[1]
|
König, R., Stertz, S., Zhou, Y., Inoue, A., Hoffmann, H.H., Bhattacharyya, S., Alamares, J.G., Tscherne, D.M., Ortigoza, M.B. Liang, Y., et al. (2010) Human Host Factors Required for Influenza Virus Replication. Nature, 463, 813-817. https://doi.org/10.1038/nature08699
|
[2]
|
Nencioni, L., Sgarbanti, R., Amatore, D., Checconi, P., Celestino, I., Limongi, D., Anticoli, S., Palamara, A.T., Garaci, E., et al. (2011) Intracellular Redox Signaling as Therapeutic Target for Novel Antiviral Strategy. Current Pharmaceutical Design, 17, 3898-3904. https://doi.org/10.2174/138161211798357728
|
[3]
|
Khomich, O.A., Kochetkov, S.N., Bartosch, B. and Ivanov, A.V. (2018) Redox Biology of Respiratory Viral Infections. Viruses, 10, 392. https://doi.org/10.3390/v10080392
|
[4]
|
Rahman, I. and MacNee, W. (1996) Role of Oxidants/Antioxidants in Smoking-Induced Airways Diseases. Free Radical Biology and Medicine, 21, 669-681. https://doi.org/10.1016/0891-5849(96)00155-4
|
[5]
|
Morcillo, E.J., Estera, J. and Cortijo, J. (1999) Oxidative Stress and Pulmonary Inflammation: Pharmacological Intervention with Antioxidants. Pharmacological Research, 40, 393-404. https://doi.org/10.1006/phrs.1999.0549
|
[6]
|
Taubenberger, J.K. and Morens, D.M. (2008) The Pathology of Influenza Virus Infections. Annual Review of Pathology, 3, 499-522. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316
|
[7]
|
Janssen-Heininger, Y.M., Mossman, B.T., Heintz, N.H., Forman, H.J., Kalyanaraman, B., Finkel, T., Stamler, J.S., Rhee, S.G., van der Vliet, A., et al. (2008) Redox-Based Regulation of Signal Transduction: Principles, Pitfalls, and Promises. Free Radical Biology and Medicine, 45, 1-17. https://doi.org/10.1016/j.freeradbiomed.2008.03.011
|
[8]
|
Rhee, S. (2006) Cell Signaling. H2O2, a Necessary Evil for Cell Signaling. Science, 312, 1882-1883. https://doi.org/10.1126/science.1130481
|
[9]
|
Finkel, T. (2012) From Sulfenylation to Sulfhydration: What a Thiolate Needs to Tolerate. Science Signaling, 5, pe10. https://doi.org/10.1126/scisignal.2002943
|
[10]
|
Wood, Z.A., Poole, L.B. and Karplus, P.A. (2003) Peroxidation Evolution and the Regulation of Hydrogen Peroxide Signaling. Science, 300, 650-653. https://doi.org/10.1126/science.1080405
|
[11]
|
Pani, G., Colavitti, R., Borrello, S. and Galeotti, T. (2000) Redox Regulation of Lymphocyte Signaling. IUBMB Life, 49, 381-389. https://doi.org/10.1080/152165400410227
|
[12]
|
Esposito, F., Ammendola, R., Faraonio, R., Russo, T. and Cimino, F. (2004) Redox Control of Signal Transduction, Gene Expression and Cellular Senescence. Neurochemical Research, 29, 617-628. https://doi.org/10.1023/B:NERE.0000014832.78725.1a
|
[13]
|
Uhlig, S. and Wendel, A. (1992) The Physiological Consequences of Glutathione Variations. Life Sciences, 51, 1083-1094. https://doi.org/10.1016/0024-3205(92)90509-N
|
[14]
|
Meister, A. and Anderson, M.E. (1983) Glutathione. Annual Review of Biochemistry, 52, 711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
|
[15]
|
Abate, C., Patel, L., Rauscher, F.J. and Curran, T. (1990) Redox Regulation of Fos and Jun DNA-Binding Activity in Vitro. Science, 249, 1157-1161. https://doi.org/10.1126/science.2118682
|
[16]
|
Schenk, H., Klein, M., Erdbrugger, W., Droge, W. and Schulze-Osthoff, K. (1994) Distinct Effects of Thioredoxin and Antioxidants on the Activation of Transcription Factors NF-kappa B and AP-1. Proceedings of the National Academy of Sciences of the United States of America, 91, 1672-1676. https://doi.org/10.1073/pnas.91.5.1672
|
[17]
|
Bauer, M. and Bauer, I. (2002) Heme Oxygenase-1: Redox Regulation and Role in the Hepatic Response to Oxidative Stress. Antioxidants & Redox Signaling, 4, 749-758. https://doi.org/10.1089/152308602760598891
|
[18]
|
