[1]
|
Aoki, T. and Hatanaka, Y. (2000) ZnO Diode Fabricated by Excimer-Laser Doping. Applied Physics Letters, 76, 3257-3258. https://doi.org/10.1063/1.126599
|
[2]
|
Lupan, O., Emelchenko, G.A., Ursaki, V.V., Chai, G., Redkin, A.N., Gruzintsev, A.N., Tiginyanu, I.M., Chow, L., Ono, L.K., Cuenya, B.R., Heinrich, H. and Yakimov, E.E. (2010) Synthesis and Characterization of ZnO Nanowires for Nanosensor Applications. Materials Research Bulletin, 45, 1026-1032. https://doi.org/10.1016/j.materresbull.2010.03.027
|
[3]
|
Zhang, Q., Dandeneau, C.S., Zhou, X. and Cao, G. (2009) ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 21, 4087-4108. https://doi.org/10.1002/adma.200803827
|
[4]
|
Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F. and Steiner, T. (2004) ZnO: Growth, Doping & Processing. Materials Today, 7, 34-40. https://doi.org/10.1016/S1369-7021(04)00287-1
|
[5]
|
Janotti, A. and Van de Walle, C.G. (2009) Fundamentals of Zinc Oxide as a Semiconductor. Reports on Progress in Physics, 72, 126501-126530. https://doi.org/10.1088/0034-4885/72/12/126501
|
[6]
|
Lacerda, L.H.S. and Lazaro, S.R.L. (2016) Ba-Doped ZnO Materials: A DFT Simulation to Investigate the Doping Effect on Ferroelectricity. Química Nova, 39, 261-266. https://doi.org/10.5935/0100-4042.20160023
|
[7]
|
Reza, E., Reza, G.M. and Hossein, A. (2014) Sol-Gel Derived Al and Ga Co-Doped ZnO Thin Films: An Optoelectronic Study. Applied Surface Science, 290, 252-259. https://doi.org/10.1016/j.apsusc.2013.11.062
|
[8]
|
Qasem, A.D., Saleem, G.R., Zain, H.Y. and Mohammed, A.G. (2013) Crystalline Nanostructured Cu Doped ZnO Thin Films Grown at Room Temperature by Pulsed Laser Deposition Technique and Their Characterization. Applied Surface Science, 270, 104-108. https://doi.org/10.1016/j.apsusc.2012.12.126
|
[9]
|
Young, M.T. and Hee, C.M. (2013) Optical and Electrical Properties of Mg-Doped Zinc Tin Oxide Films Prepared by Radio Frequency Magnetron Sputtering. Applied Surface Science, 286, 131-136. https://doi.org/10.1016/j.apsusc.2013.09.035
|
[10]
|
Li, X., Asher, S.E., Limpijumnong, S., Keyes, B.M., Perkins, C.L., Barnes, T.M., Moutinho, H.R., Luther, J.M., Zhang, S.B., Wei, S.H. and Coutts, T.J. (2006) Impurity Effects in ZnO and Nitrogen-Doped ZnO Thin Films Fabricated by MOCVD. Journal of Crystal Growth, 287, 94-100. https://doi.org/10.1016/j.jcrysgro.2005.10.050
|
[11]
|
Boukhachem, A., Ouni, B., Karyaoui, M., Madani, A., Chtourou, R. and Amlouk, M. (2012) Structural, Opto-Thermal and Electrical Properties of ZnO:Mo Sprayed Thin Films. Materials Science in Semiconductor Processing, 15, 282-292. https://doi.org/10.1016/j.mssp.2012.02.014
|
[12]
|
Mhamdi, A., Ouni, B., Amlouk, A., Boubaker, K. and Amlouk, M. (2014) Study of Nickel Doping Effects on Structural, Electrical and Optical Properties of Sprayed ZnO Semiconductor Layers. Journal of Alloys and Compounds, 582, 810-822. https://doi.org/10.1016/j.jallcom.2013.08.080
|
[13]
|
Abd-Lefdil, M., Douayar, A., Belayachi, A., Reshak, A.H., Fedorchuk, A.O., Pramodini, S., Poornesh, P., Nagaraja, K.K. and Nagaraja, H.S. (2014) Third Harmonic Generation Process in Al Doped ZnO Thin Films. Journal of Alloys and Compounds, 584, 7-12. https://doi.org/10.1016/j.jallcom.2013.08.134
|
[14]
|
Ilican, S., Caglar, Y., Caglar, M. and Yakuphanoglu, F. (2006) Electrical Conductivity, Optical and Structural Properties of Indium-Doped ZnO Nanofiber Thin Film Deposited by Spray Pyrolysis Method. Physica E: Low-Dimensional Systems and Nanostructures, 35, 131-138. https://doi.org/10.1016/j.physe.2006.07.009
|
[15]
|
Mariappan, R., Ponnuswamy, V., Suresh, P., Suresh, R., Ragavendar, M. and Chandra, B.A. (2014) Nanostructured CexZn1‐xO Thin Films: Influence of Ce Doping on the Structural, Optical and Electrical Properties. Journal of Alloys and Compounds, 588, 170-176. https://doi.org/10.1016/j.jallcom.2013.10.210
