[1]
|
Salgado, R., Moore, H., Martens, J.W.M., et al. (2018) Steps Forward for Cancer Precision Medicine. Nature Reviews Drug Discovery, 17, 1-2. https://doi.org/10.1038/nrd.2017.218
|
[2]
|
Liu, D. (2019) CAR-T “the Living Drugs”, Immune Checkpoint Inhibitors, and Precision Medicine: A New Era of Cancer Therapy. Journal of Hematology & Oncology, 12, 113. https://doi.org/10.1186/s13045-019-0819-1
|
[3]
|
Wang, D., Wang, X.W., Peng, X.C., et al. (2018) CRISPR/Cas9 Genome Editing Technology Significantly Accelerated Herpes Simplex Virus Research. Cancer Gene Therapy, 25, 93-105. https://doi.org/10.1038/s41417-018-0016-3
|
[4]
|
Bommareddy, P.K., Shettigar, M. and Kaufman, H.L. (2018) Integrating Oncolytic Viruses in Combination Cancer Immunotherapy. Nature Reviews Immunology, 18, 498-513. https://doi.org/10.1038/s41577-018-0014-6
|
[5]
|
Wertheim, J.O., Smith, M.D., Smith, D.M., et al. (2014) Evolutionary Origins of Human Herpes Simplex Viruses 1 and 2. Molecular Biology and Evolution, 31, 2356-2364. https://doi.org/10.1093/molbev/msu185
|
[6]
|
Lawler, S.E. and Chiocca, E.A. (2015) Oncolytic Virus-Mediated Immunotherapy: A Combinatorial Approach for Cancer Treatment. Journal of Clinical Oncology, 33, 2812-2814. https://doi.org/10.1200/JCO.2015.62.5244
|
[7]
|
Peters, C. and Rabkin, S.D. (2015) Designing Herpes Viruses as Oncolytics. Molecular Therapy—Oncolytics, 2, Article No. 15010. https://doi.org/10.1038/mto.2015.10
|
[8]
|
Kaufman, H.L., Kohlhapp, F.J. and Zloza, A. (2015) Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nature Reviews Drug Discovery, 14, 642-662. https://doi.org/10.1038/nrd4663
|
[9]
|
Yoo, J.Y., Swanner, J., Otani, Y., et al. (2019) Oncolytic HSV Therapy Increases Trametinib Access to Brain Tumors and Sensitizes Them in Vivo. Neuro-Oncology, 21, 1131-1140. https://doi.org/10.1093/neuonc/noz079
|
[10]
|
Lazear, E., Whitbeck, J.C., Zuo, Y., et al. (2014) Induction of Conformational Changes at the N-Terminus of Herpes Simplex Virus Glycoprotein D upon Binding to HVEM and Nectin-1. Virology, 448, 185-195. https://doi.org/10.1016/j.virol.2013.10.019
|
[11]
|
Zhang, Y., Xin, Q., Zhang, J.Y., et al. (2020) Transcriptional Regulation of Latency-Associated Transcripts (LATs) of Herpes Simplex Viruses. Journal of Cancer, 11, 3387-3399. https://doi.org/10.7150/jca.40186
|
[12]
|
Samoto, K., Ehtesham, M., Perng, G.C., et al. (2002) A Herpes Simplex Virus Type 1 Mutant with Gamma 34.5 and LAT Deletions Effectively Oncolyses Human U87 Glioblastomas in Nude Mice. Neurosurgery, 50, 599-605. https://doi.org/10.1227/00006123-200203000-00031
|
[13]
|
Henderson, G., Jaber, T., Carpenter, D., et al. (2009) Identification of Herpes Simplex Virus Type 1 Proteins Encoded within the First 1.5 kb of the Latency-Associated Transcript. Journal of NeuroVirology, 15, 439-448. https://doi.org/10.3109/13550280903296353
|
[14]
|
Radtke, K., English, L., Rondeau, C., et al. (2013) Inhibition of the Host Translation Shutoff Response by Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy. Journal of Virology, 87, 3990-3997. https://doi.org/10.1128/JVI.02974-12
|
[15]
|
Christensen, M.H., Jensen, S.B., Miettinen, J.J., et al. (2016) HSV-1 ICP27 Targets the TBK1-Activated STING Signalsome to Inhibit Virus-Induced Type I IFN Expression. The EMBO Journal, 35, 1385-1399. https://doi.org/10.15252/embj.201593458
