[1]
|
Farkas, E., Szilvásy-Szabó, A., Ruska, Y., Sinkó, R., Rasch, M.G., Egebjerg, T., Pyke, C., Gereben, B., Knudsen, L.B. and Fekete, C. (2021) Distribution and Ultrastructural Localization of the Glucagon-Like Peptide-1 Receptor (GLP-1R) in the Rat Brain. Brain Structure and Function, 226, 225-245. https://doi.org/10.1007/s00429-020-02189-1
|
[2]
|
Merchenthaler, I., Lane, M. and Shughrue, P. (1999) Distribution of Pre-Pro-Glucagon and Glucagon-Like Peptide-1 Receptor Messenger RNAs in the Rat Central Nervous System. Journal of Comparative Neurology, 403, 261-280. https://doi.org/10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>3.0.CO;2-5
|
[3]
|
Plamboeck, A., Holst, J.J., Carr, R.D. and Deacon, C.F. (2005) Neutral Endopeptidase 24.11 and Dipeptidyl Peptidase IV Are Both Mediators of the Degradation of Glucagon-Like Peptide 1 in the Anaesthetised Pig. Diabetologia, 48, 1882-1890. https://doi.org/10.1007/s00125-005-1847-7
|
[4]
|
Abtahi, S., VanderJagt, H.L. and Currie, P.J. (2016) The Glucagon-Like Peptide-1 Analog Exendin-4 Antagonizes the Effect of Acyl Ghrelin on the Respiratory Exchange Ratio. Neuroreport, 27, 992-996. https://doi.org/10.1097/WNR.0000000000000650
|
[5]
|
Colvin, K.J., Killen, H.S., Kanter, M.J., Halperin, M.C., Currie, P.J. and Engel, L. (2020) Brain Site-Specific Inhibitory Effects of the GLP-1 Analogue Exendin-4 on Alcohol Intake and Operant Responding for Palatable Food. International Journal of Molecular Sciences, 21, 1-15. https://doi.org/10.3390/ijms21249710
|
[6]
|
Lopez-Ferreras, L., Richard, J.E., Noble, E.E., Eerola, K. anderberg, R.H., Olandersson, K., Taing, L., Kanoski, S.E., Hayes, M.R. and Skibicka, K.P. (2018) Lateral Hypothalamic GLP-1 Receptors Are Critical for the Control of Food Reinforcement, Ingestive Behavior and Body Weight. Molecular Psychiatry, 23, 1157-1168. https://doi.org/10.1038/mp.2017.187
|
[7]
|
Dalvi, P.S., Erbiceanu, F.D., Irwin, D.M. and Belsham, D.D. (2012) Direct Regulation of the Proglucagon Gene by Insulin, Leptin, and cAMP in Embryonic versus Adult Hypothalamic Neurons. Molecular Endocrinology, 26, 1339-1355. https://doi.org/10.1210/me.2012-1049
|
[8]
|
Alhadeff, A.L., Rupprecht, L.E. and Hayes, M.R. (2012) GLP-1 Neurons in the Nucleus of the Solitary Tract Project Directly to the Ventral Tegmental Area and Nucleus Accumbens to Control for Food Intake. Endocrinology, 153, 647-658. https://doi.org/10.1210/en.2011-1443
|
[9]
|
Dickson, S.L., Shirazi, R.H., Hansson, C., Bergquist, F., Nissbrandt, H. and Skibicka, K.P. (2012) The Glucagon-Like Peptide 1 (GLP-1) Analogue, Exendin-4, Decreases the Rewarding Value of Food: A New Role for Mesolimbic GLP-1 Receptors. Journal of Neuroscience, 32, 4812-4820. https://doi.org/10.1523/JNEUROSCI.6326-11.2012
|
[10]
|
Dossat, A.M., Lilly, N., Kay, K. and Williams, D.L. (2011) Glucagon-Like Peptide 1 Receptors in Nucleus Accumbens Affect Food Intake. Journal of Neuroscience, 31, 14453-14457. https://doi.org/10.1523/JNEUROSCI.3262-11.2011
|
[11]
|
