[1]
|
American Cancer Society (2017) Cancer Facts and Figures. Genes & Development, 21, 2525-2538. https://doi.org/10.1101/gad.1593107
|
[2]
|
Rizzuto, I., Stavraka, C., Chatterjee, J., et al. (2015) Risk of Ovarian Cancer Relapse Score: A Prognostic Algorithm to Predict Relapse Following Treatment for Advanced Ovarian Cancer. International Journal of Gynecologic Cancer, 25, 416-422.
https://doi.org/10.1097/IGC.0000000000000361
|
[3]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
|
[4]
|
Bindea, G., Mlecnik, B., Tosolini, M., et al. (2013) Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer. Immunity, 39, 782-795. https://doi.org/10.1016/j.immuni.2013.10.003
|
[5]
|
Chen, K. and Kolls, J.K. (2017) Interleukin-17A (IL-17A). Gene, 614, 8-14.
https://doi.org/10.1016/j.gene.2017.01.016
|
[6]
|
Fossiez, F., Djossou, O., Chomarat, P., et al. (1996) T Cell Interleukin-17 Induces Stromal Cells to Produce Proinflammatory and Hematopoietic Cytokines. Journal of Experimental Medicine, 183, 2593-2603. https://doi.org/10.1084/jem.183.6.2593
|
[7]
|
Harrington, L.E., Hatton, R.D., Mangan, P.R., et al. (2005) Interleukin-17-Producing CD4+ Effector T Cells Develop via a Lineage Distinct from the T Helper Type 1 and 2 Lineages. Nature Immunology, 6, 1123-1132. https://doi.org/10.1038/ni1254
|
[8]
|
Mathur, A.N., Chang, H.C., Zisoulis, D.G., et al. (2017) Stat3 and Stat4 Direct Development of IL-17-Secreting Th Cells. Journal of Immunology, 178, 4901-4907.
https://doi.org/10.4049/jimmunol.178.8.4901
|
[9]
|
Ivanov II McKenzie, B.S., Zhou, L., Tadokoro, C.E., et al. (2006) The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell, 126, 1121-1133.
https://doi.org/10.1016/j.cell.2006.07.035
|
[10]
|
Yao, Z., Fanslow, W.C., Seldin, M.F., et al. (1995) Herpesvirus Saimiri Encodes a New Cytokine, IL-17, Which Binds to a Novel Cytokine Receptor. Immunity, 3, 811-821. https://doi.org/10.1016/1074-7613(95)90070-5
|
[11]
|
Gaffen, S.L. (2009) Structure and Signaling in the IL-17 Receptor Family. Nature Review of Immunology, 9, 556-567. https://doi.org/10.1038/nri2586
|
[12]
|
Cua, D.J. and Tato, C.M. (2010) Innate IL-17-Producing Cells: The Sentinels of the Immune System. Nature Review of Immunology, 10, 479-489.
https://doi.org/10.1038/nri2800
|
[13]
|
Shabgah, A.G., Fattahi, E. and Shahneh, F.Z. (2014) Interleukin-17 in Human Inflammatory Diseases. Advances in Dermatology and Allergology, 31, 256-261.
https://doi.org/10.5114/pdia.2014.40954
|
[14]
|
Rankin, L.C., Girard-Madoux, M.J., Seillet, C., et al. (2016) Complementarity and Redundancy of IL-22-Producing Innate Lymphoid Cells. Nature Immunology, 17, 179-186. https://doi.org/10.1038/ni.3332
|
[15]
|
Takahashi, N., Vanlaere, I., de Rycke, R., et al. (2008) IL-17 Produced by Paneth Cells Drives TNF-Induced Shock. Journal of Experimental Medicine, 205, 1755-1761.
https://doi.org/10.1084/jem.20080588
|
[16]
|
Kumar, P., Monin, L., Castillo, P., et al. (2016) Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation. Immunity, 44, 659-671. https://doi.org/10.1016/j.immuni.2016.02.007
|
[17]
|
Crowe, C.R., Chen, K., Pociask, D.A., et al. (2009) Critical Role of IL-17RA in Immunopathology of Influenza Infection. Journal of Immunology, 183, 5301-5310.