|
[16]
|
Meng, W., Han, S.C., Li, C.C., et al. (2018) Multifunctional Viral Protein Gamma34.5 Manipulates Nucleolar Protein NOP53 for Optimal Viral Replication of HSV-1. Cell Death & Differentiation, 9, 103. https://doi.org/10.1038/s41419-017-0116-2
|
[17]
|
Chen, X., Zhou, Y., Wang, J., et al. (2015) Dual Silencing of Bcl-2 and Survivin by HSV-1 Vector Shows Better Antitumor Efficacy in Higher PKR Phosphorylation Tumor Cells in Vitro and in Vivo. Cancer Gene Therapy, 22, 380-386. https://doi.org/10.1038/cgt.2015.30
|
[18]
|
La Rosa, F., Agostini, S., Bianchi, A., et al. (2019) Herpes Simplex Virus-1 (HSV-1) Infection Induces a Potent But Ineffective IFN-Lambda Production in Immune Cells of AD and PD Patients. Journal of Translational Medicine, 17, 286. https://doi.org/10.1186/s12967-019-2034-9
|
[19]
|
Wilcox, D.R. and Longnecker, R. (2016) The Herpes Simplex Virus Neurovirulence Factor Gamma34.5: Revealing Virus-Host Interactions. PLOS Pathogens, 12, e1005449. https://doi.org/10.1371/journal.ppat.1005449
|
[20]
|
Rosato, P.C. and Leib, D.A. (2015) Neuronal Interferon Signaling Is Required for Protection against Herpes Simplex Virus Replication and Pathogenesis. PLOS Pathogens, 11, e1005028. https://doi.org/10.1371/journal.ppat.1005028
|
[21]
|
Larsen, I.S. (1974) Study Days in Uppsala: Teaching Aspects in Health and Sickness Care with Reference to Clinical Training. Sygeplejersken, 74, 24-27.
|
[22]
|
Tang, S., Bertke, A.S., Patel, A., et al. (2008) An Acutely and Latently Expressed Herpes Simplex Virus 2 Viral microRNA Inhibits Expression of ICP34.5, a Viral Neurovirulence Factor. Proceedings of the National Academy of Sciences of the United States of America, 105, 10931-10936. https://doi.org/10.1073/pnas.0801845105
|
[23]
|
Watson, Z.L., Washington, S.D., Phelan, D.M., et al. (2018) In Vivo Knockdown of the Herpes Simplex Virus 1 Latency-Associated Transcript Reduces Reactivation from Latency. Journal of Virology, 92, e00812-18. https://doi.org/10.1128/JVI.00812-18
|
[24]
|
Nicoll, M.P., Hann, W., Shivkumar, M., et al. (2016) The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons. PLOS Pathogens, 12, e1005539. https://doi.org/10.1371/journal.ppat.1005539
|
[25]
|
Ahmed, M., Lock, M., Miller, C.G., et al. (2002) Regions of the Herpes Simplex Virus Type 1 Latency-Associated Transcript That Protect Cells from Apoptosis in Vitro and Protect Neuronal Cells in Vivo. Journal of Virology, 76, 717-729. https://doi.org/10.1128/JVI.76.2.717-729.2002
|
[26]
|
Umbach, J.L., Kramer, M.F., Jurak, I., et al. (2008) MicroRNAs Expressed by Herpes Simplex Virus 1 during Latent Infection Regulate Viral mRNAs. Nature, 454, 780-783. https://doi.org/10.1038/nature07103
|
[27]
|
Gupta, A., Gartner, J.J., Sethupathy, P., et al. (2006) Anti-Apoptotic Function of a microRNA Encoded by the HSV-1 Latency-Associated Transcript. Nature, 442, 82-85. https://doi.org/10.1038/nature04836
|
[28]
|
Hamza, M.A., Higgins, D.M. and Ruyechan, W.T. (2006) Herpes Simplex Virus Type-1 Latency Inhibits Dendritic Growth in Sympathetic Neurons. Neurobiology of Disease, 24, 367-373. https://doi.org/10.1016/j.nbd.2006.07.011
|
[29]
|
