[1]
|
Su, M., Mei, Y. and Sinha, S. (2013) Role of the Crosstalk between Autophagy and Apoptosis in Cancer. Journal of Oncology, 2013, Article ID: 102745. https://doi.org/10.1155/2013/102735
|
[2]
|
Rahman, A., Hannan, A., Dash, R., Rahman, H., Islam, R., Uddin, J., Sohag, A.A.M., Rahman, H. and Rhim, H. (2021) Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Frontiers in Pharmacology, 12, Article No. 639628. https://doi.org/10.3389/fphar.2021.639628
|
[3]
|
Chirumbolo, S., Bjorklund, G., Lysiuk, R., Vella, A., Lenchyk, L. and Upyr, T. (2018) Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. International Journal of Molecular Sciences, 19, Article No. 3568. https://doi.org/10.3390/ijms19113568
|
[4]
|
Deng, S., Shanmugam, M.K., Kumar, A.P., Yap, C.T., Sethi, G. and Bishayee, A. (2019) Targeting Autophagy Using Natural Compounds for Cancer Prevention and Therapy. Cancer, 125, 1228-1246. https://doi.org/10.1002/cncr.31978
|
[5]
|
Shi, Q., Pei, F., Silverman, G.A., Pak, S.C., Perlmutter, D.H., Bing, L. and Bahar, I. (2020) Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis. International Journal of Molecular Sciences, 21, Article No. 2855. https://doi.org/10.3390/ijms21082855
|
[6]
|
Cooper, K.F. (2018) Till Death Do Us Part: The Marriage of Autophagy and Apoptosis. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 4701275. https://doi.org/10.1155/2018/4701275
|
[7]
|
Luyten, T., Welkenhuyzen, K., Roest, G., Kania, K., Wang, L., Bittremieux, M., Yule, D.L., Parys, J.B. and Bultynck, G. (2017) Resveratrol-Induced Autophagy Is Dependent on IP3Rs and on Cytosolic Ca2+. Biochimica et Biophysica Acta (BBA)-Mole- cular Cell Research, 1864, 947-956. https://doi.org/10.1016/j.bbamcr.2017.02.013
|
[8]
|
Vervliet, T., Pintelon, I., Welkenhuyzen, K., Bootman, M.D. Bannai, H., Mikoshiba, K., Martinet, W., Kasri, N.N., Parys, J.B. and Bultynck, G. (2017) Basal Ryanodine Receptor Activity Suppresses Autophagic Flux. Biochemical Pharmacology, 132, 133-142. https://doi.org/10.1016/j.bcp.2017.03.011
|
[9]
|
Xue, P., Chen, Q., Ren, X., Liu, D. and Yang, X. (2021) A Novel Protoapigenone Analog RY10-4 Induces Apoptosis of Breast Cancer Cells by Exacerbating Mitochondrial Ca2+ Influx through Mitochondrial Calcium Uniporter. Toxicology and Applied Pharmacology, 433, Article ID: 115776. https://doi.org/10.1016/j.taap.2021.115776
|
[10]
|
Sutton, S.S., Magagnoli, J., Cummings, T.H. and Hardin, J.W. (2020) The Association between Phosphodiesterase-5 Inhibitors and Colorectal Cancer in a National Cohort of Patients. Clinical and Translational Gastroenterology, 11, e00173. https://doi.org/10.14309/ctg.0000000000000173
|
[11]
|
Susmi, T.F., Rahman, A., Khan, M.R., Yasmin, F., Islam, S., Nasif, O., Alharbi, S.A., Batiha, G.E.S. and Hossain, M.U. (2021) Prognostic and Clinicopathological Insights of Phosphodiesterase 9A Gene as Novel Biomarker in Human Colorectal Cancer. BMC Cancer, 21, Article No. 577. https://doi.org/10.1186/s12885-021-08332-3
|
[12]
|