|
[16]
|
Yu, Z.G., Gong, H. and Wu, P. (2006) Lattice Dynamics and Electrical Properties of Wurtzite ZnO Determined by a Density Functional Theory Method. Journal of Crystal Growth, 287, 199-203. https://doi.org/10.1016/j.jcrysgro.2005.10.067
|
[17]
|
Bovhyra, R., Popovych, D., Bovgyra, O. and Serednytski, A. (2017) Ab Initio Study of Structural and Electronic Properties of (ZnO)n “Magical” Nanoclusters n = (34, 60). Nanoscale Research Letters, 12, 76-82. https://doi:10.1186/s11671-017-1848-8
|
[18]
|
Charifi, Z., Baaziz, H. and Reshak, A.H. (2007) Ab-Initio Investigation of Structural, Electronic and Optical Properties for Three Phases of ZnO Compound. Physica Status Solidi, 244, 3154-3167. https://doi.org/10.1002/pssb.200642471
|
[19]
|
John, R. and Padmavathi, S. (2016) Ab Initio Calculations on Structural, Electronic and Optical Properties of ZnO in Wurtzite Phase. Crystal Structure Theory and Applications, 5, 24-41. http://www.scirp.org/journal/csta https://doi.org/10.4236/csta.2016.52003
|
[20]
|
Franklin, L., Ekuma, C.E., Zhao, G.L. and Bagayoko, D. (2013) Density Functional Theory Description of Electronic Properties of Wurtzite Zinc Oxide. Journal of Physics and Chemistry of Solids, 74, 729-736. https://doi.org/10.1016/j.jpcs.2013.01.013
|
[21]
|
Calzolari, A. and Nardelli, M.B. (2013) Dielectric Properties and Raman Spectra of ZnO from a First Principles Finite-Differences/Finite-Fields Approach. Scientific Reports, 3, Article No. 2999. https://doi.org/10.1038/srep02999
|
[22]
|
Bernasconi, L., Tomić, S., Ferrero, M., Rérat, M., Orlando, R., Dovesi, R. and Harrison, N.M. (2011) First-Principles Optical Response of Semiconductors and Oxide Materials. Physical Review B, 83, 195325-195332. https://doi.org/10.1103/PhysRevB.83.195325
|
[23]
|
Samanta, K., Dussan, S., Katiyar, R.S. and Bhattacharya, P. (2007) Structural and Optical Properties of Nanocrystalline Zn1‐xMnxO. Applied Physics Letters, 90, 261903-261906. https://doi.org/10.1063/1.2751593
|
[24]
|
Brittman, S., Adhyaksa, G.W.P. and Garnett, E.C. (2015) The Expanding World of Hybrid Perovskites: Materials Properties and Emerging Applications. MRS Communications, 5, 7-26. https://doi.org/10.1557/mrc.2015.6
|
[25]
|
Damen, T., Porto, S. and Tell, B. (1966) Raman Effect in Zinc Oxide. Physical Review, 142, 570-574. https://doi.org/10.1103/PhysRev.142.570
|
[26]
|
Cheng, A., Tzeng, Y., Xu, H., Alur, S., Wang, Y., Park, M., Wu, T., Shannon, C., Kim, D. and Wang, D. (2009) Raman Analysis of Longitudinal Optical Phonon-Plasmon Coupled Modes of Aligned ZnO Nanorods. Journal of Applied Physics, 105, Article ID: 073104. https://doi.org/10.1063/1.3093877
|
[27]
|
Serrano, J., Widulle, F., Romero, A.H., Rubio, A., et al. (2003) Dependence of Phonon Widths on Pressure and Isotopic Mass: ZnO. Physica Status Solidi (b), 235, 260-266. https://doi.org/10.1002/pssb.200301566
|
[28]
|
McCluskey, M.D. and Jokela, S.J. (2009) Defects in ZnO. Journal of Applied Physics, 106, 71101-71104. https://doi.org/10.1063/1.3216464
|
[29]
|
Cheng, B., Sun, W., Jiao, J., Tian, B., Xiao, Y. and Lei, S. (2010) Disorder-Induced Raman Scattering Effects in One-Dimensional ZnO Nanostructures by Incorporation and Anisotropic Distribution of Dy and Li Codopants. Journal of Raman Spectroscopy, 41, 1221-1226. https://doi.org/10.1002/jrs.2590
|
[30]
|
Raymand, D., Jacobsson, T.J., Hermansson, K. and Edvinsson, T. (2012) Investigation of Vibrational Modes and Phonon Density of States in ZnO Quantum Dots. The Journal of Physical Chemistry C, 116, 6893-6901. https://doi.org/10.1021/jp300985k
|
[31]
|