Thomas, S., Kuncheria, L., Roulstone, V., et al. (2019) Development of a New Fusion-Enhanced Oncolytic Immunotherapy Platform Based on Herpes Simplex Virus Type 1. Journal for ImmunoTherapy of Cancer, 7, 214. https://doi.org/10.1186/s40425-019-0682-1
|
[30]
|
Eissa, I.R., Naoe, Y., Bustos-Villalobos, I., et al. (2017) Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Frontiers in Oncology, 7, 149. https://doi.org/10.3389/fonc.2017.00149
|
[31]
|
Perng, G.C., Dunkel, E.C., Geary, P.A., et al. (1994) The Latency-Associated Transcript Gene of Herpes Simplex Virus Type 1 (HSV-1) Is Required for Efficient in Vivo Spontaneous Reactivation of HSV-1 from Latency. Journal of Virology, 68, 8045-8055. https://doi.org/10.1128/JVI.68.12.8045-8055.1994
|
[32]
|
Whisnant, A.W., Jurges, C.S., Hennig, T., et al. (2020) Integrative Functional Genomics Decodes Herpes Simplex Virus 1. Nature Communications, 11, 2038. https://doi.org/10.1038/s41467-020-15992-5
|
[33]
|
Nakashima, H., Nguyen, T., Kasai, K., et al. (2018) Toxicity and Efficacy of a Novel GADD34-Expressing Oncolytic HSV-1 for the Treatment of Experimental Glioblastoma. Clinical Cancer Research, 24, 2574-2584. https://doi.org/10.1158/1078-0432.CCR-17-2954
|
[34]
|
Bernstock, J.D., Vicario, N., Li, R., et al. (2020) Safety and Efficacy of Oncolytic HSV-1 G207 Inoculated into the Cerebellum of Mice. Cancer Gene Therapy, 27, 246-255. https://doi.org/10.1038/s41417-019-0091-0
|
[35]
|
Todo, T., Martuza, R.L., Rabkin, S.D., et al. (2001) Oncolytic Herpes Simplex Virus Vector with Enhanced MHC Class I Presentation and Tumor Cell Killing. Proceedings of the National Academy of Sciences of the United States of America, 98, 6396-6401. https://doi.org/10.1073/pnas.101136398
|
[36]
|
Kelly, K.J., Wong, J. and Fong, Y. (2008) Herpes Simplex Virus NV1020 as a Novel and Promising Therapy for Hepatic Malignancy. Expert Opinion on Investigational Drugs, 17, 1105-1113. https://doi.org/10.1517/13543784.17.7.1105
|
[37]
|
Patel, D.M., Foreman, P.M., Nabors, L.B., et al. (2016) Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma. Human Gene Therapy Clinical Development, 27, 69-78. https://doi.org/10.1089/humc.2016.031
|
[38]
|
Maclean, A.R., Ul-Fareed, M., Robertson, L., et al. (1991) Herpes Simplex Virus Type 1 Deletion Variants 1714 and 1716 Pinpoint Neurovirulence-Related Sequences in Glasgow Strain 17+ between Immediate Early Gene 1 and the “a” Sequence. Journal of General Virology, 72, 631-639. https://doi.org/10.1099/0022-1317-72-3-631
|
[39]
|
Andtbacka, R.H., Kaufman, H.L., Collichio, F., et al. (2015) Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. Journal of Clinical Oncology, 33, 2780-2788. https://doi.org/10.1200/JCO.2014.58.3377
|
[40]
|
Ren, J., Gwin, W.R., Zhou, X., et al. (2017) Adaptive T Cell Responses Induced by Oncolytic Herpes Simplex Virus-Granulocyte Macrophage-Colony-Stimulating Factor Therapy Expanded by Dendritic Cell and Cytokine-Induced Killer Cell Adoptive Therapy. Oncoimmunology, 6, e1264563. https://doi.org/10.1080/2162402X.2016.1264563
|
[41]
|
Tanaka, R., Goshima, F., Esaki, S., et al. (2017) The Efficacy of Combination Therapy with Oncolytic Herpes Simplex Virus HF10 and Dacarbazine in a Mouse Melanoma Model. American Journal of Cancer Research, 7, 1693-1703.