https://doi.org/10.4049/jimmunol.0900995
|
[18]
|
Sears, C.L. and Garett, W.S. (2014) Microbes, Microbiota, and Colon Cancer. Cell Host and Microbe, 15, 317-328. https://doi.org/10.1016/j.chom.2014.02.007
|
[19]
|
Wang, K., Kim, M.K., Di Carlo, G., et al. (2014) Interleukin 17 Receptor Signaling in Transformed Enterocytes Promotes Early Colorectal Tumorigenesis. Immunity, 41, 1052-1063. https://doi.org/10.1016/j.immuni.2014.11.009
|
[20]
|
Bagheri, N., Azadegan-Dehkordi, F., Shirzad, H., et al. (2015) The Biological Functions of IL-17 in Different Clinical Expressions of Helicobacter pylori-Infection. Microbial Pathogenesis, 81, 33-38. https://doi.org/10.1016/j.micpath.2015.03.010
|
[21]
|
Atarashi, K., Tanoue, T., Ando, M., et al. (2015) Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 163, 367-380.
https://doi.org/10.1016/j.cell.2015.08.058
|
[22]
|
Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V.K. (2009) IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485-517.
https://doi.org/10.1146/annurev.immunol.021908.132710
|
[23]
|
Park, H., Li, Z., Yang, X.O., et al. (2005) A Distinct Lineage of CD4 T Cells Regulates Tissue Inflammation by Producing Interleukin 17. Nature Immunology, 6, 1133-1141. https://doi.org/10.1038/ni1261
|
[24]
|
Matusevicius, D., Kivisakk, P., He, B., et al. (1999) Interleukin-17 mRNA Expression in Blood and CSF Mononuclear Cells Is Augmented in Multiple Sclerosis. Multiple Sclerosis, 5, 101-104. https://doi.org/10.1177/135245859900500206
|
[25]
|
Lowes, M.A., Bowcock, A.M. and Krueger, J.G. (2007) Pathogenesis and Therapy of Psoriasis. Nature, 445, 866-873. https://doi.org/10.1038/nature05663
|
[26]
|
Di Cesare, A., Di Meglio, P. and Nestle, F.O. (2009) The IL-23/Th17 Axis in the Immunopathogenesis of Psoriasis. Journal of Investigative Dermatology, 129, 1339-1350. https://doi.org/10.1038/jid.2009.59
|
[27]
|
Kirkham, B.W., Lassere, M.N., Edmonds, J.P., et al. (2006) Synovial Membrane Cytokine Expression Is Predictive of Joint Damage Progression in Rheumatoid Arthritis: A Two-Year Prospective Study (the DAMAGE Study Cohort). Arthritis and Rheumatology, 54, 1121-1131. https://doi.org/10.1002/art.21749
|
[28]
|
Genovese, M.C., Durez, P., Richards, H.B., et al. (2014) One-Year Efficacy and Safety Results of Secukinumab in Patients with Rheumatoid Arthritis: Phase II, Dose-Finding, Double Blind, Randomized, Placebo-Controlled Study. Journal of Rheumatology, 41, 414-421. https://doi.org/10.3899/jrheum.130637
|
[29]
|
Monteleone, I., Sarra, M., Pallone, F. and Monteleone, G. (2012) Th17-Related Cytokines in Inflammatory Bowel Diseases: Friends or Foes? Current Molecular Medicine, 12, 592-597. https://doi.org/10.2174/156652412800620066
|
[30]
|
Hueber, W., Sands, B.E., Lewitzky, S., et al. (2012) Secukinumab, a Human Anti-IL-17A Monoclonal Antibody, for Moderate to Severe Crohn’s Disease: Unexpected Results of a Randomised, Double-Blind Placebo Controlled Trial. Gut, 61, 1693-1700. https://doi.org/10.1136/gutjnl-2011-301668
|
[31]
|
Zhao, F., Hoechst, B., Gamrekelashvili, J., et al. (2008) Human CCR4+CCR6+Th17 Cells Suppress Autologous CD8+T Cell Responses. Journal of Immunology, 188, 6055-6062. https://doi.org/10.4049/jimmunol.1102918
|
[32]
|
Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Cancer-Related Inflammation. Nature, 454, 436-444. https://doi.org/10.1038/nature07205
|
[33]
|
Pasquier, J. and Rafii, A. (2013) Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance. BioMed Research International, 2013, Article ID: 630782.