Haddad, J.J. (2002) Oxygen-Sensitive Pro-Inflammatory Cytokines, Apoptosis Signaling and Redox-Responsive Transcription Factors in Development and Pathophysiology. Cytokines, Cellular & Molecular Therapy, 7, 1-14. https://doi.org/10.1080/13684730216401
|
[19]
|
Kwon, Y.W., Masutani, H., Nakamura, H., Ishii, Y. and Yodoi, J. (2003) Redox Regulation of Cell Growth and Cell Death. Biological Chemistry, 384, 991-996. https://doi.org/10.1515/BC.2003.111
|
[20]
|
Wang, J., Chen, Y., Gao, N., Wang, Y., Tian, Y., Wu, J., Zhang, J., Zhu, J., Fan, D., An, J., et al. (2013) Inhibitory Effect of Glutathione on Oxidative Liver Injury Induced by Dengue Virus Serotype 2 Infections in Mice. PLoS ONE, 8, e55407. https://doi.org/10.1371/journal.pone.0055407
|
[21]
|
Soundravally, R., Sankar, P., Hoti, S.L., Selvaraj, N., Bobby, Z. and Sridhar, M.G. (2008) Oxidative Stress Induced Changes in Plasma Protein Can Be a Predictor of Imminent Severe Dengue Infection. Acta Tropica, 106, 156-161. https://doi.org/10.1016/j.actatropica.2008.03.001
|
[22]
|
Brennan, F.M., Maini, R.N. and Feldmann, M. (1995) Cytokine Expression in Chronic Inflammatory Disease. British Medical Bulletin, 51, 368-384. https://doi.org/10.1093/oxfordjournals.bmb.a072967
|
[23]
|
Rahman, I. and MacNee, W. (1998) Role of Transcription Factors in Inflammatory Lung Diseases. Thorax, 53, 601-612. https://doi.org/10.1136/thx.53.7.601
|
[24]
|
Verhasselt, V., Vanden Berghe, W., Vanderheyde, N., Willems, F., Haegeman, G. and Goldman, M. (1999) N-acetyl-L-cysteine Inhibits Primary Human T Cell Responses at the Dendritic Cell Level: Association with NF-kappaB Inhibition. The Journal of Immunology, 162, 2569-2574.
|
[25]
|
Buhl, R., Vogelmeier, C., Critenden, M., Hubbard, R.C., Hoyt Jr., R.F., Wilson, E.M., Cantin, A.M., Crystal, R.G., et al. (1990) Augmentation of Glutathione in the Fluid Lining the Epithelium of the Lower Respiratory Tract by Directly Administering Glutathione Aerosol. Proceedings of the National Academy of Sciences of the United States of America, 87, 4063-4067. https://doi.org/10.1073/pnas.87.11.4063
|
[26]
|
Strieter, R.M., Kunkel, S.L. and Bone, R.C. (1993) Role of Tumor Necrosis Factor-Alpha in Disease States and Inflammation. Critical Care Medicine, 21, S447-S463. https://doi.org/10.1097/00003246-199310001-00006
|
[27]
|
Rothstein, J.L., Lint, T.F. and Schreiber, H. (1988) Tumor Necrosis Factor/Cachectin; Induction of Hemorrhagic Necrosis in Normal Tissue Requires the Fifth Component of Complement (C5). Journal of Experimental Medicine, 168, 2007-2021. https://doi.org/10.1084/jem.168.6.2007
|
[28]
|
Brill, K.J., Li, Q., Larkin, R., Canaday, D.H., Kaplan, D.R., Boom, W.H., Silver, R.F., et al. (2001) Human Natural Killer Cells Mediate Killing of Intracellular Mycobacterium tuberculosis H37Rv via Granule-Independent Mechanisms. Infection and Immunity, 69, 1755-1765. https://doi.org/10.1128/IAI.69.3.1755-1765.2001
|
[29]
|
Guerra, C., Morris, D., Sipin, A., Kung, S., Franklin, M., Gray, D., Tanzil, M., Guilford, F., Khasawneh, F.T., Venketaraman, V., et al. (2011) Glutathione and Adaptive Immune Responses against Mycobacterium tuberculosis Infection in Healthy and HIV Infected Individuals. PLoS ONE, 6, e28378. https://doi.org/10.1371/journal.pone.0028378
|
[30]
|
Guerra, C., Johal, K., Morris, D., Moreno, S., Alvarado, O., Gray, D., Tanzil, M., Pearce, D., Venketaraman, V., et al. (2012) Control of Mycobacterium tuberculosis Growth by Activated Natural Killer Cells. Clinical & Experimental Immunology, 168, 142-152. https://doi.org/10.1111/j.1365-2249.2011.04552.x
|
[31]
|
Morris, D., Guerra, C., Donohue, C., Oh, H., Khurasany, M. and Venketaraman, V. (2012) Unveiling the Mechanisms for Decreased Glutathione in Individuals with HIV Infection. Clinical and Developmental Immunology, 2012, Article ID: 734125. https://doi.org/10.1155/2012/734125
|
[32]
|