Becke, A.D. (1998) A New Inhomogeneity Parameter in Density-Functional Theory. The Journal of Chemical Physics, 109, 2092-2099. https://doi.org/10.1063/1.476722
|
[32]
|
Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., Ph D’Arco, Llunell, M., Causà, M., Noël, Y., Maschio, L., Erba, A., Rerat, M. and Casassa, S. (2014) CRYSTAL14 User’s Manual. University of Torino, Torino, 382. http://www.crystal.unito.it
|
[33]
|
Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Mackrodt, W.C. and Aprà, E. (1994) Ab Initio Study of MnO and NiO. Physical Review B, 50, 5041-5054. https://doi.org/10.1103/PhysRevB.50.5041
|
[34]
|
Jaffe, J.E. and Hess, A.C. (1993) Hartree-Fock Study of Phase Changes in ZnO at High Pressure. Physical Review B, 48, 7903-7909. https://doi.org/10.1103/PhysRevB.48.7903
|
[35]
|
Doll, K. (2001) Implementation of Analytical Hartree-Fock Gradients for Periodic Systems. Computer Physics Communications, 137, 74-88. https://doi.org/10.1016/S0010-4655(01)00172-2
|
[36]
|
Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
|
[37]
|
Maschio, L., Kirtman, B., Salustro, S., Zicovich-Wilson, C.M., Orlando, R. and Dovesi, R. (2013) Raman Spectrum of Pyrope Garnet. A Quantum Mechanical Simulation of Frequencies, Intensities, and Isotope Shifts. The Journal of Physical Chemistry A, 117, 11464-11471. https://doi.org/10.1021/jp4099446
|
[38]
|
Ferrero, M., Rérat, M., Kirtman, B. and Dovesi, R. (2008) Calculation of First and Second Static Hyperpolarizabilities of One- to Three-Dimensional Periodic Compounds. Implementation in the CRYSTAL Code. The Journal of Chemical Physics, 129, Article ID: 244110. https://doi.org/10.1063/1.3043366
|
[39]
|
Maschio, L., Kirtman, B., Rérat, M., Orlando, R. and Dovesi, R. (2013) Ab Initio Analytical Raman Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-Sham Method in an Atomic Orbital Basis. I. Theory. The Journal of Chemical Physics, 139, 164101-164124. https://doi.org/10.1063/1.4824442
|
[40]
|
Ferrari, A.M., Valenzano, L., Meyer, A., Orlando, R. and Dovesi, R. (2009) Quantum-Mechanical Ab Initio Simulation of the Raman and IR Spectra of Fe3Al2Si3O12 Almandine. The Journal of Physical Chemistry A, 113, 11289-11294. https://doi.org/10.1021/jp901993e
|
[41]
|
Doll, K., Saunders, V.R. and Harrison, N.M. (2001) Analytical Hartree-Fock Gradients for Periodic Systems. International Journal of Quantum Chemistry, 82, 1-13. https://doi.org/10.1002/1097-461X(2001)82:1<1::AID-QUA1017>3.0.CO;2-W
|
[42]
|
Doll, K., Dovesi, R. and Orlando, R. (2004) Analytical Hartree-Fock Gradients with Respect to the Cell Parameter for Systems Periodic in Three Dimensions. Theoretical Chemistry Accounts, 112, 394-402. https://doi.org/10.1007/s00214-004-0595-y
|
[43]
|
Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
|
[44]
|
Guinebretière, R. (2007) X-Ray Diffraction by Polycrystalline Materials. ISTE Ltd., London. https://doi.org/10.1002/9780470612408
|
[45]
|
Ismail, A. and Abdullah, M.J. (2013) The Structural and Optical Properties of ZnO Thin Films Prepared at Different RF Sputtering Power. Journal of King Saud University—Science, 25, 209-215. https://doi.org/10.1016/j.jksus.2012.12.004
|
[46]
|
Charpentier, C., Prod’homme, P., Maurin, I., Chaigneau, M. and Roca iCabarrocas, P. (2011) X-Ray Diffraction and Raman Spectroscopy for a Better Understanding of ZnO:Al Growth Process. EPJ Photovoltaics, 2, 25002-25010. https://doi.org/10.1051/epjpv/2011026
|
[47]
|
Harun, K., Mansor, N., Ahmad, Z.A. and Mohamad, A.A. (2016) Electronic Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method: A LDA+U Calculation and Experimental Study. Procedia Chemistry, 19, 125-132. https://doi.org/10.1016/j.proche.2016.03.125
|
[48]
|