https://doi.org/10.1155/2013/630782
|
[34]
|
Xiang, T., Long, H., He, L., et al. (2015) Interleukin-17 Produced by Tumor Microenvironment Promotes Self-Renewal of CD133+ Cancer Stem-Like Cells in Ovarian Cancer. Oncogene, 34, 165-176. https://doi.org/10.1038/onc.2013.537
|
[35]
|
Yamada, Y., Saito, H. and Ikeguchi, M. (2012) Prevalence and Clinical Relevance of Th17 in Patients with Gastric Cancer. Journal of Surgical Research, 178, 685-691.
https://doi.org/10.1016/j.jss.2012.07.055
|
[36]
|
Miyahara, Y., Odunsi, K., Chen, W., et al. (2008) Generation and Regulation of Human CD4+IL-17 Producing T Cells in Ovarian Cancer. Proceedings of the National Academy of Science of USA, 105, 15505-15510.
https://doi.org/10.1073/pnas.0710686105
|
[37]
|
Maruyama, T., Kono, K., Mizukami, Y., et al. (2010) Distribution of Th17 Cells and FoxP3(+) Regulatory T Cells in Tumor-Infiltrating Lymphocytes, Tumor-Draining Lymph Nodes and Peripheral Blood Lymphocytes in Patients with Gastric Cancer. Cancer Science, 101, 1947-1954. https://doi.org/10.1111/j.1349-7006.2010.01624.x
|
[38]
|
Tosolini, M., Kirilovsky, A., Mlecnik, B., et al. (2011) Clinical Impact of Different Classes of Infiltrating T Cytotoxic and Helper Cells (Th1, th2, treg, th17) in Patients with Colorectal Cancer. Cancer Research, 71, 1263-1271.
https://doi.org/10.1158/0008-5472.CAN-10-2907
|
[39]
|
He, S., Fei, M., Wu, Y., et al. (2011) Distribution and Clinical Significance of Th17 Cells in the Tumor Microenvironment and Peripheral Blood of Pancreatic Cancer Patients. International Journal of Molecular Sciences, 12, 7424-7437.
https://doi.org/10.3390/ijms12117424
|
[40]
|
Su, X., Ye, J., Hsueh, E.C., et al. (2010) Tumor Microenvironments Direct the Recruitment and Expansion of Human Th17 Cells. The Journal of Immunology, 184, 1630-1641. https://doi.org/10.4049/jimmunol.0902813
|
[41]
|
Wang, L., Yi, T., Kortylewski, M., et al. (2009) IL-17 Can Promote Tumor Growth through an IL-6-Stat3 Signaling Pathway. Journal of Experimental Medicine, 206, 1457-1464. https://doi.org/10.1084/jem.20090207
|
[42]
|
Liu, J., Duan, Y., Cheng, X., et al. (2011) IL-17 Is Associated with Poor Prognosis and Promotes Angiogenesis via Stimulating VEGF Production of Cancer Cells in Colorectal Carcinoma. Biochemical and Biophysical Research Communications, 407, 348-354. https://doi.org/10.1016/j.bbrc.2011.03.021
|
[43]
|
Talmadge, J.E. and Gabrilovich, D.I. (2013) History of Myeloid-Derived Suppressor Cells. Nature Reviews Cancer, 13, 739-752. https://doi.org/10.1038/nrc3581
|
[44]
|
Zea, A.H., Rodriguez, P.C., Atkins, M.B., et al. (2005) Arginase-Producing Myeloid Suppressor Cells in Renal Cell Carcinoma Patients. Cancer Research, 65, 3044-3048.
https://doi.org/10.1158/0008-5472.CAN-04-4505
|
[45]
|
Ochoa, A.C., Zea, A.H., Hernandez, C. and Rodriguez, P.C. (2007) Arginase, Prostaglandins, and Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma. Clinical Cancer Research, 13, 721s-726s.
