[1]
|
WHO (n.d.) Ambient Air Pollution. WHO, Geneva. http://www.who.int/airpollution/ambient/en/
|
[2]
|
WHO (n.d.) WHO Global Urban Ambient Air Pollution Database (Update 2016). WHO, Geneva. http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/
|
[3]
|
Araviiskaia, E., Berardesca, E., Bieber, T., Gontijo, G., Viera, M.S., Marrot, L., Chuberre, B. and Dreno, B. (2019) The Impact of Airborne Pollution on Skin. Journal of the European Academy of Dermatology and Venereology, 33, 1496-1505. https://doi.org/10.1111/jdv.15583
|
[4]
|
Weschler, C.J., Bekö, G., Koch, H.M., Salthammer, T., Schripp, T., Toftum, J. and Clausen, G. (2015) Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification. Environmental Health Perspectives, 123, 928-934. https://doi.org/10.1289/ehp.1409151
|
[5]
|
Mancebo, S.E. and Wang, S.Q. (2015) Recognizing the Impact of Ambient Air Pollution on Skin Health. Journal of the European Academy of Dermatology and Venereology, 29, 2326-2332. https://doi.org/10.1111/jdv.13250
|
[6]
|
Krutmann, J., Moyal, D., Liu, W., Kandahari, S., Lee, G.-S., Nopadon, N., Xiang, L.F. and Seité, S. (2017) Pollution and Acne: Is There a Link? Clinical, Cosmetic and Investigational Dermatology, 10, 199-204. https://doi.org/10.2147/CCID.S131323
|
[7]
|
Liu, W., Pan, X., Vierkötter, A., Guo, Q., Wang, X., Wang, Q., Seité, S., Moyal, D., Schikowski, T. and Krutmann, J. (2018) A Time-Series Study of the Effect of Air Pollution on Outpatient Visits for Acne Vulgaris in Beijing. Skin Pharmacology and Physiology, 31, 107-113. https://doi.org/10.1159/000484482
|
[8]
|
Hendricks, A.J., Eichenfield, L.F. and Shi, V.Y. (2019) The Impact of Airborne Pollution on Atopic Dermatitis: A Literature Review. British Journal of Dermatology, 183, 16-23.
|
[9]
|
Vierkötter, A., Schikowski, T., Ranft, U., Sugiri, D., Matsui, M., Krämer, U. and Krutmann, J. (2010) Airborne Particle Exposure and Extrinsic Skin Aging. Journal of Investigative Dermatology, 130, 2719-2726. https://doi.org/10.1038/jid.2010.204
|
[10]
|
Puri, P., Nandar, S.K., Kathuria, S. and Ramesh, V. (2017) Effects of Air Pollution on the Skin: A Review. Indian Journal of Dermatology, Venereology and Leprology, 83, 415-423. https://doi.org/10.4103/0378-6323.199579
|
[11]
|
Schikowski, T. and Krutmann, J. (2019) Luftverschmutzung (Feinstaub, Stickstoffdioxid) und Hautalterung. [Air Pollution (Particulate Matter and Nitrogen Dioxide) and Skin Aging.] Der Hautarzt, 70, 158-162. https://doi.org/10.1007/s00105-018-4338-8
|
[12]
|
Park, S.-Y., Byun, E.J., Lee, J.D., Kim, S. and Kim, H.S. (2018) Air Pollution, Autophagy, and Skin Aging: Impact of Particulate Matter (PM10) on Human Dermal Fibroblasts. International Journal of Molecular Sciences, 19, 2727. https://doi.org/10.3390/ijms19092727
|
[13]
|
Wong, J.Y.Y., Hu, W., Downward, G.S., Seow, W.J., Bassig, B.A., Ji, B.-T., Wei, F., Wu, G., Li, J., He, J., Liu, C.-S., Cheng, W.-L., Huang, Y., Yang, K., Chen, Y., Rothman, N., Vermeulen, R.C. and Lan, Q. (2017) Personal Exposure to Fine Particulate Matter and Benzo[a]pyrene from Indoor Air Pollution and Leukocyte Mitochondrial DNA Copy Number in Rural China. Carcinogenesis, 38, 893-899. https://doi.org/10.1093/carcin/bgx068
|
[14]
|
Pieters, N., Janssen, B.G., Dewitte, H., Cox, B., Cuypers, A., Lefebvre, W., Smeets, K., Vanpoucke, C., Plusquin, M. and Nawrot, T.S. (2016) Biomolecular Markers within the Core Axis of Aging and Particulate Air Pollution Exposure in the Elderly: A Cross-Sectional Study. Environmental Health Perspectives, 124, 943-950. https://doi.org/10.1289/ehp.1509728
|
[15]
|
Xia, Y., Chen, R., Wang, C., Cai, J., Wang, L., Zhao, Z., Qian, J. and Kan, H. (2015) Ambient Air Pollution, Blood Mitochondrial DNA Copy Number and Telomere Length in a Panel of Diabetes Patients. Inhalation Toxicology, 27, 481-487. https://doi.org/10.3109/08958378.2015.1075090