Kastrati, I., Edirisinghe, P.D., Wijewickrama, G.T. and Thatcher, G.R.J. (2010) Estrogen-Induced Apoptosis of Breast Epithelial Cells Is Blocked by NO/cGMP and Mediated by Extranuclear Estrogen Receptors. Endocrinology, 151, 5602-5616. https://doi.org/10.1210/en.2010-0378
|
[13]
|
Wen, H.C., Chuu, C.P., Chen, C.Y., Shiah, S.G., Kung, H.J., King, K.L., Su, L.C., Chang, S.C. and Chang, C.H. (2015) Elevation of Soluble Guanylate Cyclase Suppresses Proliferation and Survival of Human Breast Cancer Cells. PLoS ONE, 10, e0125518. https://doi.org/10.1371/journal.pone.0125518
|
[14]
|
Sokanovic, S.J., Baburski, A.Z., Kojic, Z., Medar, M.L.J., Andric, S.A. and Kostic, T.S. (2021) Aging-Related Increase of cGMP Disrupts Mitochondrial Homeostasis in Leydig Cells. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 76, 177-186. https://doi.org/10.1093/gerona/glaa132
|
[15]
|
Arimoto, H. and Takahashi, E. (2017) 8-Nitro-cGMP: A Novel Protein-Reactive cNMP and Its Emerging Roles in Autophagy. In: Seifert, R., Ed., Handbook of Experimental Pharmacology, Vol. 238, Springer, Cham, 253-268. https://doi.org/10.1007/164_2016_5000
|
[16]
|
Petrivalsky, M. and Luhova, L. (2020) Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. Frontiers in Plant Science, 11, Article No. 598. https://doi.org/10.3389/fpls.2020.00598
|
[17]
|
Williams, W.R. (2021) Cyclic Nucleotide Structural Differentiation of Compounds Modulating Apoptosis and Drug Resistance. Journal of Biosciences and Medicines, 9, 10-28. https://doi.org/10.4236/jbm.2021.98002
|
[18]
|
Sager, G. (2004) Cyclic GMP Transporters. Neurochemistry International, 45, 865-873. https://doi.org/10.1016/j.neuint.2004.03.017
|
[19]
|
Andric, S.A., Kostic, T.S. and Stojilkovic, S.S. (2006) Contribution of Multidrug Resistance Protein MRP5 in Control of Cyclic Guanosine 5'-Monophosphate Intracellular Signaling in Anterior Pituitary Cells. Endocrinology, 147, 3435-3445. https://doi.org/10.1210/en.2006-0091
|
[20]
|
Trabert, B., Bauer, D.C., Buist, D.S.M., Cauley, J.A., Falk, R.T., Geczik, A.M., Gierach, G.L., Hada, M., Hue, T.F., Lacey, J.V., LaCroix, A.Z., Tice, J.A., Xu, X., Dallal, C.M. and Brinton, L.A. (2020) Association of Circulating Progesterone with Breast Cancer Risk among Postmenopausal Women. Journal of the American Medical Association Network Open, 3, e203645. https://doi.org/10.1001/jamanetworkopen.2020.3645
|
[21]
|
Missmer, S.A., Eliassen, A.H., Barbieri, R.L. and Hankinson, S.E. (2004) Endogenous Estrogen, Androgen, and Progesterone Concentrations and Breast Cancer Risk among Postmenopausal Women. Journal of the National Cancer Institute, 96, 1856- 1865. https://doi.org/10.1093/jnci/djh336
|
[22]
|
Cavalieri, E. and Rogan, E. (2021) The 3,4-Quinones of Estrone and Estradiol Are the Initiators of Cancer Whereas Resveratrol and N-Acetylcysteine Are the Preventors. International Journal of Molecular Sciences, 22, Article No. 8238. https://doi.org/10.3390/ijms22158238
|
[23]
|
Capper, C.P., Rae, J.M. and Auchus, R.J. (2016) The Metabolism, Analysis and Targeting of Steroid Hormones in Breast and Prostate Cancer. Hormones and Cancer, 7, 149-164. https://doi.org/10.1007/s12672-016-0259-0
