[1]
|
Evers, M.M., Tran, H.D., Zalachoras, I., Pepers, B.A., Meijer, O.C., den Dunnen, J.T., van Ommen, G.J., Aartsma-Rus, A. and van Roon-Mom, W.M. (2013) Ataxin-3 Protein Modification as a Treatment Strategy for Spinocerebellar Ataxia Type 3: Removal of the CAG Containing Exon. Neurobiology of Disease, 58, 49-56. https://doi.org/10.1016/j.nbd.2013.04.019
|
[2]
|
Takahashi, T., Katada, S. and Onodera, O. (2010) Polyglutamine Diseases: Where Does Toxicity Come from? What Is Toxicity? Where Are We Going? Journal of Molecular Cell Biology, 2, 180-191. https://doi.org/10.1093/jmcb/mjq005
|
[3]
|
Hansen, S.K., Borland, H., Hasholt, L.F., Tumer, Z., Nielsen, J.E., Rasmussen, M.A., Nielsen, T.T., Stummann, T.C., Fog, K. and Hyttel, P. (2016) Generation of Spinocerebellar Ataxia Type 3 Patient-Derived Induced Pluripotent Stem Cell Line SCA3.B11. Stem Cell Research, 16, 589-592. https://doi.org/10.1016/j.scr.2016.02.042
|
[4]
|
Li, L.B., Yu, Z., Teng, X. and Bonini, N.M. (2008) RNA Toxicity Is a Component of Ataxin-3 Degeneration in Drosophila. Nature, 453, 1107-1111. https://doi.org/10.1038/nature06909
|
[5]
|
Nobrega, C., Nascimento-Ferreira, I., Onofre, I., Albuquerque, D., Hirai, H., Deglon, N. and de Almeida, L.P. (2013) Silencing Mutant Ataxin-3 Rescues Motor Deficits and Neuropathology in Machado-Joseph Disease Transgenic Mice. PLoS ONE, 8, e52396. https://doi.org/10.1371/journal.pone.0052396
|
[6]
|
Gales, L., Cortes, L., Almeida, C., Melo, C.V., Costa, M.C., Maciel, P., Clarke, D.T., Damas, A.M. and Macedo-Ribeiro, S. (2005) Towards a Structural Understanding of the Fibrillization Pathway in Machado-Joseph’s Disease: Trapping Early Oligomers of Non-Expanded Ataxin-3. Journal of Molecular Biology, 353, 642-654. https://doi.org/10.1016/j.jmb.2005.08.061
|
[7]
|
Tzvetkov, N. and Breuer, P. (2007) Josephin Domain-Containing Proteins from a Variety of Species Are Active de-Ubiquitination Enzymes. Biological Chemistry, 388, 973-978. https://doi.org/10.1515/BC.2007.107
|
[8]
|
Albrecht, M., Golatta, M., Wullner, U. and Lengauer, T. (2004) Structural and Functional Analysis of Ataxin-2 and Ataxin-3. European Journal of Biochemistry, 271, 3155-3170. https://doi.org/10.1111/j.1432-1033.2004.04245.x
|
[9]
|
Riess, O., Rub, U., Pastore, A., Bauer, P. and Schols, L. (2008) SCA3: Neurological Features, Pathogenesis and Animal Models. Cerebellum (London, England), 7, 125-137. https://doi.org/10.1007/s12311-008-0013-4
|
[10]
|
Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K. and Bernards, R. (2005) A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell, 123, 773-786. https://doi.org/10.1016/j.cell.2005.11.007
|
[11]
|
Todi, S.V., Winborn, B.J., Scaglione, K.M., Blount, J.R., Travis, S.M. and Paulson, H.L. (2009) Ubiquitination Directly Enhances Activity of the Deubiquitinating Enzyme Ataxin-3. The EMBO Journal, 28, 372-382. https://doi.org/10.1038/emboj.2008.289
|
[12]
|
Ferro, A., Carvalho, A.L., Teixeira-Castro, A., Almeida, C., Tome, R.J., Cortes, L., Rodrigues, A.J., Logarinho, E., Sequeiros, J., Macedo-Ribeiro, S. and Maciel, P. (2007) NEDD8: A New Ataxin-3 Interactor. Biochimica et Biophysica Acta, 1773, 1619-1627. https://doi.org/10.1016/j.bbamcr.2007.07.012
|
[13]
|
Li, F., Macfarlan, T., Pittman, R.N. and Chakravarti, D. (2002) Ataxin-3 Is a Histone-Binding Protein with Two Independent Transcriptional Corepressor Activities. The Journal of Biological Chemistry, 277, 45004-45012. https://doi.org/10.1074/jbc.M205259200
|
[14]
|
Haacke, A., Broadley, S.A., Boteva, R., Tzvetkov, N., Hartl, F.U. and Breuer, P. (2006) Proteolytic Cleavage of Polyglutamine-Expanded Ataxin-3 Is Critical for Aggregation and Sequestration of Non-Expanded Ataxin-3. Human Molecular Genetics, 15, 555-568. https://doi.org/10.1093/hmg/ddi472
|
[15]
|
Berke, S.J., Schmied, F.A., Brunt, E.R., Ellerby, L.M. and Paulson, H.L. (2004) Caspase-Mediated Proteolysis of the Polyglutamine Disease Protein Ataxin-3. Journal of Neurochemistry, 89, 908-918. https://doi.org/10.1111/j.1471-4159.2004.02369.x
|
[16]
|
Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., Doerr, J., Ladewig, J., Mertens, J., Tuting, T., Hoffmann, P., Klockgether, T., Evert, B.O., Wullner, U. and Brustle, O. (2011) Excitation-Induced Ataxin-3 Aggregation in Neurons from Patients with Machado-Joseph Disease. Nature, 480, 543-546. https://doi.org/10.1038/nature10671
|
[17]
|
Takahashi, T., Kikuchi, S., Katada, S., Nagai, Y., Nishizawa, M. and Onodera, O. (2008) Soluble Polyglutamine Oligomers Formed Prior to Inclusion Body Formation Are Cytotoxic. Human Molecular Genetics, 17, 345-356. https://doi.org/10.1093/hmg/ddm311
