[1]
|
Rodrigue, K.M., Kennedy, K.M. and Park, D.C. (2009) Beta-Amyloid Deposition and the Aging Brain. Neuropsychology Review, 19, Article No. 436. https://doi.org/10.1007/s11065-009-9118-x
|
[2]
|
Martinelli, A.H.S., Lopes, F.C., John, E.B.O., Carlini, C.R. and Ligabue-Braun, R. (2019) Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. International Journal of Molecular Sciences, 20, 1322. https://doi.org/10.3390/ijms20061322
|
[3]
|
Lal, R., Lin, H. and Quist, A.P. (2007) Amyloid Beta Ion Channel: 3D Structure and Relevance to Amyloid Channel Paradigm. Biochimica et Biophysica Acta, 1768, 1966-1975. https://doi.org/10.1016/j.bbamem.2007.04.021
|
[4]
|
Kaminsky, Y.G., Marlatt, M.W., Smith, M.A. and Kosenko, E.A. (2010) Subcellular and Metabolic Examination of Amyloid-β Peptides in Alzheimer Disease Pathogenesis: Evidence for Aβ25-35. Experimental Neurology, 221, 26-37. https://doi.org/10.1016/j.expneurol.2009.09.005
|
[5]
|
Zhao, L.N., Long, H.W., Mu, Y. and Chew, L.Y. (2012) The Toxicity of Amyloid β Oligomers. International Journal of Molecular Sciences, 13, 7303-7327. https://doi.org/10.3390/ijms13067303
|
[6]
|
Wang, D., Yuen, E.Y., Zhou, Y., Yan, Z. and Xiang, Y.K. (2011) Amyloid Beta Peptide-(1-42) Induces Internalization and Degradation of beta2 Adrenergic Receptors in Prefrontal Cortical Neurons. Journal of Biological Chemistry, 26, 31852-31863. https://doi.org/10.1074/jbc.M111.244335
|
[7]
|
Prapong, T., Uemura, E. and Hsu, W.H. (2001) G Protein and cAMP-Dependent Protein Kinase Mediate Amyloid Beta-Peptide Inhibition of Neuronal Glucose Uptake. Experimental Neurology, 167, 59-64. https://doi.org/10.1006/exnr.2000.7519
|
[8]
|
Skaper, S.D. (2012) Alzheimer’s Disease and Amyloid: Culprit or Coincidence? International Review of Neurobiology, 102, 277-316. https://doi.org/10.1016/B978-0-12-386986-9.00011-9
|
[9]
|
Kosiov, S., Afonin, A., Evsyukov, L. and Bondarenko, A. (2017) Alzheimer’s Disease: As It Was in the Beginning. Reviews in the Neurosciences, 28, 825-843. https://doi.org/10.1515/revneuro-2017-0006
|
[10]
|
Brothers, H.M., Gosztyla, M.L. and Robinson, S.R. (2018) The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer’s Disease. Frontiers in Aging Neurosciences, 10, 118. https://doi.org/10.3389/fnagi.2018.00118
|
[11]
|
Gulisano, W., Melone, M., Ripoli, C., Tropea, M.R., Li Puma, D.D., Giunta, S., Cocco, S., Marcotulli, D., Origlia, N., Palmeri, A., Arancio, O., Conti, F., Grassi, C. and Puzzo, D. (2019) Neuromodulatory Action of Picomolar Extracellular Aβ42 Oligomers on Presynaptic and Postsynaptic Mechanisms Underlying Synaptic Function and Memory. Journal of Neurosciences, 39, 5986-6000. https://doi.org/10.1523/JNEUROSCI.0163-19.2019
