[1]
|
Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M., Markus, T., Marshak, A., Neumann, T., Palm, S., Schutz, B., Smith, B., Spinhirne, J., & Webb, C. (2010). The ICESat-2 Laser Altimetry Mission. Proceedings of the IEEE, 98, 735-751. https://doi.org/10.1109/JPROC.2009.2034765
|
[2]
|
Abdelkareem, M., Gaber, A., Abdalla, F., & El-Din, G. K. (2020). Use of Optical and Radar Remote Sensing Satellites for Identifying and Monitoring Active/Inactive Landforms in the Driest Desert in Saudi Arabia. Geomorphology, 362, Article ID: 107197. https://doi.org/10.1016/j.geomorph.2020.107197
|
[3]
|
Al-Masrahy, M. A., & Mountney, N. P. (2013). Remote Sensing of Spatial Variability in Aeolian Dune and Interdune Morphology in the Rub’ Al-Khali, Saudi Arabia. Aeolian Research, 11, 155-170. https://doi.org/10.1016/j.aeolia.2013.06.004
|
[4]
|
Bagnold, R. A. (1971). The Physics of Blown Sand and Desert Dunes. Berlin: Springer. https://doi.org/10.1007/978-94-009-5682-7
|
[5]
|
Blumenfeld, J. (2019). ICESAT-2 Data Usher in a New Age of Exploration. Tools and Technology Articles, EarthData, NASA. https://earthdata.nasa.gov/learn/articles/tools-and-technology-articles/icesat-2-data
|
[6]
|
Bourke, M. C., Lancaster, N., Fenton, L. K., Parteli, E. J. R., Zimbelman, J. R., & Radebaugh, J. (2010). Extraterrestrial Dunes: An Introduction to the Special Issue on Planetary Dune Systems. Geomorphology, 121, 1-14. https://doi.org/10.1016/j.geomorph.2010.04.007
|
[7]
|
Breed, C. S., Fryberger, S. G., Andrews, S., McCauley, C., Lennartz, F., Gebel, D., & Horstman, K. (1979). Regional Studies of Sand Seas Using Landsat (ERTS) Imagery. In A Study of Global Sand Seas (pp. 305-397). Professional Paper No. 1052, Reston, VA: US Geological Survey.
|
[8]
|
Bristow, C. (2009). Ground Penetrating Radar in Aeolian Dune Sands. In Ground Penetrating Radar Theory and Applications (pp. 271-297). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53348-7.00009-0
|
[9]
|
Bubenzer, O., & Bolten, A. (2008). The Use of New Elevation Data (SRTM/ASTER) for the Detection and Morphometric Quantification of Pleistocene Megadunes (DRAA) in the Eastern Sahara and the Southern Namib. Geomorphology, 102, 221-231. https://doi.org/10.1016/j.geomorph.2008.05.003
|
[10]
|
Cole, T. D. (1997). Spaceborne Laser Altimetry. Advancement of Photonics for Space: A Critical Review, Volume 10288, 102880G. https://doi.org/10.1117/12.278755
|
[11]
|
Courrech du Pont, S. (2015). Dune Morphodynamics. Comptes Rendus Physique, 16, 118-138. https://doi.org/10.1016/j.crhy.2015.02.002
|
[12]
|
Dabboor, M. D., Braun, A., & Kneen, M. A. (2013). Tracking Sand Dune Migration in the Rub Al-Khali with ICESat Laser Altimetry. International Journal of Remote Sensing, 34, 3832-3847. https://doi.org/10.1080/01431161.2012.762483
|
[13]
|
Dandabathula, G., Verma, M., Satyanarayana, P., & Srinivasa Rao, S. (2020). Evaluation of ICESat-2 ATL08 Data Product: Performance Assessment in Inland Water. European Journal of Environment and Earth Sciences, 1, 1. https://doi.org/10.24018/ejgeo.2020.1.3.15
|
[14]
|
Dhir, R. P., & Singhvi, A. K. (2012). The Thar Desert and Its Antiquity. Current Science, 102, 1001-1008. http://www.jstor.org/stable/24084539
|
[15]
|
Edgell, H. S. (2006). Arabian Deserts: Nature, Origin and Evolution. Berlin: Springer Science & Business Media. https://doi.org/10.1007/1-4020-3970-0
|
[16]
|
Falkner, P., & Schulz, R. (2015). Instrumentation for Planetary Exploration Missions. In Treatise on Geophysics (pp. 719-755). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00181-0
|
[17]
|
Fitzsimmons, K. E. (2015). Transverse Dunes. In Encyclopedia of Planetary Landforms (pp. 2185-2187). New York: Springer. https://doi.org/10.1007/978-1-4614-3134-3_381
|
[18]
|
Gao, X., Narteau, C., Rozier, O., & du Pont, S. C. (2015). Phase Diagrams of Dune Shape and Orientation Depending on Sand Availability. Scientific Reports, 5, Article No. 14677. https://doi.org/10.1038/srep14677
|
[19]
|
Goudie, A. (2011). Parabolic Dunes: Distribution, Form, Morphology and Change. Annals of Arid Zone, 50, 1-7.