|
[18]
|
Goti, D., Katzen, S.M., Mez, J., Kurtis, N., Kiluk, J., Ben-Haiem, L., Jenkins, N.A., Copeland, N.G., Kakizuka, A., Sharp, A.H., Ross, C.A., Mouton, P.R. and Colomer, V. (2004) A Mutant Ataxin-3 Putative-Cleavage Fragment in Brains of Machado-Joseph Disease Patients and Transgenic Mice Is Cytotoxic above a Critical Concentration. The Journal of Neuroscience, 24, 10266-10279. https://doi.org/10.1523/JNEUROSCI.2734-04.2004
|
[19]
|
Hubener, J., Weber, J.J., Richter, C., Honold, L., Weiss, A., Murad, F., Breuer, P., Wullner, U., Bellstedt, P., Paquet-Durand, F., Takano, J., Saido, T.C., Riess, O. and Nguyen, H.P. (2013) Calpain-Mediated Ataxin-3 Cleavage in the Molecular Pathogenesis of Spinocerebellar Ataxia Type 3 (SCA3). Human Molecular Genetics, 22, 508-518. https://doi.org/10.1093/hmg/dds449
|
[20]
|
Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S. and Kakizuka, A. (1996) Expanded Polyglutamine in the Machado-Joseph Disease Protein Induces Cell Death in Vitro and in Vivo. Nature Genetics, 13, 196-202. https://doi.org/10.1038/ng0696-196
|
[21]
|
Teixeira-Castro, A., Ailion, M., Jalles, A., Brignull, H.R., Vilaca, J.L., Dias, N., Rodrigues, P., Oliveira, J.F., Neves-Carvalho, A., Morimoto, R.I. and Maciel, P. (2011) Neuron-Specific Proteotoxicity of Mutant Ataxin-3 in C. elegans: Rescue by the DAF-16 and HSF-1 Pathways. Human Molecular Genetics, 20, 2996-3009. https://doi.org/10.1093/hmg/ddr203
|
[22]
|
Burnett, B.G. and Pittman, R.N. (2005) The Polyglutamine Neurodegenerative Protein Ataxin 3 Regulates Aggresome Formation. Proceedings of the National Academy of Sciences of the United States of America, 102, 4330-4335. https://doi.org/10.1073/pnas.0407252102
|
[23]
|
Paulson, H. (2012) Machado-Joseph Disease/Spinocerebellar Ataxia Type 3. In: Handbook of Clinical Neurology, Vol. 103, Elsevier, Amsterdam, 437-449. https://doi.org/10.1016/B978-0-444-51892-7.00027-9
|
[24]
|
Rodrigues, A.J., do Carmo Costa, M., Silva, T.L., Ferreira, D., Bajanca, F., Logarinho, E. and Maciel, P. (2010) Absence of Ataxin-3 Leads to Cytoskeletal Disorganization and Increased Cell Death. Biochimica et Biophysica Acta, 1803, 1154-1163. https://doi.org/10.1016/j.bbamcr.2010.07.004
|
[25]
|
do Carmo Costa, M., Bajanca, F., Rodrigues, A.J., Tome, R.J., Corthals, G., Macedo-Ribeiro, S., Paulson, H.L., Logarinho, E. and Maciel, P. (2010) Ataxin-3 Plays a Role in Mouse Myogenic Differentiation through Regulation of Integrin Subunit Levels. PLoS ONE, 5, e11728. https://doi.org/10.1371/journal.pone.0011728
|
[26]
|
Paulson, H.L., Das, S.S., Crino, P.B., Perez, M.K., Patel, S.C., Gotsdiner, D., Fischbeck, K.H. and Pittman, R.N. (1997) Machado-Joseph Disease Gene Product Is a Cytoplasmic Protein Widely Expressed in Brain. Annals of Neurology, 41, 453-462. https://doi.org/10.1002/ana.410410408
|
[27]
|
Mauri, P.L., Riva, M., Ambu, D., De Palma, A., Secundo, F., Benazzi, L., Valtorta, M., Tortora, P. and Fusi, P. (2006) Ataxin-3 Is Subject to Autolytic Cleavage. The FEBS Journal, 273, 4277-4286. https://doi.org/10.1111/j.1742-4658.2006.05419.x
|
[28]
|
Paulson, H.L., Perez, M.K., Trottier, Y., Trojanowski, J.Q., Subramony, S.H., Das, S.S., Vig, P., Mandel, J.L., Fischbeck, K.H. and Pittman, R.N. (1997) Intranuclear Inclusions of Expanded Polyglutamine Protein in Spinocerebellar Ataxia Type 3. Neuron, 19, 333-344. https://doi.org/10.1016/S0896-6273(00)80943-5
|
[29]
|
Schmidt, T., Lindenberg, K.S., Krebs, A., Schols, L., Laccone, F., Herms, J., Rechsteiner, M., Riess, O. and Landwehrmeyer, G.B. (2002) Protein Surveillance Machinery in Brains with Spinocerebellar Ataxia Type 3: Redistribution and Differential Recruitment of 26S Proteasome Subunits and Chaperones to Neuronal Intranuclear Inclusions. Annals of Neurology, 51, 302-310. https://doi.org/10.1002/ana.10101
|
[30]
|
Horimoto, Y., Matsumoto, M., Akatsu, H., Kojima, A., Yoshida, M., Nokura, K., Yuasa, H., Katada, E., Yamamoto, T., Kosaka, K., Hashizume, Y., Yamamoto, H. and Mitake, S. (2011) Longitudinal Study on MRI Intensity Changes of Machado-Joseph Disease: Correlation between MRI Findings and Neuropathological Changes. Journal of Neurology, 258, 1657-1664. https://doi.org/10.1007/s00415-011-5992-2
|
[31]
|
Evert, B.O., Schelhaas, J., Fleischer, H., de Vos, R.A., Brunt, E.R., Stenzel, W., Klockgether, T. and Wullner, U. (2006) Neuronal Intranuclear Inclusions, Dysregulation of Cytokine Expression and Cell Death in Spinocerebellar Ataxia Type 3. Clinical Neuropathology, 25, 272-281.