|
[24]
|
Kalyvianaki, K., Panagiotopoulos, A.A., Malamos, P., Moustou, E., Tzardi, M., Stathopoulos, E.N., Ioannidis, G.S., Marias, K., Notas, G., Theodoropoulos, P.A., Castanas, E. and Kampa, M. (2019) Membrane Androgen Receptors (OXER1, GPRC6A AND ZIP9) in Prostate and Breast Cancer: A Comparative Study of Their Expression. Steroids, 142, 100-108. https://doi.org/10.1016/j.steroids.2019.01.006
|
[25]
|
Houghton, L.C., Howland, R.E., Wei, Y., Ma, X., Khem, R.D., Chung, W.K., Genkinger, J.M., Santeila, R., Hartmann, M.F., Wudy, S.A. and Terry, M.B. (2021) The Steroid Metabolome and Breast Cancer Risk in Women with a Family History of Breast Cancer: The Novel Role of Adrenal Androgens and Glucocorticoids. Cancer Epidemiology, Biomarkers and Prevention, 30, 89-96. https://doi.org/10.1158/1055-9965.EPI-20-0471
|
[26]
|
Inaba, H.I. and Pui, C.H. (2010) Glucocorticoid Use in Acute Lymphoblastic Leukemia: Comparison of Prednisone and Dexamethasone. Lancet Oncology, 11, 1096- 1106. https://doi.org/10.1016/S1470-2045(10)70114-5
|
[27]
|
Tsui, K.H., Wang, P.H., Lin, L.T. and Li, C.J. (2017) DHEA Protects Mitochondria Against Dual Modes of Apoptosis and Necroptosis in Human Granulosa HO23 Cells. Reproduction, 154, 101-110. https://doi.org/10.1530/REP-17-0016
|
[28]
|
Guazzo, E.P., Kirkpatrick, P.J., Goodyer, M., Shiers, H.M. and Herbert, J. (1996) Cortisol, Dehydroepiandrosterone (DHEA), and DHEA Sulfate in the Cerebrospinal Fluid of Man; Relation to Blood Levels and the Effects of Age. Journal of Clinical Endocrinology and Metabolism, 81, 3951-3960. https://doi.org/10.1210/jcem.81.11.8923843
|
[29]
|
Zielke, S., Meyer, N., Mari, M., Abou-El-Ardat, K., Reggiori, F., Van Wijk, S.J.L., Kogel, D. and Fulda, S. (2018) Loperamide, Pimozide, and STF-62247 Trigger Autophagy-Dependent Cell Death in Glioblastoma Cells. Cell Death and Disease, 9, Article No. 994. https://doi.org/10.1038/s41419-018-1003-1
|
[30]
|
Kocaturk, N.M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D. and Kutlu, O. (2019) Autophagy as a Molecular Target for Cancer Treatment. European Journal of Pharmaceutical Sciences, 134, 116-137. https://doi.org/10.1016/j.ejps.2019.04.011
|
[31]
|
Chen, Y.Y., Chen, C.H., Lin, W.C., Tung, C.W., Chen, Y.C., Yang, S.H., Huang, B.M. and Chen, R.J. (2021) The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules, 26, Article No. 4954. https://doi.org/10.3390/molecules26164954
|
[32]
|
Liu, J., Liu, P., Xu, T., Chen, Z., Kong, H., Chu, W., Wang, Y. and Liu, Y. (2020) Berberine Induces Autophagic Cell Death in Acute Lymphoblastic Leukemia by Inactivating AKT/mTorC1 Signaling. Drug Design, Development and Therapy, 14, 1813-1823. https://doi.org/10.2147/DDDT.S239247
|
[33]
|
Liu, T., Zhang, J., Li, K., Deng, L. and Wang, H. (2020) Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Frontiers in Pharmacology, 11, Article No. 408. https://doi.org/10.3389/fphar.2020.00408
|
[34]
|