|
[16]
|
Hou, L., Zhang, X., Dioni, L., Barretta, F., Dou, C., Zheng, Y., Hoxha, M., Bertazzi, P.A., Schwartz, J., Wu, S., Wang, S. and Baccarelli, A.A. (2013) Inhalable Particulate Matter and Mitochondrial DNA Copy Number in Highly Exposed Individuals in Beijing, China: A Repeated-Measure Study. Particle and Fibre Toxicology, 10, Article No. 17. https://doi.org/10.1186/1743-8977-10-17
|
[17]
|
Morano, K.A., Grant, C.M. and Moye-Rowley, W.S. (2012) The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae. Genetics, 190, 1157-1195. https://doi.org/10.1534/genetics.111.128033
|
[18]
|
Velali, E., Papachristou, E., Pantazaki, A., Besis, A., Samara, C., Labrianidis, C. and Lialiaris, T. (2018) In Vitro Cellular Toxicity Induced by Extractable Organic Fractions of Particles Exhausted from Urban Combustion Sources—Role of PAHs. Environmental Pollution, 243, 1166-1176. https://doi.org/10.1016/j.envpol.2018.09.075
|
[19]
|
Pardo, M., Kuperman, Y., Levin, L., Rudich, A., Haim, Y., Schauer, J.J., Chen, A. and Rudich, Y. (2018) Exposure to Air Pollution Interacts with Obesogenic Nutrition to Induce Tissue-Specific Response Patterns. Environmental Pollution, 239, 532-543. https://doi.org/10.1016/j.envpol.2018.04.048
|
[20]
|
Pardo, M., Xu, F., Shemesh, M., Qiu, X., Barak, Y., Zhu, T. and Rudich, Y. (2019) Nrf2 Protects against Diverse PM2.5 Components-Induced Mitochondrial Oxidative Damage in Lung Cells. Science of the Total Environment, 669, 303-313. https://doi.org/10.1016/j.scitotenv.2019.01.436
|
[21]
|
Parrado, C., Mercado-Saenz, S., Perez-Davo, A., Gilaberte, Y., Gonzalez, S. and Juarranz, A. (2019) Environmental Stressors on Skin Aging. Mechanistic Insights. Frontiers in Pharmacology, 10, 759. https://doi.org/10.3389/fphar.2019.00759
|
[22]
|
Chan, D.C. (2012) Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46, 265-287. https://doi.org/10.1146/annurev-genet-110410-132529
|
[23]
|
Strich, R. and Cooper, K.F. (2014) The Dual Role of Cyclin C Connects Stress Regulated Gene Expression to Mitochondrial Dynamics. Microbial Cell, 1, 318-324. https://doi.org/10.15698/mic2014.10.169
|
[24]
|
Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065. https://doi.org/10.1126/science.1219855
|
[25]
|
Nishimura, A., Shimauchi, T., Tanaka, T., Shimoda, K., Toyama, T., Kitajima, N., Ishikawa, T., Shindo, N., Numaga-Tomita, T., Yasuda, S., Sato, Y., Kuwahara, K., Kumagai, Y., Akaike, T., Ide, T., Ojida, A., Mori, Y. and Nishida, M. (2018) Hypoxia-Induced Interaction of Filamin with Drp1 Causes Mitochondrial Hyperfission-Associated Myocardial Senescence. Science Signaling, 11, eaat5185. https://doi.org/10.1126/scisignal.aat5185
|
[26]
|
Compagnone, N.A. (2010) Method to Predict Toxicity Using the Analysis of Dynamic Organelle Behaviour. US patent No. 2,010,311,101. https://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US2010311101
|
[27]
|
Nishimura, A., Shimoda, K., Tanaka, T., Toyama, T., Nishiyama, K., Shinkai, Y., Numaga-Tomita, T., Yamazaki, D., Kanda, Y., Akaike, T., Kumagai, Y. and Nishida, M. (2019) Depolysulfidation of Drp1 Induced by Low-Dose Methylmercury Exposure Increases Cardiac Vulnerability to Hemodynamic Overload. Science Signaling, 12, eaaw1920. https://doi.org/10.1126/scisignal.aaw1920
|
[28]
|
Baker, N., Patel, J. and Khacho, M. (2019) Linking Mitochondrial Dynamics, Cristae Remodeling and Supercomplex Formation: How Mitochondrial Structure Can Regulate Bioenergetics. Mitochondrion, 49, 259-268. https://doi.org/10.1016/j.mito.2019.06.003
|
[29]
|
Bruneton, J. (2016) Pharmacognosie Phytochimie Plantes médicinales. 5th Edition, Lavoisier, Paris, 1047-1053.