|
[32]
|
Rub, U., de Vos, R.A., Brunt, E.R., Sebesteny, T., Schols, L., Auburger, G., Bohl, J., Ghebremedhin, E., Gierga, K., Seidel, K., den Dunnen, W., Heinsen, H., Paulson, H. and Deller, T. (2006) Spinocerebellar Ataxia Type 3 (SCA3): Thalamic Neurodegeneration Occurs Independently from Thalamic Ataxin-3 Immunopositive Neuronal Intranuclear Inclusions. Brain Pathology (Zurich, Switzerland), 16, 218-227. https://doi.org/10.1111/j.1750-3639.2006.00022.x
|
[33]
|
Ajayi, A., Yu, X., Lindberg, S., Langel, U. and Strom, A.L. (2012) Expanded Ataxin-7 Cause Toxicity by Inducing ROS Production from NADPH Oxidase Complexes in a Stable Inducible Spinocerebellar Ataxia Type 7 (SCA7) Model. BMC Neuroscience, 13, Article No. 86. https://doi.org/10.1186/1471-2202-13-86
|
[34]
|
Goswami, A., Dikshit, P., Mishra, A., Mulherkar, S., Nukina, N. and Jana, N.R. (2006) Oxidative Stress Promotes Mutant Huntingtin Aggregation and Mutant Huntingtin-Dependent Cell Death by Mimicking Proteasomal Malfunction. Biochemical and Biophysical Research Communications, 342, 184-190. https://doi.org/10.1016/j.bbrc.2006.01.136
|
[35]
|
Kim, S.J., Kim, T.S., Hong, S., Rhim, H., Kim, I.Y. and Kang, S. (2003) Oxidative Stimuli Affect Polyglutamine Aggregation and Cell Death in Human Mutant Ataxin-1-Expressing Cells. Neuroscience Letters, 348, 21-24. https://doi.org/10.1016/S0304-3940(03)00657-8
|
[36]
|
Miyata, R., Hayashi, M., Tanuma, N., Shioda, K., Fukatsu, R. and Mizutani, S. (2008) Oxidative Stress in Neurodegeneration in Dentatorubral-Pallidoluysian Atrophy. Journal of the Neurological Sciences, 264, 133-139. https://doi.org/10.1016/j.jns.2007.08.025
|
[37]
|
Yu, Y.C., Kuo, C.L., Cheng, W.L., Liu, C.S. and Hsieh, M. (2009) Decreased Antioxidant Enzyme Activity and Increased Mitochondrial DNA Damage in Cellular Models of Machado-Joseph Disease. Journal of Neuroscience Research, 87, 1884-1891. https://doi.org/10.1002/jnr.22011
|
[38]
|
Kazachkova, N., Raposo, M., Montiel, R., Cymbron, T., Bettencourt, C., Silva-Fernandes, A., Silva, S., Maciel, P. and Lima, M. (2013) Patterns of Mitochondrial DNA Damage in Blood and Brain Tissues of a Transgenic Mouse Model of Machado-Joseph Disease. Neuro-Degenerative Diseases, 11, 206-214. https://doi.org/10.1159/000339207
|
[39]
|
Laco, M.N., Oliveira, C.R., Paulson, H.L. and Rego, A.C. (2012) Compromised Mitochondrial Complex II in Models of Machado-Joseph Disease. Biochimica et Biophysica Acta, 1822, 139-149. https://doi.org/10.1016/j.bbadis.2011.10.010
|
[40]
|
Emerit, J., Edeas, M. and Bricaire, F. (2004) Neurodegenerative Diseases and Oxidative Stress. Biomedicine & Pharmacotherapy, 58, 39-46. https://doi.org/10.1016/j.biopha.2003.11.004
|
[41]
|
Evers, M.M., Toonen, L.J. and van Roon-Mom, W.M. (2014) Ataxin-3 Protein and RNA Toxicity in Spinocerebellar Ataxia Type 3: Current Insights and Emerging Therapeutic Strategies. Molecular Neurobiology, 49, 1513-1531. https://doi.org/10.1007/s12035-013-8596-2
|
[42]
|
Sopher, B.L., Ladd, P.D., Pineda, V.V., Libby, R.T., Sunkin, S.M., Hurley, J.B., Thienes, C.P., Gaasterland, T., Filippova, G.N. and La Spada, A.R. (2011) CTCF Regulates Ataxin-7 Expression through Promotion of a Convergently Transcribed, Antisense Noncoding RNA. Neuron, 70, 1071-1084. https://doi.org/10.1016/j.neuron.2011.05.027
|
[43]
|
He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. and Kinzler, K.W. (2008) The Antisense Transcriptomes of Human Cells. Science, 322, 1855-1857. https://doi.org/10.1126/science.1163853
|
[44]
|
Banez-Coronel, M., Porta, S., Kagerbauer, B., Mateu-Huertas, E., Pantano, L., Ferrer, I., Guzman, M., Estivill, X. and Marti, E. (2012) A Pathogenic Mechanism in Huntington’s Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity. PLoS Genetics, 8, e1002481. https://doi.org/10.1371/journal.pgen.1002481
|
[45]
|
Bilen, J., Liu, N., Burnett, B.G., Pittman, R.N. and Bonini, N.M. (2006) MicroRNA Pathways Modulate Polyglutamine-Induced Neurodegeneration. Molecular Cell, 24, 157-163. https://doi.org/10.1016/j.molcel.2006.07.030
|
[46]
|
Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D., Margolis, J., Peterson, M., Markowski, T.W., Ingram, M.A., Nan, Z., Forster, C., Low, W.C., Schoser, B., Somia, N.V., Clark, H.B., Schmechel, S., Bitterman, P.B., Gourdon, G., Swanson, M.S., Moseley, M. and Ranum, L.P. (2011) Non-ATG-Initiated Translation Directed by Microsatellite Expansions. Proceedings of the National Academy of Sciences of the United States of America, 108, 260-265. https://doi.org/10.1073/pnas.1013343108
|
[47]
|
Pearson, C.E. (2011) Repeat Associated Non-ATG Translation Initiation: One DNA, Two Transcripts, Seven Reading Frames, Potentially Nine Toxic Entities! PLoS Genetics, 7, e1002018. https://doi.org/10.1371/journal.pgen.1002018
|
[48]
|
Bezprozvanny, I. and Klockgether, T. (2009) Therapeutic Prospects for Spinocerebellar Ataxia Type 2 and 3. Drugs of the Future, 34.
|
[49]
|
Shao, J. and Diamond, M.I. (2007) Polyglutamine Diseases: Emerging Concepts in Pathogenesis and Therapy. Human Molecular Genetics, 16, R115-R123. https://doi.org/10.1093/hmg/ddm213
|
[50]
|
Johri, A. and Beal, M.F. (2012) Antioxidants in Huntington’s Disease. Biochimica et Biophysica Acta, 1822, 664-674. https://doi.org/10.1016/j.bbadis.2011.11.014
|
[51]
|
Hersch, S.M., Gevorkian, S., Marder, K., Moskowitz, C., Feigin, A., Cox, M., Como, P., Zimmerman, C., Lin, M., Zhang, L., Ulug, A.M., Beal, M.F., Matson, W., Bogdanov, M., Ebbel, E., Zaleta, A., Kaneko, Y., Jenkins, B., Hevelone, N., Zhang, H., Yu, H., Schoenfeld, D., Ferrante, R. and Rosas, H.D. (2006) Creatine in Huntington Disease Is Safe, Tolerable, Bioavailable in Brain and Reduces Serum 8OH2’dG. Neurology, 66, 250-252. https://doi.org/10.1212/01.wnl.0000194318.74946.b6
|
[52]
|
Lo, R.Y., Figueroa, K.P., Pulst, S.M., Lin, C.Y., Perlman, S., Wilmot, G., Gomez, C., Schmahmann, J., Paulson, H., Shakkottai, V.G., Ying, S., Zesiewicz, T., Bushara, K., Geschwind, M., Xia, G., Subramony, S.H., Ashizawa, T. and Kuo, S.H. (2015) Coenzyme Q10 and Spinocerebellar Ataxias. Movement Disorders, 30, 214-220. https://doi.org/10.1002/mds.26088
|
[53]
|
Chou, A.H., Yeh, T.H., Ouyang, P., Chen, Y.L., Chen, S.Y. and Wang, H.L. (2008) Polyglutamine-Expanded Ataxin-3 Causes Cerebellar Dysfunction of SCA3 Transgenic Mice by Inducing Transcriptional Dysregulation. Neurobiology of Disease, 31, 89-101. https://doi.org/10.1016/j.nbd.2008.03.011
|
[54]
|
Chou, A.H., Chen, S.Y., Yeh, T.H., Weng, Y.H. and Wang, H.L. (2011) HDAC Inhibitor Sodium Butyrate Reverses Transcriptional Downregulation and Ameliorates Ataxic Symptoms in a Transgenic Mouse Model of SCA3. Neurobiology of Disease, 41, 481-488. https://doi.org/10.1016/j.nbd.2010.10.019
|
[55]
|
Minamiyama, M., Katsuno, M., Adachi, H., Waza, M., Sang, C., Kobayashi, Y., Tanaka, F., Doyu, M., Inukai, A. and Sobue, G. (2004) Sodium Butyrate Ameliorates Phenotypic Expression in a Transgenic Mouse Model of Spinal and Bulbar Muscular Atrophy. Human Molecular Genetics, 13, 1183-1192. https://doi.org/10.1093/hmg/ddh131
|
[56]
|
Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., Steffan, J.S., Marsh, J.L., Thompson, L.M., Lewis, C.M., Marks, P.A. and Bates, G.P. (2003) Suberoylanilide Hydroxamic Acid, a Histone Deacetylase Inhibitor, Ameliorates Motor Deficits in a Mouse Model of Huntington’s Disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 2041-2046. https://doi.org/10.1073/pnas.0437870100
|
[57]
|
Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter, R. and Hersch, S.M. (2003) Histone Deacetylase Inhibition by Sodium Butyrate Chemotherapy Ameliorates the Neurodegenerative Phenotype in Huntington’s Disease Mice. The Journal of Neuroscience, 23, 9418-9427. https://doi.org/10.1523/JNEUROSCI.23-28-09418.2003
|
[58]
|
Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J. and Beal, M.F. (2005) Neuroprotective Effects of Phenylbutyrate in the N171-82Q Transgenic Mouse Model of Huntington’s Disease. The Journal of Biological Chemistry, 280, 556-563. https://doi.org/10.1074/jbc.M410210200
|
[59]
|
Ying, M., Xu, R., Wu, X., Zhu, H., Zhuang, Y., Han, M. and Xu, T. (2006) Sodium Butyrate Ameliorates Histone Hypoacetylation and Neurodegenerative Phenotypes in a Mouse Model for DRPLA. The Journal of Biological Chemistry, 281, 12580-12586. https://doi.org/10.1074/jbc.M511677200