|
[12]
|
Kucheryavykh, L.Y., Kucheryavykh, Y.V., Washington, A.V. and Inyushin, M.Y. (2018) Amyloid Beta Peptide Is Released during Thrombosis in the Skin. International Journal of Molecular Sciences, 19, 1705. https://doi.org/10.3390/ijms19061705
|
[13]
|
Giorgetti, S., Raimondi, S., Pagano, K., Relini, A., Bucciantini, M., Corazza, A., Fogolari, F., Codutti, L., Salmona, M., Mangione, P., Colombo, L., De Luigi, A., Porcari, R., Gliozzi, A., Stefani, M., Esposito, G., Bellotti, V. and Stoppini, M. (2011) Effect of Tetracyclines on the Dynamics and Destruction of Beta2-Microglobulin Amyloid Fibrils. Journal of Biological Chemistry, 286, 2121-2131. https://doi.org/10.1074/jbc.M110.178376
|
[14]
|
Cao, Y. and Mezzenga, R. (2019) Food Protein Amyloid Fibrils: Origin, Structure, Formation, Characterization, Applications and Health Implications. Advances in Colloid and Interface Science, 269, 334-356. https://doi.org/10.1016/j.cis.2019.05.002
|
[15]
|
Hernandez, C.M., Kayed, R., Zheng, H., Sweatt, J.D. and Dineley, K.T. (2010) Loss of alpha7 Nicotinic Receptors Enhances Beta-Amyloid Oligomer Accumulation, Exacerbating Early-Stage Cognitive Decline and Septohippocampal Pathology in a Mouse Model of Alzheimer’s Disease. Journal of Neurosciences, 30, 2442-2453. https://doi.org/10.1523/JNEUROSCI.5038-09.2010
|
[16]
|
De Felice, F.G., Vieira, M.N., Bomfim, T.R., Decker, H., Velasco, P.T., Lambert, M.P., Viola, K.L., Zhao, W.Q., Ferreira, S.T. and Klein, W.L. (2009) Protection of Synsapses against Alzheimer’s-Linked Toxins: Insulin Signaling Prevents the Pathogenic Binding of Aβ Oligomers. Proceedings of the National Academy of Sciences of the USA, 106, 1971-1976. https://doi.org/10.1073/pnas.0809158106
|
[17]
|
Irwin, R.W. and Brinton, R.D. (2014) Allopregnanolone as Regenerative Therapeutic for Alzheimer’s Disease: Translational Development and Clinical Promise. Progress in Neurobiology, 113, 40-55. https://doi.org/10.1016/j.pneurobio.2013.08.004
|
[18]
|
Aghsami, M., Sharifzadeh, M., Sepand, M.R., Yazdankhah, M., Seyednejad, S.A. and Pourahmad, J. (2018) A cAMP Analog Attenuates Beta-Amyloid (1-42)-Induced Mitochondrial Dysfunction and Spatial Learning and Memory Deficits. Brain Research Bulletin, 140, 34-42. https://doi.org/10.1016/j.brainresbull.2018.03.016
|
[19]
|
Palmeri, A., Ricciarelli, R., Gulisano, W., Rivera, D., Rebosio, C., Calcagno, E., Tropea, M.R., Conti, S., Das, U., Roy, S., Pronzato, M.A., Arancio, O., Fedele, E. and Puzzo, D. (2017) Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory. Journal of Neurosciences, 37, 6926-6937. https://doi.org/10.1523/JNEUROSCI.3607-16.2017