|
[20]
|
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., Calvin, W., Clark, B. C., Fike, D. A., Golombek, M., Greeley, R., Haldemann, A., Herkenhoff, K. E., Jolliff, B. L., Knoll, A. H., Malin, M., McLennan, S. M., Parker, T., Soderblom, L., Sohl-Dickstein, J. N., Squyres, S. W., Tosca, N. J., & Watters, W. A. (2005). Stratigraphy and Sedimentology of a Dry to Wet Eolian Depositional System, Burns Formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 11-72. https://doi.org/10.1016/j.epsl.2005.09.039
|
[21]
|
Gutiérrez, M., & Gutiérrez, F. (2013). 13.8 Climatic Geomorphology. In Treatise on Geomorphology (pp. 115-131). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-374739-6.00346-8
|
[22]
|
Haff, P. K., & Presti, D. E. (1995). Barchan Dunes of the Salton Sea Region, California. In Desert Aeolian Processes (pp. 153-177). Berlin: Springer. https://doi.org/10.1007/978-94-009-0067-7_7
|
[23]
|
Hayward, R. K., Mullins, K. F., Fenton, L. K., Hare, T. M., Titus, T. N., Bourke, M. C., Colaprete, A., & Christensen, P. R. (2007). Mars Global Digital Dune Database and Initial Science Results. Journal of Geophysical Research, 112, E11007. https://doi.org/10.1029/2007JE002943
|
[24]
|
Hesp, P. (2011). Dune Coasts. In Treatise on Estuarine and Coastal Science (pp. 193-221). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-374711-2.00310-7
|
[25]
|
Hugenholtz, C. H., & Barchyn, T. E. (2010). Spatial Analysis of Sand Dunes with a New Global Topographic Dataset: New Approaches and Opportunities. Earth Surface Processes and Landforms, 35, 986-992. https://doi.org/10.1002/esp.2013
|
[26]
|
Hugenholtz, C. H., Levin, N., Barchyn, T. E., & Baddock, M. C. (2012). Remote Sensing and Spatial Analysis of Aeolian Sand Dunes: A Review and Outlook. Earth-Science Reviews, 111, 319-334. https://doi.org/10.1016/j.earscirev.2011.11.006
|
[27]
|
Inman, D. L., Ewing, G. C., & Corliss, J. B. (1966). Coastal Sand Dunes of Guerrero Negro, Baja California, Mexico. Geological Society of America Bulletin, 77, 787-802. https://doi.org/10.1130/0016-7606(1966)77[787:CSDOGN]2.0.CO;2
|
[28]
|
Kar, A. (1990). Megabarchanoids of the Thar: Their Environment, Morphology and Relationship with Longitudinal Dunes. The Geographical Journal, 156, 51. https://doi.org/10.2307/635436
|
[29]
|
Kar, A. (1993). Aeolian Processes and Bedforms in the Thar Desert. Journal of Arid Environments, 25, 83-96. https://doi.org/10.1006/jare.1993.1044
|
[30]
|
Kar, A. (1996). Morphology and Evolution of Sand Dunes in the Thar Desert as Key to Sand Control Measures. Indian Journal of Geomorphology, 1, 177-206.