Yan, K.H., Yao, C.J., Hsiao, C.H., Lin, K.H., Lin, Y.W., Wen, Y.C., Liu, C.C., Yan, M.D.E., Chuang, S.E., Lai, G.M. and Lee, L.M. (2013) Mefloquine Exerts Anticancer Activity in Prostate Cancer Cells via ROS-Mediated Modulation of Akt, ERK, JNK and AMPK Signaling. Oncology Letters, 5, 1541-1545. https://doi.org/10.3892/ol.2013.1211
|
[35]
|
Naponelli, V., Modernelli, A., Bettuzzi, S. and Rizzi, F. (2015) Roles of Autophagy Induced by Natural Compounds in Prostate Cancer. BioMedical Research International, 2015, Article ID: 121826. https://doi.org/10.1155/2015/121826
|
[36]
|
Wang, B., Lu, D., Xuan, M. and Hu, W. (2017) Antitumor Effect of Sunitinib in Human Prostate Cancer Cells Functions via Autophagy. Experimental and Therapeutic Medicine, 13, 1285-1294. https://doi.org/10.3892/etm.2017.4134
|
[37]
|
Toepfer, N., Childress, C., Parikh, A., Rukstalis, D. and Yang, W. (2011) Atorvastin Induces Autophagy in Prostate Cancer PC3 Cells through Activation of LC3 Transcription. Cancer Biology and Therapy, 12, 691-699. https://doi.org/10.4161/cbt.12.8.15978
|
[38]
|
Mortezavi, A., Salemi, S., Kranzbuhler, B., Gross, O., Sulser, T., Simon, H.U. and Eberli, D. (2019) Inhibition of Autophagy Significantly Increases the Antitumor Effect of Abiraterone in Prostate Cancer. World Journal of Urology, 37, 351-358. https://doi.org/10.1007/s00345-018-2385-5
|
[39]
|
Hahm, E.R. and Singh, S.V. (2020) Cytoprotective Autophagy Induction by Withaferin A in Prostate Cancer Cells Involves GABARAPL1. Molecular Carcinogenesis, 59, 1105-1115. https://doi.org/10.1002/mc.23240
|
[40]
|
Safari, H., Zabihi, E., Pouramir, M., Morakabati, P., Abedian, Z., Karkhah, A. and Nouri, H.R. (2020) Decrease of Intracellular ROS by Arbutin Is Associated with Apoptosis Induction and Down Regulation of IL-1β and TNF-α in LNCaP; Prostate Cancer. Journal of Food Biochemistry, 44, e13360. https://doi.org/10.1111/jfbc.13360
|
[41]
|
Huang, X.Z., Wang, J., Huang, C., Chen, Y.Y., Shi, G.Y., Hu, Q.S. and Yi, J. (2008) Emodin Enhances Cytotoxicity of Chemotherapeutic Drugs in Prostate Cancer Cells: The Mechanisms Involve ROS-Mediated Suppression of Multi-Drug Resistance and Hypoxia Inducible Factor-1. Cancer Biology and Therapy, 7, 468-475. https://doi.org/10.4161/cbt.7.3.5457
|
[42]
|
Cho, H.D., Lee, J.H., Moon, K.D., Park, K.H., Lee, M.K. and Seo, K.I. (2018) Auriculasin-Induced ROS Causes Prostate Cancer Cell Death via Induction of Apoptosis. Food and Chemical Toxicology, 111, 660-669. https://doi.org/10.1016/j.fct.2017.12.007
|
[43]
|
Lee, W., Kim, K.Y., Yu, S.N., Kim, S.H., Chun, S.S., Ji, J.H., Yu, H.S. and Ahn, S.C. (2013) Pipernonaline from Piper longum Linn. Induces ROS-Mediated Apoptosis in Human Prostate Cancer PC-3 Cells. Biochemical and Biophysical Research Communications, 430, 406-412. https://doi.org/10.1016/j.bbrc.2012.11.030
|
[44]
|
Law, B.Y.K., Chan, W.K., Xu, S.W., Wang, J.R., Bai, L.P., Liu, L. and Wong, V.K.W. (2014) Natural Small-Molecule Enhancers of Autophagy Induce Autophagic Cell Death in Apoptosis-Defective Cells. Scientific Reports, 4, Article No. 5510. https://doi.org/10.1038/srep05510