Dossat, A.M., Diaz, R., Gallo, L., Panagos, A., Kay, K. and Williams, D.L. (2013) Nucleus Accumbens GLP-1 Receptors Influence Meal Size and Palatability. American Journal of Physiology. Endocrinology and Metabolism, 304, E1314-1320. https://doi.org/10.1152/ajpendo.00137.2013
|
[12]
|
Howell, E., Baumgartner, H.M., Zallar, L.J., Selva, J.A., Engel, L. and Currie, P.J. (2019) Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. International Journal of Molecular Sciences, 20, 889. https://doi.org/10.3390/ijms20040889
|
[13]
|
Abtahi, S., Howell, E. and Currie, P.J. (2018) Accumbal Ghrelin and Glucagon-Like Peptide 1 Signaling in Alcohol Reward in Female Rats. NeuroReport, 29, 1046-1053. https://doi.org/10.1097/WNR.0000000000001071
|
[14]
|
Hernandez, N.S., Ige, K.Y., Mietlicki-Baase, E.G., Molina-Castro, G.C., Turner, C.A., Hayes, M.R. and Schmidt, H.D. (2018) Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Attenuates Cocaine Seeking in Rats. Neuropsychopharmacology, 43, 2000-2008. https://doi.org/10.1038/s41386-018-0010-3
|
[15]
|
Vallöf, D., Kalafateli, A.L. and Jerlhag, E. (2019) Brain Region Specific Glucagon-Like Peptide-1 Receptors Regulate Alcohol-Induced Behaviors in Rodents. Psychoneuroendocrinology, 103, 284-295. https://doi.org/10.1016/j.psyneuen.2019.02.006
|
[16]
|
Hernandez, N.S., O’Donovan, B., Ortinski, P.I. and Schmidt, H.D. (2019) Activation of Glucagon-Like Peptide-1 Receptors in the Nucleus Accumbens Attenuates Cocaine Seeking in Rats. Addiction Biology, 24, 170-181. https://doi.org/10.1111/adb.12583
|
[17]
|
Shirazi, R., Palsdottir, V., Collander, J., Anesten, F., Vogel, H., Langlet, F., Jaschke, A., Schürmann, A., Prévot, V., Shao, R., Jansson, J.-O. and Skibicka, K.P. (2013) Glucagon-Like Peptide 1 Receptor Induced Suppression of Food Intake, and Body Weight Is Mediated by Central IL-1 and IL-6. Proceedings of the National Academy of Sciences of the United States of America, 110, 16199-16204. https://doi.org/10.1073/pnas.1306799110
|
[18]
|
Dixon, T.N., McNally, G.P. and Ong, Z.Y. (2020) Glucagon-Like Peptide-1 Receptor Signaling in the Ventral Tegmental Area Reduces Alcohol Self-Administration in Male Rats. Alcoholism: Clinical and Experimental Research, 44, 2118-2129. https://doi.org/10.1111/acer.14437
|
[19]
|
Antonsen, K.K., Klausen, M.K., Brunchmann, A.S., Le Dous, N., Jensen, M.E., Miskowiak, K.W., Fisher, P.M., Thomsen, G.K., Rindom, H., Fahmy, T.P., Vollstaedt-Klein, S., Benveniste, H., Volkow, N.D., Becker, U., Ekstrøm, C., Knudsen, G.M., Vilsbøll, T. and Fink-Jensen, A. (2018) Does Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Stimulation Reduce Alcohol Intake in Patients with Alcohol Dependence: Study Protocol of a Randomised, Double-Blinded, Placebo-Controlled Clinical Trial. BMJ Open, 8, e019562. https://doi.org/10.1136/bmjopen-2017-019562
|
[20]
|
Hikosaka, O. (2010) The Habenula: From Stress Evasion to Value-Based Decision-Making. Nature Reviews Neuroscience, 11, 503-513. https://doi.org/10.1038/nrn2866
|
[21]
|
Hu, H., Cui, Y. and Yang, Y. (2020) Circuits and Functions of the Lateral Habenula in Health and in Disease. Nature Reviews Neuroscience, 21, 277-295. https://doi.org/10.1038/s41583-020-0292-4