|
[60]
|
Steffan, J.S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B.L., Kazantsev, A., Schmidt, E., Zhu, Y.Z., Greenwald, M., Kurokawa, R., Housman, D.E., Jackson, G.R., Marsh, J.L. and Thompson, L.M. (2001) Histone Deacetylase Inhibitors Arrest Polyglutamine-Dependent Neurodegeneration in Drosophila. Nature, 413, 739-743. https://doi.org/10.1038/35099568
|
[61]
|
Lei, L.F., Yang, G.P., Wang, J.L., Chuang, D.M., Song, W.H., Tang, B.S. and Jiang, H. (2016) Safety and Efficacy of Valproic Acid Treatment in SCA3/MJD Patients. Parkinsonism & Related Disorders, 26, 55-61. https://doi.org/10.1016/j.parkreldis.2016.03.005
|
[62]
|
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F. and Yao, T.P. (2002) HDAC6 Is a Microtubule-Associated Deacetylase. Nature, 417, 455-458. https://doi.org/10.1038/417455a
|
[63]
|
Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Toft, D.O., Pratt, W.B. and Yao, T.P. (2005) HDAC6 Regulates Hsp90 Acetylation and Chaperone-Dependent Activation of Glucocorticoid Receptor. Molecular Cell, 18, 601-607. https://doi.org/10.1016/j.molcel.2005.04.021
|
[64]
|
Ren, M., Leng, Y., Jeong, M., Leeds, P.R. and Chuang, D.M. (2004) Valproic Acid Reduces Brain Damage Induced by Transient Focal Cerebral Ischemia in Rats: Potential Roles of Histone Deacetylase Inhibition and Heat Shock Protein Induction. Journal of Neurochemistry, 89, 1358-1367. https://doi.org/10.1111/j.1471-4159.2004.02406.x
|
[65]
|
Zhao, Y., Sun, H., Lu, J., Li, X., Chen, X., Tao, D., Huang, W. and Huang, B. (2005) Lifespan Extension and Elevated hsp Gene Expression in Drosophila Caused by Histone Deacetylase Inhibitors. The Journal of Experimental Biology, 208, 697-705. https://doi.org/10.1242/jeb.01439
|
[66]
|
Alves, S., Nascimento-Ferreira, I., Dufour, N., Hassig, R., Auregan, G., Nobrega, C., Brouillet, E., Hantraye, P., Pedroso de Lima, M.C., Deglon, N. and de Almeida, L.P. (2010) Silencing Ataxin-3 Mitigates Degeneration in a Rat Model of Machado-Joseph Disease: No Role for Wild-Type Ataxin-3? Human Molecular Genetics, 19, 2380-2394. https://doi.org/10.1093/hmg/ddq111
|
[67]
|
Rodriguez-Lebron, E. and Paulson, H.L. (2006) Allele-Specific RNA Interference for Neurological Disease. Gene Therapy, 13, 576-581. https://doi.org/10.1038/sj.gt.3302702
|
[68]
|
Miller, V.M., Xia, H., Marrs, G.L., Gouvion, C.M., Lee, G., Davidson, B.L. and Paulson, H.L. (2003) Allele-Specific Silencing of Dominant Disease Genes. Proceedings of the National Academy of Sciences of the United States of America, 100, 7195-7200. https://doi.org/10.1073/pnas.1231012100
|
[69]
|
Alves, S., Nascimento-Ferreira, I., Auregan, G., Hassig, R., Dufour, N., Brouillet, E., Pedroso de Lima, M.C., Hantraye, P., Pereira de Almeida, L. and Deglon, N. (2008) Allele-Specific RNA Silencing of Mutant Ataxin-3 Mediates Neuroprotection in a Rat Model of Machado-Joseph Disease. PLoS ONE, 3, e3341. https://doi.org/10.1371/journal.pone.0003341
|
[70]
|
Gaspar, C., Lopes-Cendes, I., Hayes, S., Goto, J., Arvidsson, K., Dias, A., Silveira, I., Maciel, P., Coutinho, P., Lima, M., Zhou, Y.X., Soong, B.W., Watanabe, M., Giunti, P., Stevanin, G., Riess, O., Sasaki, H., Hsieh, M., Nicholson, G.A., Brunt, E., Higgins, J.J., Lauritzen, M., Tranebjaerg, L., Volpini, V., Wood, N., Ranum, L., Tsuji, S., Brice, A., Sequeiros, J. and Rouleau, G.A. (2001) Ancestral Origins of the Machado-Joseph Disease Mutation: A Worldwide Haplotype Study. American Journal of Human Genetics, 68, 523-528. https://doi.org/10.1086/318184
|
[71]
|
Xia, H., Mao, Q., Eliason, S.L., Harper, S.Q., Martins, I.H., Orr, H.T., Paulson, H.L., Yang, L., Kotin, R.M. and Davidson, B.L. (2004) RNAi Suppresses Polyglutamine-Induced Neurodegeneration in a Model of Spinocerebellar Ataxia. Nature Medicine, 10, 816-820. https://doi.org/10.1038/nm1076
|
[72]
|
Harper, S.Q., Staber, P.D., He, X., Eliason, S.L., Martins, I.H., Mao, Q., Yang, L., Kotin, R.M., Paulson, H.L. and Davidson, B.L. (2005) RNA Interference Improves Motor and Neuropathological Abnormalities in a Huntington’s Disease Mouse Model. Proceedings of the National Academy of Sciences of the United States of America, 102, 5820-5825. https://doi.org/10.1073/pnas.0501507102