|
[45]
|
Hu, T., Wang, L., Zhang, L., Lu, L., Shen, J., Chan, R.L.Y., Li, M., Wu, W.K.K., To, K.K.W. and Cho, C.H. (2015) Sensitivity of Apoptosis-Resistant Colon Cancer Cells to Tanshinones Is Mediated by Autophagic Cell Death and p53-Independent Cytotoxicity. Phytomedicine, 22, 536-544. https://doi.org/10.1016/j.phymed.2015.03.010
|
[46]
|
Xavier, C.P.R., Lima, C.F., Pedro, D.F.N., Wilson, J.M., Kristiansen, K. and Pereira-Wilson, C. (2013) Ursolic Acid Induces Cell Death and Modulates Autophagy through JNK Pathway in Apoptosis-Resistant Colorectal Cells. Journal of Nutritional Biochemistry, 24, 706-712. https://doi.org/10.1016/j.jnutbio.2012.04.004
|
[47]
|
Patsos, H.A., Greenhough, A., Hicks, D.J., Kharusi, M.A., Collard, T.J., Lane, J.D., Paraskeva, C. and Williams, A.C. (2010) The Endogenous Cannabinoid, Anandamide, Induces COX-2 Dependent Cell Death in Apoptosis-Resistant Colon Cancer Cells. International Journal of Oncology, 37, 187-193. https://doi.org/10.3892/ijo_00000666
|
[48]
|
Xiang, Y., Zhao, J., Zhao, M. and Wang, K. (2018) Allicin Activates Autophagic Cell Death to Alleviate the Malignant Development of Thyroid Cancer. Experimental and Therapeutic Medicine, 15, 3537-3543. https://doi.org/10.3892/etm.2018.5828
|
[49]
|
Kondratskyi, A., Yassine, M., Slomianny, C., Kondratska, K., Gordienko, D., Dewailly, E., Lehen’kyi, V., Skryma, R. and Prevarskaya, N. (2014) Identification of ML-9 as a Lysosomotropic Agent Targeting Autophagy and Cell Death. Cell Death and Disease, 5, e1193. https://doi.org/10.1038/cddis.2014.156
|
[50]
|
Kou, B., Liu, W., Xu, X., Yang, Y., Yi, Q., Guo, F., Li, J., Zhou, J. and Kou, Q. (2017) Autophagy Induction Enhances Tetrandrine-Induced Apoptosis via the AMPK/mTOR Pathway in Human Bladder Cancer Cells. Oncology Reports, 38, 3157-3143. https://doi.org/10.3892/or.2017.5988
|
[51]
|
Du, J., Li, J., Song, D., Li, Q, Li, L., Li, B. and Li, L. (2020) Matrine Exerts Anti-Breast Cancer Activity by Mediating Apoptosis and Protective Autophagy via the AKT/mTOR Pathway in MCF-7 Cells. Molecular Med Reports, 22, 3659-3666. https://doi.org/10.3892/mmr.2020.11449
|
[52]
|
Zhu, L., Wang, Y., Lv, W., Wu, X., Sheng, H., He, C. and Hu, J. (2021) Schizandrin A Can Inhibit Non-Small Cell Lung Cancer Cell Proliferation by Inducing Cell Cycle Arrest, Apoptosis and Autophagy. International Journal of Molecular Medicine, 48, Article No. 214. https://doi.org/10.3892/ijmm.2021.5047
|
[53]
|
Law, B.Y.K., Gordillo-Martinez, F., Qu, Y.Q., Zhang, N., Xu, S.W., Coghi, P.S., Mok, S.W.F., Guo, J., Zhang, W., Leung, L.H., Fan, X.X., Wu, A.G., Chan, W.K., Yao, X.J., Liu, L. and Wong, V.K.W. (2017) Thalidezine, a Novel AMPK Activator, Eliminates Apoptosis Resistant Cells through Energy-Mediated Autophagic Cell Death. Oncotarget, 8, 30077-300091. https://doi.org/10.18632/oncotarget.15616
|
[54]
|