|
[22]
|
Metzger, M., Souza, R., Lima, L.B., Bueno, D., Gonçalves, L., Sego, C., Donato, J. and Shammah-Lagnado, S.J. (2021) Habenular Connections with the Dopaminergic and Serotonergic System and Their Role in Stress-Related Psychiatric Disorders. European Journal of Neuroscience, 53, 65-88. https://doi.org/10.1111/ejn.14647
|
[23]
|
Proulx, C.D., Hikosaka, O. and Malinow, R. (2014) Reward Processing by the Lateral Habenula in Normal and Depressive Behaviors. Nature Neuroscience, 17, 1146-1152. https://doi.org/10.1038/nn.3779
|
[24]
|
Brown, P.L. and Shepard, P.D. (2016) Functional Evidence for a Direct Excitatory Projection from the Lateral Habenula to the Ventral Tegmental Area in the Rat. Journal of Neurophysiology, 116, 1161-1174. https://doi.org/10.1152/jn.00305.2016
|
[25]
|
Proulx, C.D., Aronson, S., Milivojevic, D., Molina, C., Loi, A., Monk, B., Shabel, S.J. and Malinow, R. (2018) A Neural Pathway Controlling Motivation to Exert Effort. Proceedings of the National Academy of Sciences of the United States of America, 115, 5792-5797. https://doi.org/10.1073/pnas.1801837115
|
[26]
|
Coffey, K.R., Marx, R.G., Vo, E.K., Nair, S.G. and Neumaier, J.F. (2020) Chemogenetic Inhibition of Lateral Habenula Projections to the Dorsal Raphe Nucleus Reduces Passive Coping and Perseverative Reward Seeking in Rats. Neuropsychopharmacology, 45, 1115-1124. https://doi.org/10.1038/s41386-020-0616-0
|
[27]
|
Li, H., Eid, M., Pullmann, D., Chao, Y.S., Thomas, A.A. and Jhou, T.C. (2021) Entopeduncular Nucleus Projections to the Lateral Habenula Contribute to Cocaine Avoidance. Journal of Neuroscience, 41, 298-306. https://doi.org/10.1523/JNEUROSCI.0708-20.2020
|
[28]
|
Li, J., Fan, R., Liu, X., Shen, X., Liu, X. and Zhao, H. (2021) The Convergence of Aversion and Reward Signals in Individual Neurons of the Mice Lateral Habenula. Experimental Neurology, 339, Article ID: 113637. https://doi.org/10.1016/j.expneurol.2021.113637
|
[29]
|
London, E., Wester, J.C., Bloyd, M., Bettencourt, S., McBain, C.J. and Stratakis, C.A. (2020) Loss of Habenular Prkar2a Reduces Hedonic Eating and Increases Exercise Motivation. JCI Insight, 5, e141670. https://doi.org/10.1172/jci.insight.141670
|
[30]
|
Wills, L. and Kenny, P.J. (2021) Addiction-Related Neuroadaptations Following Chronic Nicotine Exposure. Journal of Neurochemistry, 157, 1652-1673. https://doi.org/10.1111/jnc.15356
|
[31]
|
Stamatakis, A.M., Jennings, J.H., Ung, R.L., Blair, G.A., Weinberg, R.J., Neve, R.L., Boyce, F., Mattis, J., Ramakrishnan, C., Deisseroth, K. and Stuber, G.D. (2013) A Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward. Neuron, 80, 1039-1053. https://doi.org/10.1016/j.neuron.2013.08.023
|
[32]
|
Weinberg, Z.Y., Nicholson, M.L. and Currie, P.J. (2011) 6-Hydroxydopamine Lesions of the Ventral Tegmental Area Suppress Ghrelin’s Ability to Elicit Food-Reinforced Behavior. Neuroscience Letters, 499, 70-73. https://doi.org/10.1016/j.neulet.2011.05.034
|
[33]
|
Paxinos, G. and Watson, C. (2013) The Rat Brain in Stereotaxic Coordinates. Elsevier Science, Amsterdam.