|
[73]
|
Liu, J., Pendergraff, H., Narayanannair, K.J., Lackey, J.G., Kuchimanchi, S., Rajeev, K.G., Manoharan, M., Hu, J. and Corey, D.R. (2013) RNA Duplexes with Abasic Substitutions Are Potent and Allele-Selective Inhibitors of Huntingtin and Ataxin-3 Expression. Nucleic Acids Research, 41, 8788-8801. https://doi.org/10.1093/nar/gkt594
|
[74]
|
Liu, J., Yu, D., Aiba, Y., Pendergraff, H., Swayze, E.E., Lima, W.F., Hu, J., Prakash, T.P. and Corey, D.R. (2013) ss-siRNAs Allele Selectively Inhibit Ataxin-3 Expression: Multiple Mechanisms for an Alternative Gene Silencing Strategy. Nucleic Acids Research, 41, 9570-9583. https://doi.org/10.1093/nar/gkt693
|
[75]
|
Hu, J., Gagnon, K.T., Liu, J., Watts, J.K., Syeda-Nawaz, J., Bennett, C.F., Swayze, E.E., Randolph, J., Chattopadhyaya, J. and Corey, D.R. (2011) Allele-Selective Inhibition of Ataxin-3 (ATX3) Expression by Antisense Oligomers and Duplex RNAs. Biological Chemistry, 392, 315-325. https://doi.org/10.1515/bc.2011.045
|
[76]
|
Spitali, P. and Aartsma-Rus, A. (2012) Splice Modulating Therapies for Human Disease. Cell, 148, 1085-1088. https://doi.org/10.1016/j.cell.2012.02.014
|
[77]
|
Zalachoras, I., Evers, M.M., van Roon-Mom, W.M., Aartsma-Rus, A.M. and Meijer, O.C. (2011) Antisense-Mediated RNA Targeting: Versatile and Expedient Genetic Manipulation in the Brain. Frontiers in Molecular Neuroscience, 4, 10. https://doi.org/10.3389/fnmol.2011.00010
|
[78]
|
Wellington, C.L. and Hayden, M.R. (2000) Caspases and Neurodegeneration: On the Cutting Edge of New Therapeutic Approaches. Clinical Genetics, 57, 1-10. https://doi.org/10.1034/j.1399-0004.2000.570101.x
|
[79]
|
Tarlac, V. and Storey, E. (2003) Role of Proteolysis in Polyglutamine Disorders. Journal of Neuroscience Research, 74, 406-416. https://doi.org/10.1002/jnr.10746
|
[80]
|
Di Prospero, N.A. and Fischbeck, K.H. (2005) Therapeutics Development for Triplet Repeat Expansion Diseases. Nature Reviews Genetics, 6, 756-766. https://doi.org/10.1038/nrg1690
|
[81]
|
Ona, V.O., Li, M., Vonsattel, J.P., Andrews, L.J., Khan, S.Q., Chung, W.M., Frey, A.S., Menon, A.S., Li, X.J., Stieg, P.E., Yuan, J., Penney, J.B., Young, A.B., Cha, J.H. and Friedlander, R.M. (1999) Inhibition of Caspase-1 Slows Disease Progression in a Mouse Model of Huntington’s Disease. Nature, 399, 263-267. https://doi.org/10.1038/20446
|
[82]
|
Li, Z. and Sheng, M. (2012) Caspases in Synaptic Plasticity. Molecular Brain, 5, Article No. 15. https://doi.org/10.1186/1756-6606-5-15
|
[83]
|
Troy, C.M. and Salvesen, G.S. (2002) Caspases on the Brain. Journal of Neuroscience Research, 69, 145-150. https://doi.org/10.1002/jnr.10294
|
[84]
|
Haacke, A., Hartl, F.U. and Breuer, P. (2007) Calpain Inhibition Is Sufficient to Suppress Aggregation of Polyglutamine-Expanded Ataxin-3. The Journal of Biological Chemistry, 282, 18851-18856. https://doi.org/10.1074/jbc.M611914200
|
[85]
|
Simoes, A.T., Goncalves, N., Koeppen, A., Deglon, N., Kugler, S., Duarte, C.B. and Pereira de Almeida, L. (2012) Calpastatin-Mediated Inhibition of Calpains in the Mouse Brain Prevents Mutant Ataxin 3 Proteolysis, Nuclear Localization and Aggregation, Relieving Machado-Joseph Disease. Brain, 135, 2428-2439. https://doi.org/10.1093/brain/aws177
|
[86]
|
Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Kusakabe, M., Yoshiki, A., Kobayashi, Y., Doyu, M. and Sobue, G. (2003) Heat Shock Protein 70 Chaperone Overexpression Ameliorates Phenotypes of the Spinal and Bulbar Muscular Atrophy Transgenic Mouse Model by Reducing Nuclear-Localized Mutant Androgen Receptor Protein. The Journal of Neuroscience, 23, 2203-2211. https://doi.org/10.1523/JNEUROSCI.23-06-02203.2003
|
[87]
|
Cummings, C.J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., Orr, H.T., Dillmann, W.H. and Zoghbi, H.Y. (2001) Over-Expression of Inducible HSP70 Chaperone Suppresses Neuropathology and Improves Motor Function in SCA1 Mice. Human Molecular Genetics, 10, 1511-1518. https://doi.org/10.1093/hmg/10.14.1511
|
[88]
|