|
[20]
|
Ugarte, A., Gil-Bea, F., Garcia-Barroso, C., Cedazo-Minguez, A., Ramirez, M.J., Franco, R., Garcia-Osta, A., Oyarzabal, J. and Cuadro-Tejedor, M. (2015) Decreased Levels of Guanosine 3’, 5’-Monophosphate (cGMP) in Cerebrospinal Fluid (CSF) Are Associated with Cognitive Decline and Amyloid Pathology in Alzheimers’s Disease. Neuropathology and Applied Neurobiology, 41, 471-482. https://doi.org/10.1111/nan.12203
|
[21]
|
Hesse, R., Lausser, L., Gummert, P., Schmid, F., Wahler, A., Schnack, C., Kroker, K.S., Otto, M., Tumani, H., Kestler, H.A., Rosenbrock, H. and von Arnim, C.A.F. (2017) Reduced cGMP Levels in CSF of AD Patients Correlate with Severity of Dementia and Current Depression. Alzheimer’s Research and Therapy, 9, Article No. 17. https://doi.org/10.1186/s13195-017-0245-y
|
[22]
|
Yang, F., Lim, G.P., Begum, A.N., Ubeda, O.J., Simmons, M.R., Ambegaokar, S.S., Chen, P.P., Kayed, R., Giabe, C.G., Frautschy, S.A. and Cole, G.M. (2005) Curcumin Inhibits Formation of Amyloid Beta Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. Journal of Biological Chemistry, 18, 5892-5901. https://doi.org/10.1074/jbc.M404751200
|
[23]
|
Jiang, P., Li, W., Shea, J.E. and Mu, Y. (2011) Resveratrol Inhibits the Formation of Multiple-Layered β-Sheet Oligomers of the Human Islet Amyloid Polypeptide Segment 22-27. Biophysics Journal, 100, 1550-1558. https://doi.org/10.1016/j.bpj.2011.02.010
|
[24]
|
Zurita, M.P., Munoz, G., Sepulveda, F.J., Gomez, P., Castillo, C., Burgos, C.F., Fuentealba, J., Opazo, C. and Aguayo, L.G. (2013) Ibuprofen Inhibits the Synaptic Failure Induced by the Amyloid-β Peptide in Hippocampal Neurons. Journal of Alzheimer’s Disease, 35, 463-473. https://doi.org/10.3233/JAD-122314
|
[25]
|
Diaz, J.C., Simakova, O., Jacobson, K.A., Arispe, N. and Pollard, H.B. (2009) Small Molecule Blockers of the Alzheimer Aβ Calcium Channel Potently Protect Neurons from Aβ Cytotoxicity. Proceedings of the National Academy of Sciences of the USA, 106, 3348-3353. https://doi.org/10.1073/pnas.0813355106
|
[26]
|
Zhao, L., Zhu, L. and Guo, X. (2018) Valproic Acid Attenuates Aβ25-35-Induced Neurotoxicity in PC12 Cells through Suppression of Mitochondria-Mediated Apoptotic Pathway. Biomedicine and Pharmacotherapy, 106, 77-82. https://doi.org/10.1016/j.biopha.2018.06.080
|
[27]
|
Emamghoreishi, M., Farrokhi, M.R., Amiri, A. and Keshavarz, M. (2019) The Neuroprotective Mechanism of Cinnamaldehyde against Amyloid-β in Neuronal SHSY5Y Cell Line: The Role of N-methyl-D-aspartate, Ryanodine, and Adenosine Receptors and Glycogen Synthase Kinase-3 β. Avicenna Journal of Phytomedicine, 9, 271-280.