Ouni, B., Zouini, M., Lakhdar, M.H., Larbi, T., Dimassi, W. and Amlouk, M. (2015) Preparation and Characterization of the Rod-Shaped Stibnite. Materials Research Bulletin, 67, 191-195. https://doi.org/10.1016/j.materresbull.2015.03.003
|
[49]
|
Boubaker, K. (2011) Atomic Structures beyond the Spherical Approximation along with PNC as Conjectured Explanations to Urbach Tailing in Neutral Isolated Ytterbium. The European Physical Journal B, 84, 235-239. https://doi.org/10.1140/epjb/e2011-20614-y
|
[50]
|
Boubaker, K. (2013) A Support to the Lattice Compatibility Theory: Nanoscale Patterns of Manganese-Doped Lattices in Terms of the Urbach Energy and Faraday Effect. Mendeleev Communications, 23, 160-162. https://doi.org/10.1016/j.mencom.2013.05.014
|
[51]
|
Xia, C., Wang, F. and Hu, C. (2014) Theoretical and Experimental Studies on Electronic Structure and Optical Properties of Cu-Doped ZnO. Journal of Alloys and Compounds, 589, 604-608. https://doi.org/10.1016/j.jallcom.2013.11.066
|
[52]
|
Alkahtani, E.A., Merad, A.E., Boufatah, M.R. and Benosman, A. (2017) DFT Investigation of Structural, Electronic and Optical Properties of Pure and Er-Doped ZnO: Modified Becke-Johnson Exchange Potential. Optik, 128, 274-280. https://doi.org/10.1016/j.ijleo.2016.10.032
|
[53]
|
Muscat, J., Wander, A. and Harrison, N.M. (2001) On the Prediction of Band Gaps from Hybrid Functional Theory. Chemical Physics Letters, 342, 397-401. https://doi.org/10.1016/S0009-2614(01)00616-9
|
[54]
|
Serrano, J., Romero, A., Manjón, F., Lauck, R., Cardona, M. and Rubio, A. (2004) Pressure Dependence of the Lattice Dynamics of ZnO: An Ab Initio Approach. Physical Review B, 69, 94306-94320. https://doi.org/10.1103/PhysRevB.69.094306
|
[55]
|
Cuscó, R., Alarcón-Lladó, E., Ibáñez, J., Artús, L., Jiménez, J., Wang, B. and Callahan, M. (2007) Temperature Dependence of Raman Scattering in ZnO. Physical Review B, 75, 165202-165213. https://doi.org/10.1103/PhysRevB.75.165202
|
[56]
|
Yahia, S.B., Znaidi, L., Kanaev, A. and Petitet, J.P. (2008) Raman Study of Oriented ZnO Thin Films Deposited by Sol-Gel Method. Spectrochimica Acta Part A, 71, 1234-1238. https://doi.org/10.1016/j.saa.2008.03.032
|
[57]
|
Shkir, M., Chandekar, K.V., Alshehri, B.M., Khan, A., AlFaify, S. and Hamdy, M.S. (2020) A Remarkable Enhancement in Photocatalytic Activity of Facilely Synthesized Terbium@Zinc Oxide Nanoparticles by Flash Combustion Route for Optoelectronic Applications. Applied Nanoscience, 10, 1811-1823. https://doi.org/10.1007/s13204-019-01236-6
|
[58]
|
Thangavel, R., Moirangthem, R.S., Lee, W.S., Chang, Y.C., Wei, P.K. and Kumar, J. (2010) Cesium Doped and Undoped ZnO Nanocrystalline Thin Films: A Comparative Study of Structural and Micro-Raman Investigation of Optical Phonons. Journal of Raman Spectroscopy, 41, 1594-1600. https://doi.org/10.1002/jrs.2599
|
[59]
|
Wrzesinski, J. and Fröhlich, D. (1997) Two-Photon and Three-Photon Spectroscopy of ZnO under Uniaxial Stress. Physical Review B, 56, 13087-13093. https://doi.org/10.1103/PhysRevB.56.13087
|
[60]
|
Pandiyarajan, T. and Karthikeyan, B. (2012) Cr Doping Induced Structural, Phonon and Excitonic Properties of ZnO Nanoparticles. Journal of Nanoparticle Research, 14, 647-656. https://doi.org/10.1007/s11051-011-0647-x
|
[61]
|
Khan, Z.R., Khan, M.S., Zulfequar, M. and Shahid Khan, M. (2011) Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 2, 340-345. https://doi.org/10.4236/msa.2011.25044
|
[62]
|
Ashkenov, N., Mbenkum, B.N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E.M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G., Neumann, H., Darakchieva, V., Arwin, H. and Monemar, B. (2003) Infrared Dielectric Functions and Phonon Modes of High-Quality ZnO Films. Journal of Applied Physics, 93, 126-133. https://doi.org/10.1063/1.1526935
|