’s Early Transmission: A Nationwide Retrospective Cohort Study in the United States. Nutrients, 14, Article 909. https://doi.org/10.3390/nu14040909
|
[65]
|
Wang, E., Chen, H., Sun, B., Wang, H., Qu, H.Q., Liu, Y., et al. (2021) TGF Beta Levels Correlate with Covid-19 Severity. FEBS Letters, 595, 2844-2844.
https://doi.org/10.1002/1873-3468.14104
|
[66]
|
Sun, J. and Lanier, L. (2011) NK Cell Development, Homeostasis and Function: Parallels with CD8+ T Cells. Nature Reviews Immunology, 11, 645-657.
https://doi.org/10.1038/nri3044
|
[67]
|
Ferreira-Gomes, M., Kruglov, A., Durek, P., et al. (2021) SARS-CoV-2 in Severe COVID-19 Induces a TGF-β-Dominated Chronic Immune Response that Does Not Target Itself. Nature Communications, 12, Article 1961.
https://doi.org/10.1038/s41467-021-22210-3
|
[68]
|
Witkowski, M., Tizian, C., Ferreira-Gomes, M., et al. (2021) Untimely TGFβ Re-sponses in COVID-19 Limit Antiviral Functions of NK Cells. Nature, 600, 295-301.
https://doi.org/10.1038/s41586-021-04142-6
|
[69]
|
Bi, J. (2022) NK Cell Dysfunction in Patients with COVID-19. Cellular and Mo-lecular Immunology, 19, 127-129. https://doi.org/10.1038/s41423-021-00825-2
|
[70]
|
Jiang, F., Yang, Y., Xue, L., Li, B. and Zhang, Z. (2017) 1α,25-Dihydroxyvitamin D3 Attenuates TGF-β-Induced Pro-Fibrotic Effects in Human Lung Epithelial Cells through Inhibition of Epithelial-Mesenchymal Transition. Nutrients, 9, Article 980.
https://doi.org/10.3390/nu9090980
|
[71]
|
Fischer, K.D. and Agrawal, D.K. (2014) Vitamin D Regulating TGF-β Induced Epithelial-Mesenchymal Transition. Respiratory Research, 15, Article 146.
https://doi.org/10.1186/s12931-014-0146-6
|
[72]
|
Isik, S., Ozuguz, U., Tutuncu, Y.A., Akbaba, G., Helvaci, N., Guler, S., et al (2011) Serum Transforming Growth Factor-Beta Levels in Patients with Vitamin D Defi-ciency. European Journal of Internal Medicine, 23, 93-97.
https://doi.org/10.1016/j.ejim.2011.09.017
|
[73]
|
Yadav, H., Quijano, C., Kamaraju, A.K., Gavrilova, O., Malek, R., Chen, W., et al. (2011) Vitamin D Supplementation Decreases TGF-β1 Bioavailability. Protection from Obesity and Diabetes by Blockade of TGF-β/Smad3 Signaling. Cell Metabolism, 14, 67-79. https://doi.org/10.1016/j.cmet.2011.04.013
|
[74]
|
Yong-Chao, Q., Chen, Y.-L., Pan, Y.-H., Ling, W., Tian, F., Zhang, X.X., et al. (2017) Changes of Transforming Growth Factor Beta 1 in Patients with Type 2 Diabetes and Diabetic Nephropathy: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine, 96, e6583. https://doi.org/10.1097/MD.0000000000006583
|
[75]
|
Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S. and Nabipour, I. (2020) Angiotensin II Stimulates Canonical TGF-β Signaling Pathway through Angiotensin Type 1 Receptor to Induce Granulation Tissue Contraction. Journal of Molecular Medicine, 93, 289-302. https://doi.org/10.1007/s00109-014-1211-9
|
[76]
|
Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S.and Nabipour, I. (2020) COVID-19 Cytokine Storm: The Anger of Inflammation. Cytokine, 133, Article ID: 155151. https://doi.org/10.1016/j.cyto.2020.155151
|
[77]
|
Elkahloun, A.G. and Saavedra, J.M. (2020) Candesartan Could Ameliorate the COVID-19 Cytokine Storm. Biomedicine & Pharmacotherapy, 131, Article ID: 110653.