|
[28]
|
Huang, X., Zhen, J., Dong, S., Zhang, H., Van Halm-Lutterodt, N. and Yuan, L. (2019) DHA and Vitamin E Antagonized the Aβ 25-35-Mediated Neuron Oxidative Damage through Activation of Nrf2 Signaling Pathways and Regulation of CD36, SRB1and FABP5 Expression in PC12 Cells. Food and Function, 10, 1049-1061. https://doi.org/10.1039/C8FO01713A
|
[29]
|
Yu, M., Chen, X., Liu, J., Ma, Q., Zhuo, Z., Chen, H., Zhou, L., Yang, S., Zheng, L., Ning, C., Xu, J., Gao, T. and Hou, S.T. (2019) Gallic Acid Disruption of Aβ1-42 Aggregation Rescues Cognitive Decline of APP/PS1 Double Transgenic Mouse. Neurobiology of Disease, 124, 67-80. https://doi.org/10.1016/j.nbd.2018.11.009
|
[30]
|
Florent, S., Malaplate-Armand, C., Youssef, L., Kriem, B., Koziel, V., Escanye, M.C., Fifre, A., Sponne, L., Leininger-Muller, B., Olivier, J.L., Pillot, T. and Oster, T. (2006) Docosahexaenoic Acid Prevents Neuronal Apoptosis Induced by Soluble Amyloid-Beta Oligomers. Journal of Neurochemistry, 96, 385-395. https://doi.org/10.1111/j.1471-4159.2005.03541.x
|
[31]
|
Yu, H.L., Li, L., Zhang, X.H., Xiang, L., Zhang, J., Feng, J.F. and Xiao, R. (2009) Neuroprotective Effects of Genistein and Folic Acid on Apoptosis of Rat Cultured Cortical Neurons Induced by Beta-Amyloid 31-35. British Journal of Nutrition, 102, 655-662. https://doi.org/10.1017/S0007114509243042
|
[32]
|
Heneka, M.T., Kummer, M.P., Weggen, B., Bulic, G., Multhaup, L., Munter, M., Hunt, T., Pflanzner, T. and Pietrzik, C.U. (2011) Molecular Mechanisms and Therapeutic Applications of NSAIDs and Derived Compounds in Alzheimers Disease. Current Alzheimer Research, 8, 115-131. https://doi.org/10.2174/156720511795256099
|
[33]
|
Williams, W.R. (2020) Tumour Initiation, Store-Operated Calcium Entry (SOCE) and Apoptosis: Cyclic Nucleotide Dependence. General Physiology and Biophysics, 39, 419-435. https://doi.org/10.4149/gpb_2020020
|
[34]
|
Song, Y., Li, P., Liu, L., Bortolini, C. and Dong, M. (2018) Nanostructural Differentiation and Toxicity of Amyloid-β25-35 Aggregates Ensue from Distinct Secondary Conformation. Scientific Reports, 8, Article No. 765. https://doi.org/10.1038/s41598-017-19106-y
|
[35]
|
Cummings, J., Lee, G., Ritter, A., Sabbagh, M. and Zhong, K. (2019) Alzheimer’s Disease Drug Development Pipeline: 2019. Alzheimer’s and Dementia, 5, 272-293. https://doi.org/10.1016/j.trci.2019.05.008
|
[36]
|
Xu, J., Zhou, L., Weng, Q., Xiao, L. and Li, Q. (2019) Curcumin Analogues Attenuate AB25-35-Induced Oxidative Stress in PC12 Cells via Keap 1/Nrf2/HO-1-Signaling Pathways. Chemico-Biological Interactions, 305, 171-179. https://doi.org/10.1016/j.cbi.2019.01.010
|
[37]
|
Yang, J., Sun, Y., Xu, F., Liu, W., Hayashi, T., Hattori, S., Ushiki-Kaku, Y., Onodera, S., Tashiro, S.I. and Ikejima, T. (2019) Silibinin Protects Rat Pancreatic β-Cell through Up-Regulation of Estrogen Receptors’ Signaling against Amylin- or Aβ1-42-Induced Reactive Oxygen Species/Reactive Nitrogen Species Generation. Phytotherapy Research, 33, 998-1009. https://doi.org/10.1002/ptr.6293
|
[38]
|
Monfort, P. and Felipo, V. (2010) Amyloid-β Impairs, and Ibuprofen Restores, the cGMP Pathway, Synaptic Expression of AMPA Receptors and Long-Term Potentiation in the Hippocampus. Journal of Alzheimer’s Disease, 22, 795-809. https://doi.org/10.3233/JAD-2010-101092
|