Green, R.M., Seth, A. and Connell, N.D. (2000) A Peptide Permease Mutant of Mycobacterium bovis BCG Resistant to the Toxic Peptides Glutathione and S-nitrosoglutathione. Infection and Immunity, 68, 429-436. https://doi.org/10.1128/IAI.68.2.429-436.2000
|
[33]
|
Seres, T., Knickelbein, R.G., Warshaw, J.B. and Johnston Jr., R.B. (2000) The Phagocytosis-Associated Respiratory Burst in Humanmonocytes Is Associated with Increased Uptake of Glutathione. The Journal of Immunology, 165, 3333-3340. https://doi.org/10.4049/jimmunol.165.6.3333
|
[34]
|
Venketaraman, V., Dayaram, Y.K., Amin, A.G., Ngo, R., Green, R.M., Talaue, M.T., Mann, J., Connell, N.D., et al. (2003) Role of Glutathione in Macrophage Control of Mycobacteria. Infection and Immunity, 71, 1864-1871. https://doi.org/10.1128/IAI.71.4.1864-1871.2003
|
[35]
|
Van Heyningen, T.K., Collins, H.L. and Russell, D.G. (1996) IL-6 Produced by Macrophages Infected with Mycobacterium Species Suppresses T Cell Responses. The Journal of Immunology, 158, 330-337.
|
[36]
|
Forman, H.J. (2016) Glutathione-From Antioxidant to Post-Translational Modifier. Archives of Biochemistry and Biophysics, 595, 64-67. https://doi.org/10.1016/j.abb.2015.11.019
|
[37]
|
Diotallevi, M., Checconi, P., Palamara, A.T., Celestino, I., Coppo, L., Holmgren, A., Abbas, K., Peyrot, F., Mengozzi, M., Ghezzi, P., et al. (2017) Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties. Frontiers in Immunology, 8, 1239. https://doi.org/10.3389/fimmu.2017.01239
|
[38]
|
Checconi, P., Limongi, D., Baldelli, S., Ciriolo, M.R., Nencioni, L. and Palamara, A.T. (2019) Role of Glutathionylation in Infection and Inflammation. Nutrients, 11, 1952. https://doi.org/10.3390/nu11081952
|
[39]
|
Sido, B., Braunstein, J., Breitkreutz, R., Herfarth, C. and Meuer, S.C. (2000) Thiol-Mediated Redox Regulation of Intestinal Lamina Propria T Lymphocytes. Journal of Experimental Medicine, 192, 907-912. https://doi.org/10.1084/jem.192.6.907
|
[40]
|
Hadzic, T., Li, L., Cheng, N., Walsh, S.A., Spitz, D.R. and Knudson, C.M. (2005) The Role of Low Molecular Weight Thiols in T Lymphocyte Proliferation and IL-2 Secretion. The Journal of Immunology, 175, 7965-7972. https://doi.org/10.4049/jimmunol.175.12.7965
|
[41]
|
Ozawa, M., Asano, A. and Okada, Y. (1976) Importance of Interpeptide Disulfide Bond in a Viral Glycoprotein with Hemaglutination and Neuraminidase Activities. FEBS Letters, 70, 145-149. https://doi.org/10.1016/0014-5793(76)80745-4
|
[42]
|
Short, S., Merkel, B.J. and Caffrey McCoy, K.L. (1996) Defective Antigen Processing Correlates with a Low Level of Intracellular Glutathione. European Journal of Immunology, 26, 3015-3020. https://doi.org/10.1002/eji.1830261229
|
[43]
|
Arunachalam, B., Phan, U.T. and Geuze, H.J. (2000) Enzymatic Reduction of Disulfide Bonds in Lysosomes: Characterization of a Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT). Proceedings of the National Academy of Sciences of the United States of America, 97, 745-750. https://doi.org/10.1073/pnas.97.2.745
|
[44]
|
Venketaraman, V., Millman, A., Salman, M., Swaminathan, S., Goetz, M., Lardizabal, A., Hom, D., Connell, N.D., et al. (2008) Glutathione Levels and Immune Responses in Tuberculosis Patients. Microbial Pathogenesis, 44, 255-261. https://doi.org/10.1016/j.micpath.2007.09.002
|
[45]
|
Yan, Z., Garg, S.K. and Banerjee, R. (2010) Regulatory T Cells Interfere with Glutathione Metabolism in Dendritic Cells and T Cells. Journal of Biological Chemistry, 285, 41525-41532. https://doi.org/10.1074/jbc.M110.189944
|
[46]
|
Ristoff, E.A. (2007) Larsson, Inborn Errors in the Metabolism of Glutathione. Orphanet Journal of Rare Diseases, 2, Article No. 16. https://doi.org/10.1186/1750-1172-2-16
|
[47]
|
Meister, A. (1994) Glutathione, Ascorbate, and Cellular Protection. Cancer Research, 54, 1969-1975.