Sittler, A., Lurz, R., Lueder, G., Priller, J., Lehrach, H., Hayer-Hartl, M.K., Hartl, F.U. and Wanker, E.E. (2001) Geldanamycin Activates a Heat Shock Response and Inhibits Huntingtin Aggregation in a Cell Culture Model of Huntington’s Disease. Human Molecular Genetics, 10, 1307-1315. https://doi.org/10.1093/hmg/10.12.1307
|
[89]
|
Hay, D.G., Sathasivam, K., Tobaben, S., Stahl, B., Marber, M., Mestril, R., Mahal, A., Smith, D.L., Woodman, B. and Bates, G.P. (2004) Progressive Decrease in Chaperone Protein Levels in a Mouse Model of Huntington’s Disease and Induction of Stress Proteins as a Therapeutic Approach. Human Molecular Genetics, 13, 1389-1405. https://doi.org/10.1093/hmg/ddh144
|
[90]
|
Katsuno, M., Sang, C., Adachi, H., Minamiyama, M., Waza, M., Tanaka, F., Doyu, M. and Sobue, G. (2005) Pharmacological Induction of Heat-Shock Proteins Alleviates Polyglutamine-Mediated Motor Neuron Disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 16801-16806. https://doi.org/10.1073/pnas.0506249102
|
[91]
|
Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L. and Bonini, N.M. (2000) Mechanisms of Chaperone Suppression of Polyglutamine Disease: Selectivity, Synergy and Modulation of Protein Solubility in Drosophila. Human Molecular Genetics, 9, 2811-2820. https://doi.org/10.1093/hmg/9.19.2811
|
[92]
|
Muchowski, P.J., Schaffar, G., Sittler, A., Wanker, E.E., Hayer-Hartl, M.K. and Hartl, F.U. (2000) Hsp70 and Hsp40 Chaperones Can Inhibit Self-Assembly of Polyglutamine Proteins into Amyloid-Like Fibrils. Proceedings of the National Academy of Sciences of the United States of America, 97, 7841-7846. https://doi.org/10.1073/pnas.140202897
|
[93]
|
Bailey, C.K., Andriola, I.F., Kampinga, H.H. and Merry, D.E. (2002) Molecular Chaperones Enhance the Degradation of Expanded Polyglutamine Repeat Androgen Receptor in a Cellular Model of Spinal and Bulbar Muscular Atrophy. Human Molecular Genetics, 11, 515-523. https://doi.org/10.1093/hmg/11.5.515
|
[94]
|
Verhoef, L.G., Lindsten, K., Masucci, M.G. and Dantuma, N.P. (2002) Aggregate Formation Inhibits Proteasomal Degradation of Polyglutamine Proteins. Human Molecular Genetics, 11, 2689-2700. https://doi.org/10.1093/hmg/11.22.2689
|
[95]
|
Yoshida, H., Yoshizawa, T., Shibasaki, F., Shoji, S. and Kanazawa, I. (2002) Chemical Chaperones Reduce Aggregate Formation and Cell Death Caused by the Truncated Machado-Joseph Disease Gene Product with an Expanded Polyglutamine Stretch. Neurobiology of Disease, 10, 88-99. https://doi.org/10.1006/nbdi.2002.0502
|
[96]
|
Rubinsztein, D.C. (2006) The Roles of Intracellular Protein-Degradation Pathways in Neurodegeneration. Nature, 443, 780-786. https://doi.org/10.1038/nature05291
|
[97]
|
Boy, J., Schmidt, T., Wolburg, H., Mack, A., Nuber, S., Bottcher, M., Schmitt, I., Holzmann, C., Zimmermann, F., Servadio, A. and Riess, O. (2009) Reversibility of Symptoms in a Conditional Mouse Model of Spinocerebellar Ataxia Type 3. Human Molecular Genetics, 18, 4282-4295. https://doi.org/10.1093/hmg/ddp381
|
[98]
|
Ravikumar, B., Duden, R. and Rubinsztein, D.C. (2002) Aggregate-Prone Proteins with Polyglutamine and Polyalanine Expansions Are Degraded by Autophagy. Human Molecular Genetics, 11, 1107-1117. https://doi.org/10.1093/hmg/11.9.1107
|
[99]
|
Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O’Kane, C.J. and Rubinsztein, D.C. (2004) Inhibition of mTOR Induces Autophagy and Reduces Toxicity of Polyglutamine Expansions in Fly and Mouse Models of Huntington Disease. Nature Genetics, 36, 585-595. https://doi.org/10.1038/ng1362
|
[100]
|
Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O’Kane, C.J. and Rubinsztein, D.C. (2006) Rapamycin Alleviates Toxicity of Different Aggregate-Prone Proteins. Human Molecular Genetics, 15, 433-442. https://doi.org/10.1093/hmg/ddi458
|
[101]
|
Menzies, F.M., Huebener, J., Renna, M., Bonin, M., Riess, O. and Rubinsztein, D.C. (2010) Autophagy Induction Reduces Mutant Ataxin-3 Levels and Toxicity in a Mouse Model of Spinocerebellar Ataxia Type 3. Brain, 133, 93-104. https://doi.org/10.1093/brain/awp292
|
[102]
|
Jia, D.D., Zhang, L., Chen, Z., Wang, C.R., Huang, F.Z., Duan, R.H., Xia, K., Tang, B.S. and Jiang, H. (2013) Lithium Chloride Alleviates Neurodegeneration Partly by Inhibiting Activity of GSK3beta in a SCA3 Drosophila Model. Cerebellum (London, England), 12, 892-901. https://doi.org/10.1007/s12311-013-0498-3
