[1]
|
Ciarlet, P. (1978) The Finite Element Method for Elliptic Problems. Amstterdam, North-Holland.
|
[2]
|
Liu, W. and Yan, N. (2008) Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing.
|
[3]
|
Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich S. (2009) Optimization with PDE Constraints. Springer, New York.
|
[4]
|
Gao, G. and Sun, Z. (2011) A Compact Finite Difference Scheme for the Fractional Sub-Diffusion Equations. Journal of Computational Physics, 230, 586-595.
https://doi.org/10.1016/j.jcp.2010.10.007
|
[5]
|
Lin, Y. and Xu, C. (2007) Finite Difference/Spectral Approximation for the Time-Fractional Diffusion Equation. Journal of Computational Physics, 225, 1533-1552.
https://doi.org/10.1016/j.jcp.2007.02.001
|
[6]
|
Li, X. and Xu, C. (2009) A Space-Time Spectral Method for the Time Fractional Diffusion Equation. SIAM Journal on Numerical Analysis, 47, 2108-2131. https://doi.org/10.1137/080718942
|
[7]
|
Mao, Z. and Shen, J. (2017) Hermite Spectral Methods for Fractional PDEs in Unbounded Domains. SIAM Journal on Scientific Computing, 39, A1928-A1950.
https://doi.org/10.1137/16M1097109
|
[8]
|
Zheng, M., Liu, F., Anh, V. and Turner, I. (2016) A High-Order Spectral Method for the Multi-Term Time-Fractional Diffusion Equations. Applied Mathematical Modelling, 40, 4970-4985.
https://doi.org/10.1016/j.apm.2015.12.011
|
[9]
|
Shi, Z., Zhao, Y., Liu, F., Tang, Y., et al. (2017) High Accuracy Analysis of an H1-Galerkin Mixed Finite Element Method for Two-Dimensional Time Fractional Diffusion Equations. Computers and Mathematics with Applications, 74, 1903-1914.
https://doi.org/10.1016/j.camwa.2017.06.057
|
[10]
|
Zhao, Y., Chen, P., Bu, W., et al. (2017) Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations. Journal of Scientific Computing, 70, 407-428.
https://doi.org/10.1007/s10915-015-0152-y
|
[11]
|
Chen, L., Nochetto, R., Otárola, E. and Salgado, A. (2016) Multilevel Methods for Nonuniformly Elliptic Operators and Fractional Diffusion. Mathematics of Computation, 85, 2583-2607.
https://doi.org/10.1090/mcom/3089
|
[12]
|
Jin, B., Lazarov, R., Pasciak, J. and Zhou, Z. (2015) Error Analysis of Semidiscrete Finite Element Methods for Inhomogeneous Time-Fractional Diffusion. IMA Journal of Numerical Analysis, 35, 561-582. https://doi.org/10.1093/imanum/dru018
|
[13]
|
Zeng, F., Li, C., Liu, F. and Turner, I. (2015) Numerical Alogrithms for Time Fractional Subdiffusion Equation with Second-Order Accuracy. SIAM Journal on Scientific Computing, 37, A55-A78. https://doi.org/10.1137/14096390X
|
[14]
|
Zhou, Z. and Gong, W. (2016) Finite Element Approximation of Optimal Control Problems Governed by Time Fractional Diffusion Equation. Computers and Mathematics with Applications, 71, 301-318. https://doi.org/10.1016/j.camwa.2015.11.014
|
[15]
|
Du, N., Wang, H. and Liu, W. (2016) A Fast Gradient Projection Method for a Constrained Fractional Optimal Control. Journal of Scientific Computing, 68, 1-20.
https://doi.org/10.1007/s10915-015-0125-1
|
[16]
|
Zhou, Z. and Tan, Z. (2019) Finite Element Approximation of Optimal Control Problem Governed by Space Fractional Equation. Journal of Scientific Computing, 78, 1840-1861.
https://doi.org/10.1007/s10915-018-0829-0
|
[17]
|
Zhang, C., Liu, H. and Zhou, Z. (2019) A Priori Error Analysis for Time-Stepping Discontinuous Galerkin Finite Element Approximation of Time Fractional Optimal Control Problem. Journal of Scientific Computing, 80, 993-1018.
https://doi.org/10.1007/s10915-019-00964-9
|
[18]
|
Gunzburger, M. and Wang, J. (2019) Error Analysis of Fully Discrete Finite Element Approximations to an Optimal Control Problem Governed by a Time-Fractional PDE. SIAM Journal on Control and Optimization, 57, 241-263.
https://doi.org/10.1137/17M1155636
|
[19]
|
Lions, J. and Magenes, E. (1972) Non Homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin.
|
[20]
|
Hinze, M., Yan, N. and Zhou, Z. (2009) Variational Discretization for Optimal Control Governed by Convection Dominated Diffusion Equations. Journal of Computational Mathematics, 27, 237-253. http://global-sci.org/intro/article detail/jcm/8570.html
|
[21]
|
Tang, Y. and Hua, Y. (2014) Supercovergence Analysis for Parabolic Optimal Control Problems. Calcolo, 51, 381-392.
https://doi.org/10.1007/s10092-013-0091-7
|
[22]
|
Chen, Y., Huang, Y. and Yi, N. (2008) A Posteriori Error Estimates of Spectral Method for Optimal Control Problems Governed by Parabolic Equations. Science in China Series A: Mathematics, 51, 1376-1390.
https://doi.org/10.1007/s11425-008-0097-9
|
[23]
|
Jiang, Y. and Ma, J. (2011) High-Order Finite Element Methods for Time-Fractional Partial Di_erential Equations. Journal of Computational and Applied Mathematics, 235, 3285-3290.
https://doi.org/10.1016/j.cam.2011.01.011
|
[24]
|
Li, R., Liu, W. and Yan, N. (2007) A Posteriori Error Estimates of Recovery Type for Distributed Convex Optimal Control Problems. Journal of Scientific Computing, 33, 155-182.
https://doi.org/10.1007/s10915-007-9147-7
|