https://doi.org/10.1158/1078-0432.CCR-06-2197
|
[46]
|
Diaz-Montero, C.M., Salem, M.L., Nishimura, M.I., et al. (2009) Increased Circulating Myeloid-Derived Suppressor Cells Correlate with Clinical Cancer Stage, Metastatic Tumor Burden, and Doxorubicin-Cyclophosphamide Chemotherapy. Cancer Immunology and Immunotherapy, 58, 49-59.
https://doi.org/10.1007/s00262-008-0523-4
|
[47]
|
Gabrilovich, D.I. and Nagaraj, S. (2009) Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nature Reviews Immunology, 9, 162-174.
https://doi.org/10.1038/nri2506
|
[48]
|
Ostrand-Rosenberg, S. and Sinha, P. (2009) Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer. Journal of Immunology, 182, 4499-4506.
https://doi.org/10.4049/jimmunol.0802740
|
[49]
|
Suzuki, S., Shibata, M., Gonda, K., et al. (2013) Immunosuppression Involving Increased Myeloid-Derived Suppressor Cell Levels, Systemic Inflammation, and Hypoalbuminemia Are Present in Patients with Anaplastic Thyroid Cancer. Molecular and Clinical Oncology, 1, 959-964. https://doi.org/10.3892/mco.2013.170
|
[50]
|
Yazawa, T., Shibata, M., Gonda, K., et al. (2013) Increased IL-17 Production Correlated with Immunosuppression Involving Myeloid-Derived Suppressor Cells and Nutritional Impairment in Patients with Various Gastrointestinal Cancers. Molecular and Clinical Oncology, 1, 675-679. https://doi.org/10.3892/mco.2013.134
|
[51]
|
Ohki, S., Shibata, M., Gonda, K., et al. (2012) Circulating Myeloid-Derived Suppressor Cells Are Increased and Correlate to Immune Suppression, Inflammation and Hypoproteinemia in Patients with Cancer. Oncology Reports, 28, 453-458.
https://doi.org/10.3892/or.2012.1812
|
[52]
|
Tachibana, K., Shibata, M., Gonda, K., et al. (2017) IL-17 and VEGF Are Increased and Correlated to Systemic Inflammation, Immune Suppression, and Malnutrition in Patients with Breast Cancer. European Journal of Inflammation, 20, 1-10.
https://doi.org/10.1177/1721727X17739514
|
[53]
|
Minamikawa, K., Shibata, M., Gonda, K., et al. (2017) IL-17 and VEGF Are Significantly Associated with Disease Progression Involving Systemic Inflammation in Patients with Gastric and Colorectal Cancers. Annals Cancer Research and Therapy, 25, 67-76. https://doi.org/10.4993/acrt.25.67
|
[54]
|
Aotsuka, A., Matsumoto, Y., Arimoto, T., et al. (2019) Interleukin-17 Is Associated with Expression of Programmed Cell Death 1 Ligand 1 in Ovarian Carcinoma. Cancer Science, 110, 3068-3078. https://doi.org/10.1111/cas.14174
|
[55]
|
Lan, C., Huang, X., Lin, S., et al. (2013) High Density of IL-17 Producing Cells Is Associated with Improved Prognosis for Advanced Epithelial Ovarian Cancer. Cell and Tissue Research, 352, 351-359. https://doi.org/10.1007/s00441-013-1567-0
|
[56]
|
Droeser, R.A., Mechera, R., Daster, S., et al. (2016) MPO Density in Primary Cancer Biopsies of Ovarian Carcinoma Enhances the Indicative Value of IL-17 for Chemosensitivity. BMC Cancer, 16, 639. https://doi.org/10.1186/s12885-016-2673-7
|
[57]
|
Rungapiromnan, W., Yiu, Z.Z.N., Warren, R.B., et al. (2017) Impact of Biologic Therapies on Risk of Major Adverse Cardiovascular Events in Patients with Psoriasis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. British Journal of Dermatology, 176, 890-901. https://doi.org/10.1111/bjd.14964
|
[58]
|
Huh, J.R. and Littman, D.R. (2012) Small Molecule Inhibitors of RORγt: Targeting Th17 Cells and Other Applications. European Journal of Immunology, 42, 2232-2237.
https://doi.org/10.1002/eji.201242740
|