|
[31]
|
Kar, A. (2014). The Thar or the Great Indian Sand Desert. In World Geomorphological Landscapes (pp. 79-90). Berlin: Springer. https://doi.org/10.1007/978-94-017-8029-2_7
|
[32]
|
Kok, J. F., Parteli, E. J. R., Michaels, T. I., & Karam, D. B. (2012). The Physics of Wind-Blown Sand and Dust. Reports on Progress in Physics, 75, Article ID: 106901. https://doi.org/10.1088/0034-4885/75/10/106901
|
[33]
|
Kumar, M., Goossens, E., & Goossens, R. (1993). Assessment of Sand Dune Change Detection in Rajasthan (Thar) Desert, India. International Journal of Remote Sensing, 14, 1689-1703. https://doi.org/10.1080/01431169308953995
|
[34]
|
Kwok, R., Markus, T., Kurtz, N. T., Petty, A. A., Neumann, T. A., Farrell, S. L., Cunningham, G. F., Hancock, D. W., Ivanoff, A., & Wimert, J. T. (2019). Surface Height and Sea Ice Freeboard of the Arctic Ocean from ICESat-2: Characteristics and Early Results. Journal of Geophysical Research: Oceans, 124, 6942-6959. https://doi.org/10.1029/2019JC015486
|
[35]
|
Lorenz, R. D., & Zimbelman, J. R. (2014). Sand. In Dune Worlds (pp. 17-25). Berlin: Springer. https://doi.org/10.1007/978-3-540-89725-5_2
|
[36]
|
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Zwally, J. et al. (2017). The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sensing of Environment, 190, 260-273. https://doi.org/10.1016/j.rse.2016.12.029
|
[37]
|
Martino, A. J., Neumann, T. A., Kurtz, N. T., & McLennan, D. (2019). ICESat-2 Mission Overview and Early Performance. Sensors, Systems, and Next-Generation Satellites XXIII, Strasbourg, 9-12 September 2019, 111510C. https://doi.org/10.1117/12.2534938
|
[38]
|
May, J. H. (2015). Parabolic Dune. In Encyclopedia of Planetary Landforms (pp. 1515-1518). New York: Springer. https://doi.org/10.1007/978-1-4614-3134-3_251
|
[39]
|
McKee, E. D. (1979). A Study of Global Sand Seas. Professional Paper, Reston, VA: US Geological Survey. https://doi.org/10.3133/pp1052
|
[40]
|
Moharana, P. C., Gaur, M. C., Choudhary, C., Chauhan, J. S., & Rajpurohit, R. S. (2013). A System of Geomorphological Mapping for Western Rajasthan with Relevance for Agricultural Land Use. Annals of Arid Zone, 52, 163-180.
|
[41]
|
Neuenschwander, A., & Pitts, K. (2019). The ATL08 Land and Vegetation Product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247-259. https://doi.org/10.1016/j.rse.2018.11.005
|
[42]
|
Neuenschwander, A. L., & Magruder, L. A. (2019). Canopy and Terrain Height Retrievals with ICESat-2: A First Look. Remote Sensing, 11, 1721. https://doi.org/10.3390/rs11141721
|
[43]
|
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Thomas, T. C. et al. (2019a). The Ice, Cloud, and Land Elevation Satellite-2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, Article ID: 111325. https://doi.org/10.1016/j.rse.2019.111325
|
[44]
|
Neumann, T., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K., & Gibbons, A. (2019b). Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) Project: Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons (ATL03). Washington DC: National Aeronautics and Space Administration, Goddard Space Flight Center.
|
[45]
|
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Luthcke, S. B., Harbeck, K., Lee, J., Gibbons, A., Saba, J., & Brunt, K. (2020). ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 3 [Data Set]. Washington DC: NASA National Snow and Ice Data Center DAAC.