https://doi.org/10.1016/j.biopha.2020.110653
|
[78]
|
Sugimoto, J., Romani, A.M., Valentin-Torres, A.M., Luciano, A.A., Ramirez Kitchen, C.M. and Funderburg, N. (2012) Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism. The Journal of Immunology, 188, 6338-6346. https://doi.org/10.4049/jimmunol.1101765
|
[79]
|
Barros-Martins, J., Förster, R. and Bosnjak, B. (2022) NK Cell Dysfunction in Severe COVID-19: TGF-β-Induced Downregulation of Integrin Beta-2 Restricts NK Cell Cytotoxicity. Signal Transduction and Targeted Therapy, 7, Article 32.
https://doi.org/10.1038/s41392-022-00892-5
|
[80]
|
Chambers, P.W. (2022) Long Covid, Short Magnesium. Open Access Library Journal, 9, e8736. https://doi.org/10.4236/oalib.1108736
|
[81]
|
Lin, J.T., Martin, S.L., Xia, L. and Gorham, J.D. (2005) TGF-β1 Uses Distinct Mechanisms to Inhibit IFN-γ Expression in CD4+ T Cells at Priming and at Recall: Differential Involvement of Stat4 and T-bet. The Journal of Immunology, 174, 5950-5958.
https://doi.org/10.4049/jimmunol.174.10.5950
|
[82]
|
Raga, D., Soliman, D., Samaha, D. and Yassin, A. (2016) Vitamin D Status and Its Modulatory Effect on Interferon Gamma and Interleukin-10 Production by Peripheral Blood Mononuclear Cells in Culture. Cytokine, 85, 5-10.
https://doi.org/10.1016/j.cyto.2016.05.024
|
[83]
|
Dhanda, A.D., Felmlee, D., Boeira, P., Moodley, P., Tan, H., et al. (2022) Patients with Moderate to Severe COVID-19 Have an Impaired Cytokine Response with an Exhausted and Senescent Immune Phenotype. Immunobiology, 227, Article 152185.
https://doi.org/10.1016/j.imbio.2022.152185
|
[84]
|
Nabi-Afjadi, M., Karami, H., Goudarzi, K., et al. (2021) The Effect of Vitamin D, Magnesium and Zinc Supplements on Interferon Signaling Pathways and Their Relationship to Control SARS-CoV-2 Infection. Clinical and Molecular Allergy, 19, Article 21. https://doi.org/10.1186/s12948-021-00161-w
|
[85]
|
Meng, X., Nikolic-Paterson, D. and Lan, H. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338.
https://doi.org/10.1038/nrneph.2016.48
|
[86]
|
Frangogiannis, N.G. (2020) Transforming Growth Factor-β in Tissue Fibrosis. Journal of Experimental Medicine, 217, e20190103.
https://doi.org/10.1084/jem.20190103
|
[87]
|
Woo, J., Koziol-White, C., Panettieri Jr., R. and Judea, J. (2021) TGF-β: The Missing Link in Obesity-Associated Airway Diseases? Current Research in Pharmacology and Drug Discovery, 2, Article 100016. https://doi.org/10.1016/j.crphar.2021.100016
|
[88]
|
Colarusso, C., Maglio, A., Terlizzi, M., Vitale, C., Molino, A., Pinto, A., et al. (2021) Post-COVID-19 Patients Who Develop Lung Fibrotic-Like Changes Have Lower Circulating Levels of IFN-β but Higher Levels of IL-1α and TGF-β. Biomedicines, 9, Article 1931. https://doi.org/10.3390/biomedicines9121931
|
[89]
|
Sutariya, B., Jhonsa, D. and Saraf, M.N. (2016) TGF-β: The Connecting Link between Nephropathy and Fibrosis. Immunopharmacology and Immunotoxicology, 38, 39-49. https://doi.org/10.3109/08923973.2015.1127382
|
[90]
|
Katwa, L.C., Mendoza, C. and Clements, M. (2022) CVD and COVID-19: Emerging Roles of Cardiac Fibroblasts and Myofibroblasts. Cells, 11, Article 1316.
https://doi.org/10.3390/cells11081316
|
[91]
|
Beilfuss, A., Sowa, J., Sydor, S., et al. (2015) Vitamin D Counteracts Fibrogenic TGF-β Signalling in Human Hepatic Stellate Cells both Receptor-Dependently and Independently. Gut, 64, 791-799. https://doi.org/10.1136/gutjnl-2014-307024
|
[92]
|
Li, X.H., Huang, X.P., Pan, L., et al. (2026) Vitamin D Deficiency May Predict a Poorer Outcome of IgA Nephropathy. BMC Nephrology, 17, Article No. 164.