[39]
|
Akan, P., Kizildag, S., Ormen, M., Genc, S., Oktem, M.A. and Fadiloglu, M. (2009) Pregnenolone Protects the PC-12 Cell Line against Amyloid Beta Peptide Toxicity but Its Sulphate Ester Does Not. Chemico-Biological Interactions, 177, 65-70. https://doi.org/10.1016/j.cbi.2008.09.016
|
[40]
|
Bitar, F.E., Meunier, J., Villard, V., Almeras, M., Krishnan, K., Covey, D.F, Maurice, T. and Akwa, Y. (2014) Neuroprotection by the Synthetic Neurosteroid Enantiomers ent-PREGS and ent-DHEAS against Aβ25-35 Peptide-Induced Toxicity in Vitro and in Vivo in Mice. Psychopharmacology (Berl), 231, 3293-3312. https://doi.org/10.1007/s00213-014-3435-3
|
[41]
|
Tonnies, E. and Trushina, E. (2017) Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57, 1105-1121. https://doi.org/10.3233/JAD-161088
|
[42]
|
Kelly, M.P. (2018) Cyclic Nucleotide Signaling Changes Associated with Normal Aging and Age-Related Diseases of the Brain. Cellular Signalling, 42, 281-291. https://doi.org/10.1016/j.cellsig.2017.11.004
|
[43]
|
Chen, X. and Yan, S.D, (2006) Mitochondrial Aβ: A Potential Cause of Metabolic Dysfunction in Alzheimer’s Disease. IUBMB Life, 58, 686-694. https://doi.org/10.1080/15216540601047767
|
[44]
|
Ghasemi, M., Mayasi, Y., Hannoun, A., Esiami, S.M. and Carandang, R. (2018) Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience, 376, 48-71. https://doi.org/10.1016/j.neuroscience.2018.02.017
|
[45]
|
Zeeshan, H.M.A., Lee, G.H., Kim, H.R. and Chae, H.J. (2016) Endoplasmic Reticulum Stress and Associated ROS. International Journal of Molecular Sciences, 17, 327. https://doi.org/10.3390/ijms17030327
|
[46]
|
Liu, P.Z. and Nusslock, R. (2018) Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Frontiers in Neuroscience, 12, 52. https://doi.org/10.3389/fnins.2018.00052
|
[47]
|
Jia, R.X., Liang, J.H., Xu, Y. and Wang, Y.Q. (2019) Effects of Physical Exercise on the Cognitive Function of Patients with Alzheimer Disease: A Meta-Analysis. BMC Geriatrics, 19, Article No. 181. https://doi.org/10.1186/s12877-019-1175-2
|
[48]
|
Tampellini, D., Rahman, N., Gallo, E.F., Huang, Z., Magali, D., Capetillo-Zarato, E., Ma, T., Zheng, R., Lu, B., Nanus, D.M., Lin, M.T. and Gouras, G.K. (2009) Synaptic Activity Reduces Intraneuronal Aβ, Promotes APP Transport and Protects against Aβ-Related Synaptic Alterations. Journal of Neurosciences, 29, 9704-9713. https://doi.org/10.1523/JNEUROSCI.2292-09.2009
|
[49]
|
Jurgensen, S., Antonio, L.L., Mussi, G.E.A., Brito-Moreira, J., Bomfim, T.R., De Felice, F.G., Garrido-Sanabria, E.R., Cavalheiro, E.A. and Ferreira, S.T. (2011) Activation of D1/D5 Dopamine Receptors Protects Neurons from Synapse Dysfunction Induced by Amyloid-β Oligomers. Journal of Biological Chemistry, 286, 3270-3276. https://doi.org/10.1074/jbc.M110.177790
|
[50]
|
Peters, C., Sepulveda, F.J., Fernandez-Perez, E.J., Peoples, R.W. and Aguayo, L.G. (2016) The Level of NMDA Receptor in the Membrane Modulates Amyloid-β Association and Perforation. Journal of Alzheimer’s Disease, 53, 197-207. https://doi.org/10.3233/JAD-160170
|
[51]
|
D’Andrea, M.R. and Nagele, R.G. (2006) Targeting the Alpha 7 Nicotinic Acetylcholine Receptor to Reduce Amyloid Accumulation in Alzheimer’s Disease Pyramidal Neurons. Current Pharmacological Design, 12, 677-684. https://doi.org/10.2174/138161206775474224
|