|
[103]
|
Saute, J.A., de Castilhos, R.M., Monte, T.L., Schumacher-Schuh, A.F., Donis, K.C., D’Avila, R., Souza, G.N., Russo, A.D., Furtado, G.V., Gheno, T.C., de Souza, D.O., Portela, L.V., Saraiva-Pereira, M.L., Camey, S.A., Torman, V.B., de Mello Rieder, C.R. and Jardim, L.B. (2014) A Randomized, Phase 2 Clinical Trial of Lithium Carbonate in Machado-Joseph Disease. Movement Disorders, 29, 568-573. https://doi.org/10.1002/mds.25803
|
[104]
|
Duarte-Silva, S., Neves-Carvalho, A., Soares-Cunha, C., Teixeira-Castro, A., Oliveira, P., Silva-Fernandes, A. and Maciel, P. (2014) Lithium Chloride Therapy Fails to Improve Motor Function in a Transgenic Mouse Model of Machado-Joseph Disease. The Cerebellum, 13, 713-727. https://doi.org/10.1007/s12311-014-0589-9
|
[105]
|
Lin, C.H., Wu, Y.R., Yang, J.M., Chen, W.L., Chao, C.Y., Chen, I.C., Lin, T.H., Wu, Y.C., Hsu, K.C., Chen, C.M., Lee, G.C., Hsieh-Li, H.M., Lee, C.M. and Lee-Chen, G.J. (2016) Novel Lactulose and Melibiose Targeting Autophagy to Reduce PolyQ Aggregation in Cell Models of Spinocerebellar Ataxia 3. CNS & Neurological Disorders Drug Targets, 15, 351-359. https://doi.org/10.2174/1871527314666150821101522
|
[106]
|
Wang, H.L., Hu, S.H., Chou, A.H., Wang, S.S., Weng, Y.H. and Yeh, T.H. (2013) H1152 Promotes the Degradation of Polyglutamine-Expanded Ataxin-3 or Ataxin-7 Independently of Its ROCK-Inhibiting Effect and Ameliorates Mutant Ataxin-3-Induced Neurodegeneration in the SCA3 Transgenic Mouse. Neuropharmacology, 70, 1-11. https://doi.org/10.1016/j.neuropharm.2013.01.006
|
[107]
|
Chen, X., Tang, T.S., Tu, H., Nelson, O., Pook, M., Hammer, R., Nukina, N. and Bezprozvanny, I. (2008) Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 3. The Journal of Neuroscience, 28, 12713-12724. https://doi.org/10.1523/JNEUROSCI.3909-08.2008
|
[108]
|
Makarewicz, D., Zieminska, E. and Lazarewicz, J.W. (2003) Dantrolene Inhibits NMDA-Induced 45Ca Uptake in Cultured Cerebellar Granule Neurons. Neurochemistry International, 43, 273-278. https://doi.org/10.1016/S0197-0186(03)00012-3
|
[109]
|
Lin, C.M., Neeru, S., Doufas, A.G., Liem, E., Muneer Shah, Y., Wadhwa, A., Lenhardt, R., Bjorksten, A., Taguchi, A., Kabon, B., Sessler, D.I. and Kurz, A. (2004) Dantrolene Reduces the Threshold and Gain for Shivering. Anesthesia and Analgesia, 98, 1318-1324. https://doi.org/10.1213/01.ANE.0000108968.21212.D7
|
[110]
|
Muehlschlegel, S., Rordorf, G. and Sims, J. (2011) Effects of a Single Dose of Dantrolene in Patients with Cerebral Vasospasm after Subarachnoid Hemorrhage: A Prospective Pilot Study. Stroke, 42, 1301-1306. https://doi.org/10.1161/STROKEAHA.110.603159
|
[111]
|
Cunha, R.A. and Agostinho, P.M. (2010) Chronic Caffeine Consumption Prevents Memory Disturbance in Different Animal Models of Memory Decline. Journal of Alzheimer’s Disease, 20, S95-S116. https://doi.org/10.3233/JAD-2010-1408
|
[112]
|
Goncalves, N., Simoes, A.T., Cunha, R.A. and de Almeida, L.P. (2013) Caffeine and Adenosine A2A Receptor Inactivation Decrease Striatal Neuropathology in a Lentiviral-Based Model of Machado-Joseph Disease. Annals of Neurology, 73, 655-666. https://doi.org/10.1002/ana.23866
|
[113]
|
Popoli, P., Blum, D., Martire, A., Ledent, C., Ceruti, S. and Abbracchio, M.P. (2007) Functions, Dysfunctions and Possible Therapeutic Relevance of Adenosine A2A Receptors in Huntington’s Disease. Progress in Neurobiology, 81, 331-348. https://doi.org/10.1016/j.pneurobio.2006.12.005
|
[114]
|
Martinez-Morales, P.L., Revilla, A., Ocana, I., Gonzalez, C., Sainz, P., McGuire, D. and Liste, I. (2013) Progress in Stem Cell Therapy for Major Human Neurological Disorders. Stem Cell Reviews, 9, 685-699. https://doi.org/10.1007/s12015-013-9443-6
|
[115]
|
Jones, J., Jaramillo-Merchan, J., Bueno, C., Pastor, D., Viso-Leon, M. and Martinez, S. (2010) Mesenchymal Stem Cells Rescue Purkinje Cells and Improve Motor Functions in a Mouse Model of Cerebellar Ataxia. Neurobiology of Disease, 40, 415-623. https://doi.org/10.1016/j.nbd.2010.07.001
|