|
[48]
|
Boya, P., de la Pena, A., Beloqui, O., Larrea, E., Conchillo, M., Castelruiz, Y., Civeira, M.P., Prieto, J., et al. (1999) Antioxidant Status and Glutathione Metabolism in Peripheral Blood Mononuclear Cells from Patients with Chronic Hepatitis C. Journal of Hepatology, 31, 808-814. https://doi.org/10.1016/S0168-8278(99)80281-5
|
[49]
|
Palamara, A.T., Perno, C.F., Ciriolo, M.R., Dini, L., Balestra, E., D’Agostini, C., Di Francesco, P., Favalli, C., Rotilio, G., Garaci, E., et al. (1995) Evidence for Antiviral Activity of Glutathione: In Vitro Inhibition of Herpes Simplex Virus Type 1 Replication. Antiviral Research, 27, 237-253. https://doi.org/10.1016/0166-3542(95)00008-A
|
[50]
|
Ciriolo, M.R., Palamara, A.T., Incerpi, S., Lafavia, E., Buè, M.C., De Vito, P., Garaci, E., Rotilio, G., et al. (1997) Loss of GSH, Oxidative Stress and Decrease of Intracellular pH as Sequential Steps in Viral Infection. Journal of Biological Chemistry, 272, 2700-2708. https://doi.org/10.1074/jbc.272.5.2700
|
[51]
|
Papi, A., Contoli, M., Gasparini, P., Bristot, L., Edwards, M.R., Chicca, M., Leis, M., Ciaccia, A., Caramori, G., Johnston, S.L., Pinamonti, S., et al. (2008) Role of Xanthine Oxidase Activation and Reduced Glutathione Depletion in Rhinovirus Induction of Inflammation in Respiratory Epithelial Cells. Journal of Biological Chemistry, 283, 28595-28606. https://doi.org/10.1074/jbc.M805766200
|
[52]
|
Cai, J., Chen, Y., Seth, S., Furukawa, S., Compans, R.W. and Jones, D.P. (2003) Inhibition of Influenza Infection by Glutathione. Free Radical Biology and Medicine, 34, 928-936. https://doi.org/10.1016/S0891-5849(03)00023-6
|
[53]
|
Hennet, T., Peterhans, E. and Stocker, R. (1992) Alterations in Antioxidant Defences in Lung and Liver of Mice Infected with Influenza A Virus. Journal of General Virology, 73, 39-46. https://doi.org/10.1099/0022-1317-73-1-39
|
[54]
|
Peterhans, E., Grob, M., Burge, T. and Zanoni, R. (1987) Virus-Induced Formation of Reactive Oxygen Intermediates in Phagocytic Cells. Free Radical Research Communications, 3, 39-46. https://doi.org/10.3109/10715768709069768
|
[55]
|
Peterhans, E. (1997) Reactive Oxygen Species and Nitric Oxide in Viral Diseases. Biological Trace Element Research, 56, 107-116. https://doi.org/10.1007/BF02778986
|
[56]
|
Imlay, J.A. and Linn, S. (1988) DNA Damage and Oxygen Radical Toxicity. Science, 240, 1302-1309. https://doi.org/10.1126/science.3287616
|
[57]
|
Weiss, S.J. (1989) Tissue Destruction by Neutrophils. New England Journal of Medicine, 320, 365-376. https://doi.org/10.1056/NEJM198902093200606
|
[58]
|
Suliman, H.B., Ryan, L.K., Bishop, L. and Folz, R.J. (2001) Prevention of Influenza-Induced Lung Injury in Mice Overexpressing Extracellular Superoxide Dismutase. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 280, L69-L78. https://doi.org/10.1152/ajplung.2001.280.1.L69
|
[59]
|