Law, B.Y.K., Michelangeli, F., Qu, Y.Q., Xu, S.W., Han, Y., Mok, S.W.F., de Seabra Rodrigues Dias, I., Javed, M-u-H., Chan, W.K., Xue, W.W., Yao, X.J., Zeng, W., Zhang, H., Wang, J.R., Liu, L. and Wong, V.K.W. (2019) Neferine Induces Autophagy-Dependent Cell Death in Apoptosis-Resistant Cancers via Ryanodine Receptor and Ca2+-Dependent Mechanism. Scientific Reports, 9, Article No. 20034. https://doi.org/10.1038/s41598-019-56675-6
|
[55]
|
Chiu, Y.H., Hsu, S.H., Hsu, H.W., Huang, K.C., Liu, W., Wu, C.Y., Huang, W.P., Chen, J.Y.F., Chen, B.H. and Chiu, C.C. (2018) Human Non-Small Cell Lung Cancer Cells Can Be Sensitized to Camptothecin by Modulating Autophagy. International Journal of Oncology, 53, 1967-1979. https://doi.org/10.3892/ijo.2018.4523
|
[56]
|
Wu, M.Y., Wang, S.F., Cai, C.Z., Tan, J.Q., Li, M., Lu, J.J., Chen, X.P., Wang, Y.T., Zheng, W. and Lu, J.H. (2017) Natural Autophagy Blockers, Dauricine (DAC) and Daurisoline (DAS), Sensitize Cancer Cells to Camptothecin-Induced Toxicity. Oncotarget, 8, 77673-77684. https://doi.org/10.18632/oncotarget.20767
|
[57]
|
Watanabe-Asano, T., Kuma, A. and Mizushima, N. (2014) Cycloheximide Inhibits Starvation-Induced Autophagy through mTorc1 Activation. Biochemical and Biophysical Research Communications, 445, 334-339. https://doi.org/10.1016/j.bbrc.2014.01.180
|
[58]
|
Wu, Y., Zhang, J. and Li, Q. (2021) Autophagy, an Accomplice or Antagonist of Drug Resistance in HCC? Cell Death and Disease, 12, Article No. 266. https://doi.org/10.1038/s41419-021-03553-7
|
[59]
|
Kraus, J.G. and Koulen, P. (2020) Resveratrol Directly Controls the Activity of Neuronal Ryanodine Receptors at the Single-Channel Level. Molecular Neurobiology, 57, 422-434. https://doi.org/10.1007/s12035-019-01705-7
|
[60]
|
Desideri, E., Filomeni, G. and Ciriolo, M.R. (2012) Glutathione Participates in the Modulation of Starvation-Induced Autophagy in Carcinoma Cells. Autophagy, 8, 1769-1781. https://doi.org/10.4161/auto.22037
|
[61]
|
Circu, M.L. and Aw, T.Y. (2012) Glutathione and Modulation of Cell Apoptosis. Biochimica et Biophysica Acta, 1823, 1767-1777. https://doi.org/10.1016/j.bbamcr.2012.06.019
|
[62]
|
Giatromanolaki, A., Sivridis, E., Mendrinos, S., Koutsopoulos, A. and Koukourakis, M.I. (2014) Autophagy Proteins in Prostate Cancer: Relation with Anaerobic Metabolism and Gleason Score. Urolologic Oncology, 32, 39.e11-39.e18. https://doi.org/10.1016/j.urolonc.2013.04.003
|
[63]
|
Castoldi, F., Humeau, J., Martins, I., Lachkar, S., Loew, D., Dingli, F., Durand, S., Enot, D., Bossut, N., Chery, A., Aprahamian, F., Demont, Y., Opolon, P., Signolle, N., Sauvat, A., Semeraro, M., Bezu, L., Baracco, E.E., Vacchelli, E., Pol, J.G., Levesque, S., Bloy, N., Sica, V., Maiuri, M.C., Kroemer, G. and Pietrocola, F. (2020) Autophagy-Mediated Metabolic Effects of Aspirin. Cell Death Discovery, 6, Article No. 129. https://doi.org/10.1038/s41420-020-00365-0
|
[64]
|
He, Y., Huang, H., Farischon, C., Li, D., Du, Z., Zhang, K., Zheng, X. and Goodin, S. (2017) Combined Effects of Atorvastatin and Aspirin on Growth and Apoptosis in Human Prostate Cancer Cells. Oncology Reports, 37, 953-960. https://doi.org/10.3892/or.2017.5353