|
[42]
|
Wang, Y.Y., Lyu, Y.N., Xin, H.Y., et al. (2019) Identification of Putative UL54 (ICP27) Transcription Regulatory Sequences Binding to Oct-1, v-Myb, Pax-6 and Hairy in Herpes Simplex Viruses. Journal of Cancer, 10, 430-440. https://doi.org/10.7150/jca.29787
|
[43]
|
Liu, X.Q., Xin, H.Y., Lyu, Y.N., et al. (2018) Oncolytic Herpes Simplex Virus Tumor Targeting and Neutralization Escape by Engineering Viral Envelope Glycoproteins. Drug Delivery, 25, 1950-1962. https://doi.org/10.1080/10717544.2018.1534895
|
[44]
|
Cheng, J.T., Wang, Y.Y., Zhu, L.Z., et al. (2020) Novel Transcription Regulatory Sequences and Factors of the Immune Evasion Protein ICP47 (US12) of Herpes Simplex Viruses. Virology Journal, 17, 101. https://doi.org/10.1186/s12985-020-01365-3
|
[45]
|
Goins, W.F., Huang, S., Hall, B., et al. (2020) Engineering HSV-1 Vectors for Gene Therapy. Methods in Molecular Biology, 2060, 73-90. https://doi.org/10.1007/978-1-4939-9814-2_4
|
[46]
|
Kanai, R., Zaupa, C., Sgubin, D., et al. (2012) Effect of Gamma34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. Journal of Virology, 86, 4420-4431. https://doi.org/10.1128/JVI.00017-12
|
[47]
|
Arias, C., Weisburd, B., Stern-Ginossar, N., et al. (2014) KSHV 2.0: A Comprehensive Annotation of the Kaposi’s Sarcoma-Associated Herpesvirus Genome Using Next-Generation Sequencing Reveals Novel Genomic and Functional Features. PLOS Pathogens, 10, e1003847. https://doi.org/10.1371/journal.ppat.1003847
|
[48]
|
Erhard, F., Halenius, A., Zimmermann, C., et al. (2018) Improved Ribo-seq Enables Identification of Cryptic Translation Events. Nature Methods, 15, 363-366. https://doi.org/10.1038/nmeth.4631
|
[49]
|
Kanerva, A., Nokisalmi, P., Diaconu, I., et al. (2013) Antiviral and Antitumor T-Cell Immunity in Patients Treated with GM-CSF-Coding Oncolytic Adenovirus. Clinical Cancer Research, 19, 2734-2744. https://doi.org/10.1158/1078-0432.CCR-12-2546
|
[50]
|
Patel, M.R. and Kratzke, R.A. (2013) Oncolytic Virus Therapy for Cancer: The First Wave of Translational Clinical Trials. Translational Research, 161, 355-364. https://doi.org/10.1016/j.trsl.2012.12.010
|
[51]
|
Forbes, N.E., Abdelbary, H., Lupien, M., et al. (2013) Exploiting Tumor Epigenetics to Improve Oncolytic Virotherapy. Frontiers in Genetics, 4, 184. https://doi.org/10.3389/fgene.2013.00184
|