https://doi.org/10.1186/s12882-016-0378-4
|
[93]
|
Luo, X., Deng, Q., Xue, Y., Zhang, T., Wu, Z., Peng, H., et al. (2021) Anti-Fibrosis Effects of Magnesium Lithospermate B in Experimental Pulmonary Fibrosis: By Inhibiting TGF-βRI/Smad Signaling. Molecules, 26, Article 1715.
https://doi.org/10.3390/molecules26061715
|
[94]
|
Tee, J.K., Peng, F., Tan, Y.L., Yu, B. and Ho, H.K. (2018) Magnesium Isoglycyrrhizinate Ameliorates Fibrosis and Disrupts TGF-β-Mediated SMAD Pathway in Activated Hepatic Stellate Cell Line LX2. Frontiers in Pharmacology, 9, Article 1018.
https://doi.org/10.3389/fphar.2018.01018
|
[95]
|
Wensveen, F.N., Jelencic, V. and Polic, B. (2018) NKG2D: A Master Regulator of Immune Cell Responsiveness. Frontiers in Immunology, 9, Article 441.
https://doi.org/10.3389/fimmu.2018.00441
|
[96]
|
Iotti, S., Wolf, F., Mazur, A. and Maier, J.A. (2020) The COVID-19 Pandemic: Is There a Role for Magnesium? Hypotheses and Perspectives. Magnesium Research, 33, 1-7. https://www.jle.com/10.1684/mrh.2020.0465
|
[97]
|
Lanier, L.L. (2015) NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunology Research, 3, 75-582. https://doi.org/10.1158/2326-6066.CIR-15-0098
|
[98]
|
Lazarova, M. and Steinle, A. (2019) Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Frontiers in Immunology, 10, Article 2689.
https://doi.org/10.3389/fimmu.2019.02689
|
[99]
|
Zhang, H.-Y., Liu, Z.-D., Hu, C.-J., Wang, D.-X., Zhang, Y.-B. and Li, Y.-Z. (2011) Up-Regulation of TGF-β1 mRNA Expression in Peripheral Blood Mononuclear Cells of Patients with Chronic Fatigue Syndrome. Journal of the Formosan Med-ical Association, 110, 701-704. https://doi.org/10.1016/j.jfma.2011.09.006
|
[100]
|
Iempridee, T., Das, S., Xu, I. and Mertz, J.E. (2011) Transforming Growth Factor β-Induced Reactivation of Epstein-Barr Virus Involves Multiple Smad-Binding Elements Cooperatively Activating Expression of the Latent-Lytic Switch BZLF1 Gene. American Society for Microbiology Journal of Virology, 85, 7836-7848.
https://doi.org/10.1128/JVI.01197-10
|
[101]
|
Xu, J., Ahmad, J., Jones, J.F., Dolcetti, R., Vaccher. E., et al. (2000) Elevated Serum Transforming Growth Factor β1 Levels in Epstein-Barr Virus-Associated Diseases and Their Correlation with Virus-Specific Immunoglobulin A (IgA) and IgM. American Society for Microbiology Journal of Virology, 74, 2443-2446.
https://doi.org/10.1128/JVI.74.5.2443-2446.2000
|
[102]
|
Chaigne-Delalande, B., Li, F.-Y., O’Connor, G.M., et al. (2013) Mg2+ Regulates Cytotoxic Functions of NK and CD8 T Cells in Chronic EBV Infection through NKG2D. Science, 341, 186-191. https://doi.org/10.1126/science.1240094
|
[103]
|
Mirzaei, H. and Faghihloo, E. (2018) Viruses as Key Modulators of the TGF-β Pathway; A Double-Edged Sword Involved in Cancer. Reviews in Medical Virology, 28, e1967. https://doi.org/10.1002/rmv.1967
|
[104]
|
Chung, J.Y.F., Chan, M.K.K., Li, J.S.-F., Chan, A.S.-W., Tang, P.C.-T., Leung, K.-T., et al. (2021) TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 7575.