|
[65]
|
Pal, D., Suman, S., Kolluru, V., Sears, S., Das, T.P., Alatassi, H., Ankem, M.K., Freedman, J.H. and Damodaran, C. (2017) Inhibition of Autophagy Prevents Cadmium-Induced Prostate Carcinogenesis. British Journal of Cancer, 117, 56-64. https://doi.org/10.1038/bjc.2017.143
|
[66]
|
Xue, P., Yang, X., Liu, Y., Xiong, C. and Ruan J. (2014) A Novel Compound RY10-4 Downregulates P-Glycoprotein Expression and Reverses Multidrug Resistant Phenotype in Human Breast Cancer MCF-7/ADR Cells. Biomedicine and Pharmacotherapy, 68, 1049-1056. https://doi.org/10.1016/j.biopha.2014.10.004
|
[67]
|
Chang, H.L., Wu, Y.C., Su, J.H., Yeh, Y.T. and Yuan, S.S.F. (2008) Protoapigenone, a Novel Flavonoid, Induces Apoptosis in Human Prostate Cancer Cells through Activation of P38 Mitogen-Activated Protein Kinase and c-Jun NH2-Terminal Kinase 1/2. Journal of Pharmacology and Experimental Therapeutics, 325, 841-849. https://doi.org/10.1124/jpet.107.135442
|
[68]
|
Zhang, S., Liu, Y. and Liang, Q. (2018) Low-Dose Dexamethasone Affects Osteoblast Viability by Inducing Autophagy via Intracellular ROS. Molecular Medicine Reports, 17, 4307-4316. https://doi.org/10.3892/mmr.2018.8461
|
[69]
|
Hirano, T., Horigome, A., Takatani, M. and Oka, K. (2001) Cortisone Counteracts Apoptosis-Inducing Effect of Cortisol in Human Peripheral-Blood Mononuclear Cells. International Immunopharmacology, 1, 2109-2115. https://doi.org/10.1016/S1567-5769(01)00135-7
|
[70]
|
Anagnostopoulou, V., Pediaditakis, L., Alkahtani, S., Alarifi, S.A., Schmidt, E.M., Lang, F., Gravanis, A., Charalampopoulos, L. and Stoumaras, C. (2013) Differential Effects of Dehydroepiandrosterone and Testosterone in Prostate and Colon Cancer Cell Apoptosis: The Role of Nerve Growth Factor (NGF) Receptors. Endocrinology, 154, 2446-2456. https://doi.org/10.1210/en.2012-2249
|
[71]
|
Shi, Y., Han, J.J., Tennakoon, J.B., Mehta, F.F., Merchant, F.A., Burns, A.R., Howe, M.K., McDonnell, D.P. and Frigo, D.E. (2013) Androgens Promote Prostate Cancer Cell Growth through Induction of Autophagy. Molecular Endocrinology, 27, 289- 295. https://doi.org/10.1210/me.2012-1260
|
[72]
|
Toren, P., Hoffman, A., Ding, K., Joncas, F.H., Turcotte, V., Caron, P., Pouliot, F., Fradet, Y., Levesque, E., Guillemette, C. and Klotz, L. (2018) Serum Sex Steroids as Prognostic Biomarkers in Patients Receiving Androgen Deprivation Therapy for Recurrent Prostate Cancer: A Post Hoc Analysis of the PR.7 Trial. Clinical Cancer Research, 24, 5305-5312. https://doi.org/10.1158/1078-0432.CCR-18-1187
|
[73]
|
Xu, S., Sun, J., Zhang, Y., Ji, J. and Sun, X. (2021) Opposite Estrogen Effects of Estrone and 2-Hydroxyestrone on MCF-7 Sensitivity to the Cytotoxic Action of Cell Growth, Oxidative Stress and Inflammation Activity. Ecotoxicology and Environmental Safety, 209, Article ID: 111754. https://doi.org/10.1016/j.ecoenv.2020.111754
|
[74]
|