|
[30]
|
Seely, D., Dugoua, J.-J., Perri, D., Mills, E. and Koren, G. (2008) Safety and Efficacy of Panax ginseng during Pregnancy and Lactation. Canadian Journal of Clinical Pharmacology, 15, e87-e94.
|
[31]
|
Bae, H.J., Chung, S.I., Lee, S.C. and Kang, M.Y. (2014) Influence of Aging Process on the Bioactive Components and Antioxidant Activity of Ginseng (Panax ginseng L.). Journal of Food Science, 79, H2127-H2131. https://doi.org/10.1111/1750-3841.12640
|
[32]
|
Tang, W. and Eisenbrand, G. (1992) Panax ginseng C. A. Mey. In: Chinese Drugs of Plant Origin, Springer, Heidelberg, Berlin, 711-737. https://doi.org/10.1007/978-3-642-73739-8_91
|
[33]
|
Yun, T.K. (2001) Brief Introduction of Panax ginseng C. A. Meyer. Journal of Korean Medical Science, 16, S3-S5. https://doi.org/10.3346/jkms.2001.16.S.S3
|
[34]
|
Lee, S.M., Bae, B.S., Park, H.-W., Ahn, N.-G., Cho, B.-G., Cho, Y.-L. and Kwak, Y.-S. (2015) Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, Preparation Method, and Chemical Composition. Journal of Ginseng Research, 39, 384-391. https://doi.org/10.1016/j.jgr.2015.04.009
|
[35]
|
Choi, K.-T. (2008) Botanical Characteristics, Pharmacological Effects and Medicinal Components of Korean Panax ginseng C. A. Meyer. Acta Pharmacologica Sinica, 29, 1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
|
[36]
|
De Vos, K.J. and Sheetz, M.P. (2007) Visualization and Quantification of Mitochondrial Dynamics in Living Animal Cells. Methods in Cell Biology, 80, 627-682. https://doi.org/10.1016/S0091-679X(06)80030-0
|
[37]
|
Song, W., Bossy, B., Martin, O.J., Hicks, A., Lubitz, S., Knott, A.B. and Bossy-Wetzel, E. (2008) Assessing Mitochondrial Morphology and Dynamics Using Fluorescence Wide-Field Microscopy and 3D Image Processing. Methods, 46, 295-303. https://doi.org/10.1016/j.ymeth.2008.10.003
|
[38]
|
Crabtree, H.G. (1929) Observations on the Carbohydrate Metabolism of Tumours. Biochemical Journal, 23, 536-545. https://doi.org/10.1042/bj0230536
|
[39]
|
Guo, Z., Hong, Z., Dong, W., Deng, C., Zhao, R., Xu, J., Zhuang, G. and Zhang, R. (2017) PM2.5-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. International Journal of Environmental Research and Public Health, 14, 134. https://doi.org/10.3390/ijerph14020134
|
[40]
|
Meyer, J.N., Leuthner, T.C. and Luz, A.L. (2017) Mitochondrial Fusion, Fission, and Mitochondrial Toxicity. Toxicology, 391, 42-53. https://doi.org/10.1016/j.tox.2017.07.019
|
[41]
|
Kowaltowski, A.J., Menezes-Filho, S.L., Assali, E.A., Gonçalves, I.G., Cabral-Costa, J.V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F.R.M., Bruni-Cardoso, A. and Shirihai, O. (2019) Mitochondrial Morphology Regulates Organellar Ca2+ Uptake and Changes Cellular Ca2+ Homeostasis. The FASEB Journal, 33, 13176-13188. https://doi.org/10.1101/624981
|
[42]
|
Cooper, K.F., Khakhina, S., Kim, S.K. and Strich, R. (2014) Stress-Induced Nuclear-to-Cytoplasmic Translocation of Cyclin C Promotes Mitochondrial Fission in Yeast. Developmental Cell, 28, 161-173. https://doi.org/10.1016/j.devcel.2013.12.009
|
[43]
|
Ganesan, V., Willis, S.D., Chang, K.-T., Beluch, S., Cooper, K.F. and Strich, R. (2019) Cyclin C Directly Stimulates Drp1 GTP Affinity to Mediate Stress-Induced Mitochondrial Hyperfission. Molecular Biology of the Cell, 30, 302-311. https://doi.org/10.1091/mbc.E18-07-0463
|
[44]
|
Wang, K., Yan, R., Cooper, K.F. and Strich, R. (2015) Cyclin C Mediates Stress-Induced Mitochondrial Fission and Apoptosis. Molecular Biology of the Cell, 26, 1030-1043. https://doi.org/10.1091/mbc.E14-08-1315
|
[45]
|
Boyer, M.J. and Eguchi, S. (2018) A Cytoskeletal Anchor Connects Ischemic Mitochondrial Fission to Myocardial Senescence. Science Signaling, 11, eaav3267. https://doi.org/10.1126/scisignal.aav3267
|