|
[34]
|
Egecioglu, E., Engel, J.A. and Jerlhag, E. (2013) The Glucagon-Like Peptide 1 Analogue Exendin-4 Attenuates the Nicotine-Induced Locomotor Stimulation, Accumbal Dopamine Release, Conditioned Place Preference as well as the Expression of Locomotor Sensitization in Mice. PLoS ONE, 8, e77284. https://doi.org/10.1371/journal.pone.0077284
|
[35]
|
Sørensen, G., Reddy, I.A., Weikop, P., Graham, D.L., Stanwood, G.D., Wortwein, G., Galli, A. and Fink-Jensen, A. (2015) The Glucagon-Like Peptide 1 (GLP-1) Receptor Agonist Exendin-4 Reduces Cocaine Self-Administration in Mice. Physiology and Behavior, 149, 262-268. https://doi.org/10.1016/j.physbeh.2015.06.013
|
[36]
|
Sørensen, G., Caine, S.B. and Thomsen, M. (2016) Effects of the GLP-1 Agonist Exendin-4 on Intravenous Ethanol Self-Administration in Mice. Alcoholism: Clinical and Experimental Research, 40, 2247-2252. https://doi.org/10.1111/acer.13199
|
[37]
|
Vallöf, D., MacCioni, P., Colombo, G., Mandrapa, M., Jörnulf, J.W., Egecioglu, E., Engel, J.A. and Jerlhag, E. (2016) The Glucagon-Like Peptide 1 Receptor Agonist Liraglutide Attenuates the Reinforcing Properties of Alcohol in Rodents. Addiction Biology, 21, 422-437. https://doi.org/10.1111/adb.12295
|
[38]
|
Erreger, K., Davis, A.R., Poe, A.M., Greig, N.H., Stanwood, G.D. and Galli, A. (2012) Exendin-4 Decreases Amphetamine-Induced Locomotor Activity. Physiology and Behavior, 106, 574-578. https://doi.org/10.1016/j.physbeh.2012.03.014
|
[39]
|
Vogel, H., Wolf, S., Rabasa, C., Rodriguez-Pacheco, F., Babaei, C.S., Stöber, F., Goldschmidt, J., DiMarchi, R.D., Finan, B., Tschöp, M.H., Dickson, S.L., Schürmann, A. and Skibicka, K.P. (2016) GLP-1 and Estrogen Conjugate Acts in the Supramammillary Nucleus to Reduce Food-Reward and Body Weight. Neuropharmacology, 110, 396-406. https://doi.org/10.1016/j.neuropharm.2016.07.039
|
[40]
|
Abtahi, S., Howell, E., Salvucci, J.T., Bastacky, J.M.R., Dunn, D.P. and Currie, P.J. (2019) Exendin-4 Antagonizes the Metabolic Action of Acylated Ghrelinergic Signaling in the Hypothalamic Paraventricular Nucleus. General and Comparative Endocrinology, 270, 75-81. https://doi.org/10.1016/j.ygcen.2018.10.008
|
[41]
|
Tuesta, L.M., Chen, Z., Duncan, A., Fowler, C.D., Ishikawa, M., Lee, B.R., Liu, X.-A., Lu, Q., Cameron, M., Hayes, M.R., Kamenecka, T.M., Pletcher, M. and Kenny, P.J. (2017) GLP-1 Acts on Habenular Avoidance Circuits to Control Nicotine Intake. Nature Neuroscience, 20, 708-716. https://doi.org/10.1038/nn.4540
|
[42]
|
Zuo, W., Fu, R., Hopf, F.W., Xie, G., Krnjević, K., Li, J. and Ye, J.-H. (2017) Ethanol Drives Aversive Conditioning through Dopamine 1 Receptor and Glutamate Receptor-Mediated Activation of Lateral Habenula Neurons. Addiction Biology, 22, 103-116. https://doi.org/10.1111/adb.12298
|