Wiley, D.C. and Skehel, J.J. (1987) The Structure and Function of the Hemagglutinin Membrane Glycoprotein of Influenza Virus. Annual Review of Biochemistry, 56, 365-394. https://doi.org/10.1146/annurev.bi.56.070187.002053
|
[60]
|
Sarkar, D.P., Morris, S.J., Eidelman, O., Zimmerberg, J. and Blumenthal, R. (1989) Initial Stages of Influenza Hemagglutinin-Induced Cell Fusion Monitored Simultaneously by Two Fluorescent Events: Cytoplasmic Continuity and Lipid Mixing. Journal of Cell Biology, 109, 113-122. https://doi.org/10.1083/jcb.109.1.113
|
[61]
|
Perez, L. and Carrasco, L. (1994) Involvement of the Vacuolar H(+)-ATPase in Animal Virus Entry. Journal of General Virology, 75, 2595-2606. https://doi.org/10.1099/0022-1317-75-10-2595
|
[62]
|
Tatu, U., Hammond, C. and Helenius, A. (1995) Folding and Oligomerization of Influenza Hemagglutinin in the ER and the Intermediate Compartment. The EMBO Journal, 14, 1340-1348. https://doi.org/10.1002/j.1460-2075.1995.tb07120.x
|
[63]
|
Sgarbanti, R., Nencioni, L., Amatore, D., Coluccio, P., Fraternale, A., Sale, P., Mammola, C.L., Carpino, G., Gaudio, E., Magnani, M., et al. (2011) Redox Regulation of the Influenza Hemagglutinin Maturation Process: A New Cell-Mediated Strategy for Anti-Influenza Therapy. Antioxidants & Redox Signaling, 15, 593-606. https://doi.org/10.1089/ars.2010.3512
|
[64]
|
Kolm-Litty, V., Sauer, U., Nerlich, A., Lehmann, R. and Schleicher, E.D. (1998) High Glucoseinduced Transforming Growth Factor beta1 Production Is Mediated by Hexosamine Pathway in Porcine Glomerularmesangial Cells. Journal of Clinical Investigation, 101, 160-169. https://doi.org/10.1172/JCI119875
|
[65]
|
Chaturvedi, U.C., Shrivastava, R. and Upreti, R.K. (2004) Viral Infections and Trace Elements: A Complex Interaction. Current Science, 87, 1536-1554.
|
[66]
|
Evans, P. and Halliwell, B. (2001) Micronutrients: Oxidant/Antioxidant Status. British Journal of Nutrition (Suppl.), 85, S67-S74. https://doi.org/10.1079/BJN2000296
|
[67]
|
Sandstead, H.H. (1994) Understanding Zinc: Recent Observations and Interpretations. Journal of Laboratory and Clinical Medicine, 124, 322-327.
|
[68]
|
Shankar, A.H. and Prasad, A.S. (1998) Zinc and Immune Function: The Biological Basis of Altered Resistance to Infection. American Journal of Clinical Nutrition, 68, 447S-463S. https://doi.org/10.1093/ajcn/68.2.447S
|
[69]
|
Rostan, E.F., DeBuys, H.V., Madey, D.L. and Pinnell, S.R. (2002) Evidence Supporting Zinc as an Important Antioxidant for Skin. International Journal of Dermatology, 41, 606-611. https://doi.org/10.1046/j.1365-4362.2002.01567.x
|
[70]
|
Rukgauer, M., Neugebauer, R.J. and Plecko, T. (2001) The Relation between Selenium, Zinc and Copper Concentration and the Trace Element Dependent Antioxidative Status. Journal of Trace Elements in Medicine and Biology, 15, 73-78. https://doi.org/10.1016/S0946-672X(01)80046-8
|
[71]
|
Arthur, J.R., McKenzie, R.C. and Beckett, G.J. (2003) Selenium in the Immune System. Journal of Nutrition (Suppl.), 133, 1457S-1459S. https://doi.org/10.1093/jn/133.5.1457S
|