Westerlind, K.C., Gibson, K.J., Evans, G.L. and Turner, R.T. (2000) The Catechol Estrogen, 4-Hydroxyestrone, Has Tissue-Specific Estrogen Actions. Journal of Endocrinology, 167, 281-287. https://doi.org/10.1677/joe.0.1670281
|
[75]
|
Fan, P., Siwak, D.R., Abderrahman, B., Agboke, F.A., Yerrum, S. and Jordan, V.C. (2019) Suppression of Nuclear Factor-κB by Glucocorticoid Receptor Blocks Estrogen-Induced Apoptosis on Estrogen-Deprived Breast Cancer Cells. Molecular Cancer Therapeutics, 18, 1684-1695. https://doi.org/10.1158/1535-7163.MCT-18-1363
|
[76]
|
Maximov, P.Y., Abderrahman, B., Hawsawi, Y.M., Chen, Y., Foulds, C.E., Jain, A., Malovannaya, A., Fan, P., Curpan, R.F., Han, R., Fanning, S.W., Broom, B.M., Quintana Rincon, D.M., Greenland, J.A., Greene, G.L. and Jordan, V.C. (2020) The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells. Molecular Pharmacology, 98, 24-37. https://doi.org/10.1124/mol.120.119776
|
[77]
|
McMurray, R.W., Wilson, J.C., Bigler, L., Xiang, L. and Lagoo, A. (2000) Progesterone Inhibits Glucocorticoid-Induced Murine Thymocyte Apoptosis. International Journal of Immunopharmacology, 22, 955-965. https://doi.org/10.1016/S0192-0561(00)00059-X
|
[78]
|
Berg, M.L., Dharmarajan, A.M. and Waddell, B.J. (2002) Glucocorticoids and Progesterone Prevent Apoptosis in the Lactating Rat Mammary Gland. Endocrinology, 143, 222-227. https://doi.org/10.1210/endo.143.1.8584
|
[79]
|
Peng, R., Dai, W. and Li, Y. (2018) Neuroprotective Effect of a Physiological Ratio of Testosterone and Estradiol on Corticosterone-Induced Apoptosis in PC12 Cells via Traf6/TAK1 Pathway. Toxicology in Vitro, 50, 257-263. https://doi.org/10.1016/j.tiv.2018.03.018
|
[80]
|
Engin, A. (2017) Obesity-Associated Breast Cancer: Analysis of Risk Factors. Advances in Experimental Medicine and Biology, 960, 571-606. https://doi.org/10.1007/978-3-319-48382-5_25
|
[81]
|
Africander, D. and Storbeck, K.H. (2018) Steroid Metabolism in Breast Cancer: Where Are We and What Are We Missing? Molecular and Cellular Endocrinology, 456, 86-97. https://doi.org/10.1016/j.mce.2017.05.016
|
[82]
|
Laberge, R.M., Ambadipundi, R. and Georges, E. (2014) P-Glycoprotein Mediates the Collateral Sensitivity of Multidrug Resistant Cells to Steroid Hormones. Biochemical and Biophysical Research Communications, 447, 574-579. https://doi.org/10.1016/j.bbrc.2014.04.045
|
[83]
|
Fedotcheva, T.A., Fedotcheva, N.J. and Shimanovsky, N.L. (2021) Progestins as Anticancer Drugs and Chemosensitizers, New Targets and Applications. Pharmaceutics, 13, Article No. 1616. https://doi.org/10.3390/pharmaceutics13101616
|
[84]
|
Fedotcheva, T.A. (2021) Clinical Use of Progestins and Their Mechanisms of Action: Present and Future (Review). Sovremennye Technologii v Medicine, 13, Article No. 93. https://doi.org/10.17691/stm2021.13.1.11
|
[85]
|
Zhao, X.X., Cho, H., Lee, S., Woo, J.S., Song, M.Y., Cheng, X.W., Lee, K.H. and Kim, W. (2020) BAY-60-2770 Attenuates Doxorubicin-Induced Cardiotoxicity by Decreased Oxidative Stress and Enhanced Autophagy. Chemico-Biological Interactions, 328, Article ID: 109190. https://doi.org/10.1016/j.cbi.2020.109190
|