https://doi.org/10.3390/ijms22147575
|
[105]
|
Theoharides, T., Stewart, J.M., Hatziagelaki, E. and Kolaitis, G. (2015) Brain “Fog,” Inflammation and Obesity: Key Aspects of Neuropsychiatric Disorders Improved by Luteolin. Frontiers in Neuroscience, 9, Article 225.
https://doi.org/10.3389/fnins.2015.00225
|
[106]
|
Weinstock, L.B., Brook, J.B., Walters, A.S., Gorisd, A., Afrine, L.B. and Molderings, G.J. (2021) Mast Cell Activation Syndrome (MCAS) Symptoms Are Prevalent in Long-COVID. International Journal of Infectious Diseases, 112, 217-226.
https://doi.org/10.1016/j.ijid.2021.09.043
|
[107]
|
Nishio, A., Ishiguro, S. and Miyao, N. (1987) Specific Change of Histamine Metabolism in Acute Magnesium-Deficient Young Rats. Drug-Nutrient Interactions, 5, 89-96.
https://pubmed.ncbi.nlm.nih.gov/3111814/
|
[108]
|
Takemoto, S., Yamamoto, A., Tomonaga, S., Funaba, M. and Matsui, T. (2013) Magnesium Deficiency Induces the Emergence of Mast Cells in the Liver of Rats. Journal of Nutritional Science and Vitaminology, 59, 560-563.
https://doi.org/10.3177/jnsv.59.560
|
[109]
|
Kaieda, S., Fujimoto, K., Todoroki, K., Abe, Y., Kusukawa, J., Hoshino, T., et al. (2022) Mast Cells Can Produce Transforming Growth Factor Β1 and Promote Tissue Fibrosis during the Development of Sjögren’s Syndrome-Related Sialadenitis. Modern Rheumatology, 32, 761-769. https://doi.org/10.1093/mr/roab051
|
[110]
|
Pinto, M.D., Lambert, N., Downs, C.A., Abrahim, H., Hughes, T.D. and Rahmani, A.M. (2022) Antihistamines for Post Acute Sequelae of SARS-CoV-2 Infection. The Journal for Nurse Practitioners, 18, 335-338.
https://doi.org/10.1016/j.nurpra.2021.12.016
|
[111]
|
Johansson, M., Ståhlberg, M., Runold, M., et al. (2021) Long-Haul Post-COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience. JACC: Case Reports, 3, 573-580.
https://doi.org/10.1016/j.jaccas.2021.01.009
|
[112]
|
Stewart, J.M., Taneja, I., Glover, J. and Medow, M.S. (2008) Angiotensin II type 1 Receptor Blockade Corrects Cutaneous Nitric Oxide Deficit in Postural Tachycardia Syndrome. American Journal of Physiology-Heart and Circulatory Physiology, 294, H466-H473. https://doi.org/10.1152/ajpheart.01139.2007
|
[113]
|
Wadhwania, R. (2017) Is Vitamin D Deficiency Implicated in Autonomic Dysfunction? Journal of Pediatric Neurosciences, 12, 119-123.
https://doi.org/10.4103/jpn.JPN_1_17
|
[114]
|
Hoffman, B. (2021) Hoffman Centre for Integrative and Functional Medicine.
https://hoffmancentre.com/chronic-inflammatory-response-syndrome-cirs-evaluation-and-treatment
|
[115]
|
Shi, Y., Liu, T., Yao, L., et al. (2017) Chronic Vitamin D Deficiency Induces Lung Fibrosis through Activation of the Renin-Angiotensin System. Scientific Reports, 7, Article No. 3312. https://doi.org/10.1038/s41598-017-03474-6
|
[116]
|
Lanz, T.V., Ding, Z., Ho, P.P., Luo, J., Agrawal, A.N., Srinagesh, H., et al. (2010) Angiotensin II Sustains Brain Inflammation in Mice via TGF-β. The Journal of Clinical Investigation, 120, 2782-2794. https://doi.org/10.1172/JCI41709
|
[117]
|
Krishna, A.R. (2020) Can You Overdose on One-Size-Fits-All Multivitamins?
https://blog.ginihealth.com/can-you-overdose-on-multivitamins/
|
[118]
|
Rosanoff, A., Dai, Q. and Shapses, S.A. (2016) Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status? Advances in Nutrition, 7, 25-43. https://doi.org/10.3945/an.115.008631
|