|
[46]
|
Ould Ahmedou, D., Ould Mahfoudh, A., Dupont, P., Ould El Moctar, A., Valance, A., & Rasmussen, K. R. (2007). Barchan Dune Mobility in Mauritania Related to Dune and Interdune Sand Fluxes. Journal of Geophysical Research, 112, F02016. https://doi.org/10.1029/2006JF000500
|
[47]
|
Potts, L. V., Akyilmaz, O., Braun, A., & Shum, C. K. (2008). Multi-Resolution Dune Morphology Using Shuttle Radar Topography Mission (SRTM) and Dune Mobility from Fuzzy Inference Systems Using SRTM and Altimetric Data. International Journal of Remote Sensing, 29, 2879-2901. https://doi.org/10.1080/01431160701408352
|
[48]
|
Pye, K., & Tsoar, H. (1990). Aeolian Sand and Sand Dunes. Berlin: Springer. https://doi.org/10.1007/978-94-011-5986-9
|
[49]
|
Radebaugh, J., Lorenz, R., Farr, T., Paillou, P., Savage, C., & Spencer, C. (2010). Linear Dunes on Titan and Earth: Initial Remote Sensing Comparisons. Geomorphology, 121, 122-132. https://doi.org/10.1016/j.geomorph.2009.02.022
|
[50]
|
Radebaugh, J., Sharma, P., Korteniemi, J., & Fitzsimmons, K. E. (2015). Longitudinal Dunes (or Linear Dunes). In Encyclopedia of Planetary Landforms (pp. 1263-1271). New York: Springer. https://doi.org/10.1007/978-1-4614-3134-3_460
|
[51]
|
Reffet, E., Courrech du Pont, S., Hersen, P., & Douady, S. (2010). Formation and Stability of Transverse and Longitudinal Sand Dunes. Geology, 38, 491-494. https://doi.org/10.1130/G30894.1
|
[52]
|
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., & DiMarzio, J. P. (2005). Overview of the ICESat Mission. Geophysical Research Letters, 32, L21S01. https://doi.org/10.1029/2005GL024009
|
[53]
|
Singh, S., Ghose, B., & Vats, P. C. (1972). Genesis, Orientation, and Distribution of Sand Dunes in Arid and Semi-Arid Regions of India. Jodhpur: Central Arid Zone Research Institute.
|
[54]
|
Singhvi, A. K., & Kar, A. (2004). The Aeolian Sedimentation Record of the Thar Desert. Journal of Earth System Science, 113, 371-401. https://doi.org/10.1007/BF02716733
|
[55]
|
Srivastava, A., Thomas, D. S. G., & Durcan, J. A. (2019). Holocene Dune Activity in the Thar Desert, India. Earth Surface Processes and Landforms, 44, 1407-1418. https://doi.org/10.1002/esp.4583
|
[56]
|
Stephan, H., & Long, D. G. (2005). Modeling Microwave Emissions of Erg Surfaces in the Sahara Desert. IEEE Transactions on Geoscience and Remote Sensing, 43, 2822-2830. https://doi.org/10.1109/TGRS.2005.857899
|
[57]
|
Tirsch, D. (2015). Barchanoid Ridge. In Encyclopedia of Planetary Landforms (pp. 134-137). New York: Springer. https://doi.org/10.1007/978-1-4614-3134-3_13
|
[58]
|
Tsoar, H., & Blumberg, D. G. (2002). Formation of Parabolic Dunes from Barchan and Transverse Dunes along Israel’s Mediterranean Coast. Earth Surface Processes and Landforms, 27, 1147-1161. https://doi.org/10.1002/esp.417
|
[59]
|
Tsoar, H. (1985). Profiles Analysis of Sand Dunes and Their Steady State Signification. Geografiska Annaler: Series A, Physical Geography, 67, 47-59. https://doi.org/10.1080/04353676.1985.11880129
|
[60]
|
Wadhawan, S. K. (1994). Dune Dynamics and Evolution of Aeolian Landforms in Parts of Jaisalmer District, Rajasthan, India. Journal of the Indian Society of Remote Sensing, 22, 65-77. https://doi.org/10.1007/BF03023876
|
[61]
|
Wadhawan, S. K. (2020). Late Quaternary Evolution of Clustered Parabolic Megadunes in Thar Desert, India. In Quaternary Deserts and Climatic Change (pp. 185-195). Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781003077862-19
|
[62]
|
Wasson, R. J., & Hyde, R. (1983). Factors Determining Desert Dune Type. Nature, 304, 337-339. https://doi.org/10.1038/304337a0
|
[63]
|
Zhang, D., Narteau, C., & Rozier, O. (2010). Morphodynamics of Barchan and Transverse Dunes Using a Cellular Automaton Model. Journal of Geophysical Research, 115, F03041. https://doi.org/10.1029/2009JF001620
|
[64]
|
Zimbelman, J. R., Williams, S. H., & Johnston, A. K. (2012). Cross-Sectional Profiles of Sand Ripples, Megaripples, and Dunes: A Method for Discriminating between Formational Mechanisms. Earth Surface Processes and Landforms, 37, 1120-1125. https://doi.org/10.1002/esp.3243
|